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Tree-Based Methods
Chapter overview

• In previous chapter, considered piecewise approximation for univariate mo-
dels (piecewise constant, splines, etc.).

• Here: piecewise constant multivariate approximation.
• Much greater variety of possible domain partitions.
• Recursive binary partitioning: efficient representation using binary trees.
• Can be used for regression and classification.
• Refinements: bagging, random forests, boosting.
• Developed in 1980s by Leo Breiman and Jerry Friedman, popular algorithm
known as Classification and Regression Tree (CART).
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Tree-Based Methods
Basic idea

• Consider bivariate model

Y = f (X1,X2), Xi ∈ [0, 1].

• Divide feature space into axis-aligned rec-
tangles.

• Within each rectangle, predict Y as the
mean of the observations it contains.
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FIGURE 9.2. Partitions and CART. Top right panel shows a partition of a
two-dimensional feature space by recursive binary splitting, as used in CART,
applied to some fake data. Top left panel shows a general partition that cannot
be obtained from recursive binary splitting. Bottom left panel shows the tree cor-
responding to the partition in the top right panel, and a perspective plot of the
prediction surface appears in the bottom right panel.
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Tree-Based Methods
Basic idea

• Simpler structure: construct rectangles by
recursive binary partitioning.

• Predicting Y = ŷRm in region Rm yields
piecewise constant model

Y = f̂ (X ) =

5∑
m=1

ŷRm 1{X∈Rm}
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• Partitioning sequence:
• First split at X1 = t1.
• Next, split region X1 ≤ t1 at X2 = t2
and region X1 > t1 at X1 = t3.

• Finally: region X1 > t3 is split at X2 = t4.
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Recursive binary partition more con-
veniently represented by a binary tree;
regions appear as leaves, internal nodes
are the splits.
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Equivalent representation as piecewise
constant function.
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Tree-Based Methods
Hitters example

Hitters data set: predict baseball players’ Salary based on

Years: # years played in major leagues
Hits : # hits made in previous yearBaseball salary data: how would you stratify it?

Salary is color-coded from low (blue, green) to high (yellow,red)
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• Salary values color-coded from
low (blue, green) to high (red).

• First remove observations missing
Salary values.

• Log-transform Salary values [k$]
to make distribution more bell-
shaped.
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Tree-Based Methods
Hitters example

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

Observations of Years and Hits with
partitioning arising from two splits.

• First split yields
R1 = {X : Years < 4.5}.

• Second split at Hits = 117.5 yields
R2 = {X : Years ≥ 4.5, Hits <
117.5}
and
R3 = {X : Years ≥ 4.5, Hits ≥
117.5}

• Predicted Salary in these regions:
R1 : $1000× e5.107 = $165, 174,
R2 : $1000× e5.999 = $402, 838,
R3 : $1000× e6.740 = $845, 346.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 412 / 500



Tree-Based Methods
Hitters example

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

Observations of Years and Hits with
partitioning arising from two splits.

• First split yields
R1 = {X : Years < 4.5}.

• Second split at Hits = 117.5 yields
R2 = {X : Years ≥ 4.5, Hits <
117.5}
and
R3 = {X : Years ≥ 4.5, Hits ≥
117.5}

• Predicted Salary in these regions:
R1 : $1000× e5.107 = $165, 174,
R2 : $1000× e5.999 = $402, 838,
R3 : $1000× e6.740 = $845, 346.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 412 / 500



Tree-Based Methods
Hitters example

Years

H
it
s

1

117.5

238

1 4.5 24

R1

R3

R2

Observations of Years and Hits with
partitioning arising from two splits.

• First split yields
R1 = {X : Years < 4.5}.

• Second split at Hits = 117.5 yields
R2 = {X : Years ≥ 4.5, Hits <
117.5}
and
R3 = {X : Years ≥ 4.5, Hits ≥
117.5}

• Predicted Salary in these regions:
R1 : $1000× e5.107 = $165, 174,
R2 : $1000× e5.999 = $402, 838,
R3 : $1000× e6.740 = $845, 346.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 412 / 500



Tree-Based Methods
Hitters example

|
Years < 4.5

Hits < 117.5

5.11

6.00 6.74

Regression tree resulting from these splits.

• Left branch contains R1, right branch
R2 and R3.

• Tree has two internal nodes, three
terminal nodes (leaves).

