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Books

Textbooks

• James et al. (2013), available online here.
This will be the primary source for the course.

• Hastie, Tibshirani, and Friedman (2001), available online here.
A more technical and comprehensive precursor to (James et al., 2013).

• Strang (2019)

Statistics

• Pichler (2018): Lecture notes for the TU Chemnitz undergraduate statistics class, which is recom-
mended for all MSc Data Science students without an undergraduate math degree.

• Freedman, Pisani, and Purves (2007): A very elementary and non-technical introduction into sta-
tistical terminology and thinking.

• Williams (2010): A very lively and mathematicaly satisfying account of statistics and probability
theory at the beginning graduate level.

• Efron and Hastie (2016): A very readable account of classical and modern statistical ideas, avail-
able online here.

• Spiegelhalter (2019)
• Diaconis and Skyrms (2018): A wonderful and very accessible tour d’horizon of the foundational

concepts of probability theory.

Programming

• Grus (2015)
• Géron (2017), available online here.

Data Science

• MacKay (2003), a wonderful book on the connection between statistical inference and information
theory. Avilable online here.

• Sutton and Barto (2018), available online here.
• Goodfellow, Bengio, and Courville (2016), available online here.
• Chollet (2018)
• Kelleher, Namee, and D’Arcy (2015)
• Schölkopf and Smola (2002)
• Shalev-Shwartz and Ben-David (2014), available online here.

Popular Science Books

• Bostrom (2014) Nick Bostrom, a Swedish philosopher at Oxford University, argues that if machine
brains surpass human brains in general intelligence, then this new superintelligence could replace
humans as the dominant lifeform on Earth.

1

http://faculty.marshall.usc.edu/gareth-james/ISL/
https://web.stanford.edu/~hastie/ElemStatLearn/
https://web.stanford.edu/~hastie/CASI/
https://github.com/bcarancibia/data_books/blob/master/OreillyHands_On_Machine_Learning_with_Scikit_Learn_and_TensorFlow.pdf
http://www.inference.org.uk/mackay/itila/book.html
http://incompleteideas.net/book/bookdraft2018jan1.pdf
http://www.deeplearningbook.org
http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning


• Domingos (2015) Outlines five tribes of machine learning: inductive reasoning, connectionism,
evolutionary computation, Bayes’ theorem and analogical modelling. The author explains these
tribes to the reader by relating these to more familiar concepts of logic, connections made in the
brain, natural selection, probability and similarity judgements. Throughout the book, it is suggested
that each different tribe has the potential to contribute to a unifying ”master algorithm”.

• O’Neil (2016) O’Neil, a mathematician and former Wall Street quant, analyses how the use of big
data and algorithms in a variety of fields, including insurance, advertising, education, and policing,
can lead to decisions that harm the poor, reinforce racism, and amplify inequality.

• Stephens-Davidowitz (2017) Inspired by Google Trends, former Google data scientist Seth Stephens-
Davidowitz reveals what can be inferred about human desires, beliefs and prejudices from analyz-
ing the vast logs of anonymous Google searches. A fascinating, if sobering, account.

• Fry (2018). An excellent exposition of the opportunities and dangers of data mining and machine
learning in modern life, displayed across the chapters Power, Data, Justice, Medicine, Cars, Crime
and Art. Somewhat more optimistic (balanced?) than (O’Neil, 2016).

• Harari (2018) A dismal look into the technological future by Silicon Valley’s favorite philosopher.

What is Data Science?

• Bühlmann and Stuart (2016). A concise take on the role of math and stats within the emerging
discipline of data science centering on models, high dimensionality and heterogeneity.

• Donoho (2017). Based on a presentation at the John Tukey 100th Birthday Celebration held in
Princeton 2015, this overview traces the origins of the discipline, highlighting the role of statistics
in the genesis of data science.

• Carmichael and Marron (2018)
• Mazzocchi (2015) A thoughtful discussion of Anderson’s ‘end of theory’ proposition for data sci-

ence, providing some epistemological background.

Chapter 3

• Allen (1997) gives an easygoing and intuitive overview of linear regression methods.
• Mood, Graybill, and Boes (1974) in Chapter X gives a detailed exposition of hypothesis tests

associated with linear regression models.
• Golub and Van Loan (2013) gives an encyclopaedic account of numerical linear algebra in theory

and practice, including Cholesky and QR factorization, the SVD, least squares and generalizations.
• Lewis, Lakshmivarahan, and Dhall (2006) is a book on data assimilation and contains a very

thorough and intuitive exposition of least squares, both from a purely deterministic and a statistical
perspective.

Chapter 4

• Bayes’ theorem:
– Efron (2013) : On the occasion of the 250th anniversary of Bayes’ rule, eminent statistician

Bradley Efron gives a very readable account of the dispute between Bayesians and frequen-
tists delivered as the 85th Gibbs lecture at the 2012 Joint Mathematics Meeting.

– Efron (2013) An executive summary of (Efron, 2013a).
– McGrayne (2012), a popular science book on the history and real-world impact of Bayes’

theorem
• Breast cancer screening:

– Hoffrage and Gigerenzer (1998): How medical professionals can be taught to perform the
calculations required to apply Bayes’ rule.

– Kerlikowske et al. (1996), Kerlikowske et al. (1996), A study determining the statistical param-
eters of mammography screening tests.
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Chapter 5

• Cross validation is also discussed also in the ESL book (Hastie, Tibshirani, and Friedman, 2001,
Section 7.2).

• Another popular method is known as generalized cross validation (GCV) Golub, Heath, and Wahba
(1979).

• The Bootstrap was invented by Bradley Efron in the late 1970s (Efron, 1979)
• A nice introduction to the Bootstrap can be found in Efron (2013).

Chapter 6

• Model comparison:
– Mallows’ Cp statistic: introduced in 1964 by the English statistician Colin Lingwood Mallows.

The original references as well as a modern statistical treatment can be found in Gilmour,
1996.

– Akaike Information Criterion: first published by the Japanese statistician Hirotogu Akaike in
1969 Akaike, 1969 (cf. also

• Partial Least Squares:
– Eldén (2004); Björck (2014) and the references therein give an account of the theoretical and

algorithmic state of the art in PLS.
– Mehmood and Ahmed (2016) gives an impression of current, in particular high-dimensional

applications of PLS.

Chapter 8

• Tree-based methods
– More details on optimal pruning of decision trees can be found in Breiman et al. (1984) (Chap-

ter 10) and Ripley (1996) (Chapter 7).
• Boosting

– A seminal reference to boosting methods is the paper Freund and Schapire (1997), where
the AdaBoost.M1 algorithm is introduced. See also the survey paper Friedman, Hastie, and
Tibshirani (2000).

– A comprehensive monograph on boosting methods is Schapire and Freund (2012).
– A brief introduction to Gradient Boosting can be found in Hastie, Tibshirani, and Friedman,

2001, Section 10.1.
– A more recent but all the more successful variation of gradient boosting is known as XGBoost

Chen and Guestrin, 2016.

Chapter 9

• A comprehensive presentation of principal components analysis can be found in the book Jolliffe,
2002.
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