• Number in each leaf gives mean value
of log(Salary) for corresponding regi-
on.

• Length of vertical lines indicate reduc-
tion in training error split achieves.

• Interpretation: Years is most import-
ant factor in determining Salary (less
experienced players earn less); Hits
important Salary-relevant feature on-
ly among experienced players.

• Advantages of tree: easily interpreta-
ble, nice graphical representation.
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Tree-Based Methods
Tree construction

• Goal: Partition feature space into high-dimensional rectangles {Rm}Mm=1 in
such a way that

RSS =

M∑
m=1

∑
i∈Rm

(yi − ŷRm)
2,

is minimized. (ŷRm : mean of the response observations contained in Rm.)

• Comparing all possible partitions computationally infeasible, hence use top-
down, greedy approach.

• Top-down refers to starting with the entire feature space and recursively
splitting regions (recursive binary splitting).

• Greedy approach refers to determining the locally best split without loo-
king ahead and possibly choosing a split leading to a better tree in some
future step.
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2,
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Tree-Based Methods
Tree construction

• To construct first split, consider splitting along variable Xj at splitting point
Xj = s and define half-spaces

R1(j , s) := {X : Xj ≤ s}, R2(j , s) := {X : Xj > s}. (8.1)

• Seek splitting variable index j and splitting point s which minimize

min
ŷR1

∑
xi∈R1(j ,s)

(yi − ŷR1)
2 +min

ŷR2

∑
xi∈R2(j ,s)

(yi − ŷR2)
2. (8.2)

• For fixed j , s, the two minimizing values of ŷR1 and ŷR2 are clearly the sam-
ple means of the response observations in R1 and R2, respectively.

• For each j , the optimal splitting point s can be found very quickly; with
best split (j , s), partition data into the resulting two subregions and conti-
nue splitting recursively.
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ŷR2

∑
xi∈R2(j ,s)

(yi − ŷR2)
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Tree-Based Methods
Tree construction
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Tree-Based Methods
Tree pruning

• Can continue recursive binary splitting until, e.g., cardinality of all leaves
fall below given value.

• If tree too complex, danger of overfitting: smaller tree (fewer splits) will
have lower variance. Hence, alternative stopping criterion could be minimal
reduction of RSS for each split.
However, split with small RSS reduction may enable larger reduction in
subsequent splits.

• Better strategy: grow very large tree T0, then prune it back to obtain a
subtree.

• Can compare different subtrees using cross-validation, but comparing all
possible subtrees is infeasible.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 416 / 500



Tree-Based Methods
Tree pruning

• Can continue recursive binary splitting until, e.g., cardinality of all leaves
fall below given value.

• If tree too complex, danger of overfitting: smaller tree (fewer splits) will
have lower variance. Hence, alternative stopping criterion could be minimal
reduction of RSS for each split.
However, split with small RSS reduction may enable larger reduction in
subsequent splits.

• Better strategy: grow very large tree T0, then prune it back to obtain a
subtree.

• Can compare different subtrees using cross-validation, but comparing all
possible subtrees is infeasible.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 416 / 500



Tree-Based Methods
Tree pruning

• Can continue recursive binary splitting until, e.g., cardinality of all leaves
fall below given value.

• If tree too complex, danger of overfitting: smaller tree (fewer splits) will
have lower variance. Hence, alternative stopping criterion could be minimal
reduction of RSS for each split.
However, split with small RSS reduction may enable larger reduction in
subsequent splits.

• Better strategy: grow very large tree T0, then prune it back to obtain a
subtree.

• Can compare different subtrees using cross-validation, but comparing all
possible subtrees is infeasible.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 416 / 500



Tree-Based Methods
Tree pruning

• Can continue recursive binary splitting until, e.g., cardinality of all leaves
fall below given value.

• If tree too complex, danger of overfitting: smaller tree (fewer splits) will
have lower variance. Hence, alternative stopping criterion could be minimal
reduction of RSS for each split.
However, split with small RSS reduction may enable larger reduction in
subsequent splits.

• Better strategy: grow very large tree T0, then prune it back to obtain a
subtree.

• Can compare different subtrees using cross-validation, but comparing all
possible subtrees is infeasible.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 416 / 500



Tree-Based Methods
Cost complexity pruning

• Cost complexity pruning (a.k.a. weakest link pruning): consider sequence
of trees indexed by tuning parameter α ≥ 0.

• To each α ≥ 0 there corresponds a subtree T ⊂ T0 which minimizes

|T |∑
m=1

∑
i :xi∈Rm

(yi − ŷRm)
2 + α|T |, (8.3)

where |T | denotes the number of leaves of tree T . Tuning parameter α
controls trade-off between fit to training data and tree complexity.

• α = 0 corresponds to T0. For α > 0 (8.3) minimized by smaller tree Tα
(can show this is unique).

• To find Tα use weakest link pruning: successively collapse internal node
producing smallest per-node increase in

∑
m,i (yi − ŷRm)

2, continue until
single-node tree reached. Can show: this tree sequence must contain Tα.

• Select α using validation set or cross-validation.
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Tree-Based Methods
Regression tree algorithm

Algorithm 4: Regression tree.

1 Use recursive binary splitting to grow tree T0 on the training data, stop-
ping when each leaf contains fewer than some minimum number of obser-
vations.

2 Apply cost complexity pruning to T0 to obtain sequence of best subtrees,
as a function of α.

3 Use K -fold cross-validation to choose α: divide training observations into K
folds. For each k = 1, . . . ,K :

i Repeat steps 1 and 2 on all but k-th fold of training data.
ii Evaluate test MSE on left out k-th fold, as function of α.

Average MSE for each value of α, choode α minimizing average MSE.

4 Return subtree from Step 2 corresponding to minimizing α.
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Tree-Based Methods
Hitters example revisited

|
Years < 4.5

RBI < 60.5

Putouts < 82

Years < 3.5

Years < 3.5

Hits < 117.5

Walks < 43.5

Runs < 47.5

Walks < 52.5

RBI < 80.5

Years < 6.5

5.487

4.622 5.183

5.394 6.189

6.015 5.571
6.407 6.549

6.459 7.007
7.289

• Hitters data set using
nine features.

• Randomly divide data set
into 132 training and 131
test observations.

• Grow tree on training data.
• Vary α to obtain subtrees

Tα with different numbers
of leaves.

• Perform 6−fold CV to esti-
mate MSE of Tα as functi-
on of α.

• Unpruned tree shown on
left.
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Tree-Based Methods
Hitters example revisited
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Training, CV and test MSEs for regression tree of Hitters data set as a function
of α with bands indicating ±1 standard error. CV MSE somewhat pessimistic, but
reasonable estimate of test MSE.
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Tree-Based Methods
Classification Trees

• Tree-based piecewise constant prediction model for qualitative response.

• In place of mean value, predict in Rm the most commonly occurring re-
sponse observation there (majority vote).

• Grow classification tree using recursive binary splitting.
• In place of RSS, can use classification error rate E to determine optimal
splits. This is simply the fraction of training observations not belonging to
the most commonly occurring class, i.e.

E = 1−max
k

p̂m,k ,

p̂m,k : proportion of training observations in Rm from k-th class.
• Classification error rate E not sensitive enough for tree-growing. Two other
popular measures preferable:
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Tree-Based Methods
Gini index and entropy

• The Gini index is defined by

G =

K∑
k=1

p̂m,k(1− p̂m,k) (8.4)

and represents a measure of total variance across the K classes. Small if all
p̂m,k close to zero or one; indication of node purity, i.e., small value indica-
tes node contains predominantly observations from a single class.

• Entropy (or deviance) is defined by

D = −
K∑

k=1

p̂m,k log p̂m,k . (8.5)

Note p̂m,k log p̂m,k ≤ 0 since p̂m,k ∈ [0, 1].
As for G , D small if p̂m,k close to zero or one for all k .

• Any of E , G or D can be used to build the tree, but pruning should be do-
ne using E to maximize prediction accuracy of final pruned tree.
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Tree-Based Methods
Gini index and entropy

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 9
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FIGURE 9.3. Node impurity measures for two-class
classification, as a function of the proportion p in
class 2 . Cross-entropy has been scaled to pass through
(0 .5, 0 .5).

Node purity measures for two-class classification as a function of proportion p in class
2. Entropy has been scaled to pass through (0.5, 0.5). For two classes, if p denotes
the proportion in class 2, the three measures are 1 − max(p, 1 − p), 2p(1 − p) and
−p log p − (1− p) log(1− p).
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Tree-Based Methods
Heart example

• Heart data set: binary response HD for 303 patients who presented with
chest pain.

• Response Yes indicates presence of heart disease (based on angiographic
test), No indicates absence of heart disease.

• 13 predictors including Age, Sex, Chol (cholesterol measurement), and
further heart and lung function measurements.

• Cross-validation results in tree with six leaves.
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Tree-Based Methods
Heart example

|
Thal:a

Ca < 0.5

MaxHR < 161.5

RestBP < 157

Chol < 244
MaxHR < 156

MaxHR < 145.5

ChestPain:bc

Chol < 244 Sex < 0.5

Ca < 0.5

Slope < 1.5

Age < 52 Thal:b

ChestPain:a

Oldpeak < 1.1

RestECG < 1

No Yes
No

No
Yes

No

No No No Yes

Yes No No

No Yes

Yes Yes
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5 10 15

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

0
.6

Tree Size

E
rr

o
r

Training
Cross−Validation
Test

|
Thal:a

Ca < 0.5
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Ca < 0.5

No No

No Yes

Yes Yes

Heart data set: unpruned tree.
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Tree-Based Methods
Heart example
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Heart data set. Left: training, CV and test MSE for different sizes of pruned tree.
Right: pruned tree corresponding to minimal CV MSE.
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Tree-Based Methods
Heart example, qualitative predictors

• Heart data set contains a number of qualitative predictor variables such as
Sex, Thal (Thallium stress test) and ChestPain.

• Splitting along one of these variables: assign some of the qualitative values
to one branch, remaining values to other branch.

• In previous image: some internal nodes split quantitative variables.
• Top internal node splits Thal. Text Thal:a indicates left branch consists of
observations with first value of Thal (normal), right consists of remaining
values (fixed or reversible defects).

• Text ChestPain:bc on third split on left indicates left branch contains ob-
servations with second and third values of ChestPain variable (whose pos-
sible values are typical angina, atypical angina, non-anginal pain and asym-
ptomatic).
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Tree-Based Methods
Heart example, leaves with identical values

• Some leaves in Heart classification tree have the same predicion values.
• Example: split RestECG < 1 near bottom right of unpruned tree, both
subregions predict response value Yes. Why perform split in the first place?

• Split made to increase node purity.
• All 9 observations in right branch have leaf response value Yes. In left
branch, 7/11 have response value Yes.

• Importance of node purity: given test observation belonging to region on
right branch, then response certaionly Yes. For test observation on left
branch, pobably Yes, but with much less certainty.

• Even though RestECG < 1 does not reduce classification error, it improves
the Gini index and entropy, which are more sensitive to node purity.
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Tree-Based Methods
Trees vs. linear models

• Prediction model of linear regression vs. regression tree

f (X ) = β0 + β1X1 + · · ·+ βpXp, f (X ) =

M∑
m=1

ŷRm1{X∈Rm}

with regression coefficients {βj}pj=0 and partition of feature space into rec-
tangular regions Rm.

• If feature-response relation close to linear, linear regression model likely
superior.
Otherwise, tree-based models may outperform linear regression.

• Relative performances can be assessed by estimating test MSE via CV or
validation set approach.

• Other considerations may also be relevant in comparison, such as interpre-
tability or visualization.
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Tree-Based Methods
Trees vs. linear models: example
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Top row: 2D classification example with linear decision boundary (shaded regions),
linear regression model superior. Bottom row: nonlinear )(piecewise constant) decision
boundary captured perfectly by tree-based method,
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Tree-Based Methods
Advantages and shortcomings of trees

+ Easy to explain (more so than linear regression).

+ Some argue decision trees more closely mimick human decision-making
than linear regression/classification techniques (also widely used outside of
statistical learning).

+ Trees, particularly small ones, easily displayed graphically, easily interpreted
by non-experts.

+ Can handle qualitative predictors without introducing dummy variables.

- Prediction accuracy generally not as good as classical regression and classi-
fication techniques.

- Robustness (stability w.r.t. small data changes) often lacking.

Some of these disadvantages addressed by bagging, random forests, boosting.
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Tree-Based Methods
Bagging

• Recall the bootstrap approach introduced in Chapter 5 for randomly gene-
rating subsamples of a set of observations for estimating statistical quanti-
ties without collecting additional data.

• Here we revisit the bootstrap to show how it can be used as a variance-
reduction technique for any statistical learning method.

• This is particularly relevant for decision trees, which tend to possess high
variance.

• Bagging: bootstrap aggregation.
• Variance can be reduced by averaging observations: for {Xk}Nk=1 i.i.d. RV
with variance σ2, variance of X = (X1 + · · ·+ XN)/N is σ2/N.

• Idea: Collect N training sets, construct prediction model f̂k for each, and
average these to aggregate model

f̂avg(x) =
1
N

N∑
k=1

f̂k(x).
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Tree-Based Methods
Bagging

• Collecting N data sets generally infeasible.

• Bootstrap: randomly select (with replacement) Nb sets of samples from
(single) original data set.
For each resampled data set, construct prediction model f̂ ∗k , k = 1, . . . ,Nb.
Form bootstrap aggregate model

f̂bag(x) =
1
Nb

Nb∑
k=1

f̂ ∗k (x).

This is called bagging.
• For (regression) decision trees: grow (unpruned) tree for each resampled
data set and average them.

• For classification trees: replace average with majority vote, i.e., for each
new predictor observation, have aggregate model predict that class occur-
ring most commonly across all decision trees f̂ ∗k .
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Tree-Based Methods
Out-of-bag error estimation

• Error of bagged model can be estimated without CV or validation sets by
exploiting that we are using bootstrapped subsets of fixed observation set.

• Can show: on average, each bagged tree uses of 2/3 of the observations.
• Remaining third: “out-of-bag” (OOB) observations.
• For i-th observation: predict response using all trees for which it was OOB.
Take average (regression) or majority vote (classification) to obtain aggre-
gated prediction for all n observations, compare with response observation,
i.e., MSE (regression) or classification error (classification), to obtain error
estimate.

• Can show: for Nb sufficiently large, OOB error estimate virtually equivalent
to LOOCV error estimate.
This is a great benefit when performing bagging on large data sets, where
CV would be computationally burdensome.
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Tree-Based Methods
Measuring variable importance

• Drawback of bagging: no single decision tree for interpretation.
Increased prediction accuracy at the expense of interpretability.

• Crucial interpretation element: which predictor variables most important?
• For regression trees, overall summary of importance of each predictor can
be obtained by recording total amount RSS decreases when split performed
along this variable, then averaging over all trees.

• For classification trees: record total Gini index reduction due to splits along
each predictor per tree, then average over all trees.

• Large value indicates important predictor variable.
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Tree-Based Methods
Measuring variable importance: Heart data set
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Heart data set. Variable importance (relative to maximum) in terms of mean decrease
in Gini index.
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Tree-Based Methods
Random forests

• Improve over bagging by “decorrelating” trees.
• Build decision trees on bootstrapped samples as in bagging.
• When choosing next predictor variable to split, restrict selection to m < p
randomly chosen variables instead of full set of p predictors.
New set of m splitting candidates chosen at each splitting step.

• Common choice: m ≈ √p. Smaller m called for in case of many correlated
predictors.
m = p recovers bagging.

• Rationale: strongly dominant variables will be used in splitting for majority
of bagged trees, leading to similarity among these trees, and thereby strong
correlations.
This limits the variance reduction from averaging.

• On average, (p−m)/p splits will not even consider a given strong predictor.
• This mechanism results in a decorrelation of the trees, making their avera-
ge less variable, hence more reliable.
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Tree-Based Methods
Random forests: gene expression example

• High-dimensional biological data set: expression measurements for 4,718
genes on tissue samples from 349 patients.

• Human genome contains ≈ 20, 000 genes.
• Individual genes have varying levels of expression (activity) in different bo-
dy cells, tissue or biological conditions.

• Here: each patient sample assigned to one of 15 classes (normal or one of
14 cancer types).

• Goal: predict cancer type using random forests based on 500 genes with
largest variance in training set.

• Random division into training and test set.
• Random forests applied for 3 different values of m.
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Tree-Based Methods
Random forests: gene expression example
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Random forests for 15-class gene expression with p = 500: test error against # trees.
Single tree has classification error rate of 45.7%. Null rate (always assign to dominant
class) is 75.4%. As for bagging, no danger of overfitting as # trees increases.
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Tree-Based Methods
Bagging vs. random forests: Heart data set
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Test error against number Nb of bootstrapped data sets. Random forests used m =
√

p. Dashed line: error of single classification tree. Solid green/blue: OOB errors consi-
derably lower.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 441 / 500



Tree-Based Methods
Boosting

• Boosting: general approach for improving predictions of statistical learning
methods, here in context of decision trees.

• Basic approach as in bagging, but trees grown sequentially using informa-
tion from previously generated trees.

• No bootstrap sampling; instead, each tree fit to a modified version of origi-
nal data set.

• Procedure: begin with tree fit to original data.
• Fit next tree to residuals of first model in place of observation responses.
Then add this tree to the first, as a model correction.

• Each tree can be small (few leaves) determined by parameter d in the algo-
rithm.
By fitting small trees to residuals, f̂ is slowly improved in areas where it
previously didn’t perform well.

• Boosting for classification trees slightly more complicated.
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Tree-Based Methods
Tuning parameters in boosting

1 # trees Nb. Overfitting is possible with boosting, although it sets in slowly.
Selection using CV.

2 Shrinkage parameter λ > 0 (small) determining learning rate.
Typical values 10−2 or 10−3.
Very small λ can require very large Nb for good prediction.

3 # splits d per tree, controls complexity of boosted ensemble.
Can also use d = 1 (“stump”) with single split, leads to an additive model.
Since d splits can involve at most d variables, it controls the interaction
order of the boosted model.
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Tree-Based Methods
Boosting algorithm

Algorithm 5: Boosting for regression trees.

1 Set f̂ (x) ≡ 0 and ri = yi , i = 1, . . . , n (entire training set).

2 for k = 1 to Nb do
Fit a tree f̂k with d splits (d + 1) leaves to training data (X , r)
Update f̂k by adding damped version of new tree:

f̂ (x)← f̂ (x) + λf̂k(x)

Update residuals

ri ← ri − λf̂k(xi ), i = 1, . . . , n.

3 Output boosted model

f̂ (x) =
Nb∑

k=1

λf̂k(x).
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Tree-Based Methods
Gene expression example revisited
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Boosting: depth=1

Boosting: depth=2

RandomForest: m= p

Boosting and random forests for gene expression example: test error against # trees
using λ = 0.01 for boosted models. Depth-1 trees slightly outperform depth-2 trees,
both outperform random forest, but difference is within standard error. Single tree has
error rate 24%.
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Boosting
Setting

• Recall main idea: combine outputs of many weak models (slightly better
than random guessing) to produce a poweful “committee”.

• Pioneering algorithm: AdaBoost.M1 [Fraund & Schapire, 1997]

• Consider classification problem:

Y ∈ {−1, 1} response

X predictor variable(s)

G : X 7→ G (X ) ∈ {−1, 1} classifier

• Error on training samplke

err :=
1
n

n∑
i=1

1{yi 6=G(xi )}

• Expected error rate
EXY

[
1{Y 6=G(X )}

]
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Boosting
Setting

• Sequentially apply weak classifier to repeatedly modified versions of the
data, yields sequence {Gm}m=1,2,... of classifiers,

• Combine these to

G (x) := sign

(
M∑

m=1

αmGm(x)

)
.

• Weights α1, . . . , αM computed by algorithm.
• Goal: give higher influence to more accureate classifiers.
• Modifications: apply weights w1, . . . ,wn to training observations {(xi , yi )}ni=1.
Initialize to wi = 1/n ∀i .

• At step m: increase weights of observations misclassified by Gm−1, decrease
those of correctly classified observations

• Observations difficult to classify receive more weight. Force later classifiers
to focus on those observations missed by previous ones.
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Boosting
AdaBoost.M1

Algorithm 6: AdaBoost.M1

1 Initialize obervation weights wi ← 1
n , i = 1, . . . , n.

2 for m = 1 to M do
Fit classifier Gm to training data using weights wi .
Compute

errm ←
∑n

i=1 wi 1{yi 6=G(xi}∑n
i=1 wi

Compute
αm ← log((1− errm)/errm).

Set
wi ← wi · exp[αm1{yi 6= G (xi}], i = 1, . . . , n.

3 Output G (x) = sign
[∑M

m=1 αmGm(x)
]
.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 449 / 500



Boosting
Forward stagewise additive modeling

Algorithm 7: Forward Stagewise Additive Modeling

1 Initialize f0 ≡ 0.

2 for m = 1 to M do
Compute

(βm, γm)← argmin
β,γ

n∑
i=1

L (yi , fm−1(xi ) + βb(xi ; γ))

Set
fm(x)← fm−1(x) + βmb(x ; γm).
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