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Linear Model Selection and Regularization
Chapter overview

• Alternative fitting procedures to least squares (LS) for standard linear mo-
del

Y = β0 + β1X1 + · · ·+ βpXp + ε (6.1)

to improve prediction accurary and model interpretability.

• Prediction accuracy: for approximately linear (true) model, LS has low bias
and, if n ≫ p, also low variance. More variability if n ≳ p, no unique mini-
mizer if n < p.
Idea: constraining or shrinking estimated coefficients reduces variability in
these cases at negligible increase in bias, improving prediction accuracy.

• Model interpretability: some predictor variables may be irrelevant for re-
sponse; LS will not remove these, hence consider other methods for fea-
ture selection or variable selection to exclude irrelevant variables from
multiple regression model (by producing zero coefficients for these).
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Linear Model Selection and Regularization
Alternative fitting procedures

We consider three classes of fitting alternatives to LS:
• Subset selection: Find subset of initial p predictor variables which are rele-

vant, fit model using LS for reduced set of variables.

• Shrinkage: fit all p variables, shrink coefficients towards zero relative to LS
estimate. Shrinkage (also known as regularization) reduces variance, some
coefficients shrunk to zero, can be viewed as variable selection.

• Dimension reduction: project p predictors into subspace of dimension
M < p, i.e., construct M linearly independent pseudo-variables which de-
pend linearly on original p predictor variables. Use these as new predictors
for LS fit.

• Same concepts apply to other methods (e.g. classification).
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Linear Model Selection and Regularization
Best subset selection

Idea: Perform separate LS regression for all possible subsets of given p predictor
variables. Note that there are 2p possible models.

Algorithm 1: Best subset selection.

1 Set M0 to be the null model, i.e., containing only constant term β0.
2 for k = 1, 2, . . . , p

a Fit all
(p

k

)
models containing exactly k predictors.

b Pick best (smallest RSS, i.e., largest R2) among these, call it Mk .

3 Select single best model among M0, . . . ,Mp using model selection criteri-
on (later).

• Step 2 reduces # model candidates from 2p to p + 1.
• Models in Step 3 display monotone decreasing RSS (increasing R2) as #

variables increases.
• Want low test error rather than low training error.
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Linear Model Selection and Regularization
Best subset selection
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Best subset selection for Credit data set: 10 predictors (three-valued variable ethnicity
coded using two dummy variables selected separately).
Red line indicates model with smallest RSS (largest R2).
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Linear Model Selection and Regularization
Best subset selection

• Can apply to classification problems using deviance in place of RSS (−2 ·
maximized log-likelihood).

• Best subset selection simple, but # regression fits to compare grows expo-
nentially with p (e.g. 1024 for p = 10, over 1 million for p = 20).

• Also, statistical problems for large p: the larger the search space, the higher
the chance of finding models performing well on training set, but badly for
test sets.
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Linear Model Selection and Regularization
Forward stepwise selection

Idea: Add predictors to model one at a time, at each step adding variable lea-
ding to greatest additional improvement.

Algorithm 2: Forward stepwise selection.

1 Set M0 to be the null model, i.e., containing only constant term β0.
2 for k = 0, 1, . . . , p − 1

a Consider all p − k models augmenting Mk by one additional predictor.
b Pick best (smallest RSS, i.e., largest R2) among these, call it Mk+1.

3 Select single best model among M0, . . . ,Mp using model selection criteri-
on (later).

• Rather than 2p models considered by best subset selection, forward stepwi-
se selection requires only 1 + p(p + 1)/2 LS fits.
E.g. p = 20: 1,048,576 models for best subset selection, 211 models for
forward stepwise selection.
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Linear Model Selection and Regularization
Forward stepwise selection

• Forward stepwise selection not guaranteed to find best model out of 2p

possible. E.g. for p = 3, best single-variable model could consist of X1,
while best two-variable model consists of X2,X3.

• First 4 selected models for best subset selection and forward stepwise se-
lection on Credit data set:

# variables Best subset Forward stepwise
1 rating rating
2 rating, income rating, income
3 rating, income, student rating, income, student
4 cards, income rating, income

student, limit student, limit
• Can use forward stepwise selection in high-dimensional case when n < p.

However, can only construct submodels M0, . . . ,Mn−1, since LS can uni-
quely fit at most n − 1 variables.
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Linear Model Selection and Regularization
Backward stepwise selection

Idea: Begin with full LS model, successively remove least useful predictor.

Algorithm 3: Backward stepwise selection.

1 Set Mp to be the full model, containing all p predictors.
2 for k = p, p − 1, . . . , 1

a Consider all k models containing all but one of the predictors in Mk .
b Pick best (smallest RSS, i.e., largest R2) among these k models, call it

Mk−1.

3 Select single best model among M0, . . . ,Mp using model selection criteri-
on (later).

• Again only 1 + p(p + 1)/2 model fits.
• No guarantee of finding best model.
• Requires n > p.
• Hybrid approaches possible, where addition step followed by removal step.
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Linear Model Selection and Regularization
Optimal model selection

• In best subset selection, forward selection and backward selection, need to
choose best among models containing different # variables.

• RSS and R2 measures will always select model with all p variables.
• Goal: select best model with respect to test error.
• Two basic approaches:

1 Indirectly estimate test error by making an adjustment to training error to
account for bias due to overfitting.

2 Directly estimate test error using either validation set or cross-validation
approach.
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Linear Model Selection and Regularization
Cp, AIC, BIC, adjusted R2

• Training set MSE generally underestimates test MSE (recall MSE = RSS /n)
• For LS regression: coefficients determined by minimization of RSS.
• Therefore training error decreases as variables added to model; not so for

test error.
• For fitted LS model containing d predictors, Mallows’ Cp statistic defined

by

Cp :=
RSS+2d σ̂2

n
, (6.2)

where σ̂2 is an estimate of Var ε, typically computed using full model.
Adds penalty term 2d σ̂2 to training RSS to compensate for underestima-
ting test error.
Can show: Cp unbiased estimate of test MSE if σ̂2 unbiased estimate of
σ2.
Hence Cp can be expected to be small for models with small test MSE.
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Linear Model Selection and Regularization
AIC

• Akaike information criterion (AIC) defined for models fit by maximum
likelihood.

• For standard linear model (6.1) with Gaussian noise, maximum likelihood fit
coincides with LS fit.

• In this case

AIC =
RSS+2d σ̂2

n σ̂2

(have omitted additive constant).
• Hence, for LS models Cp and AIC proportional.
• Originally based on the concept of information-theoretic entropy and the

Kullback-Leibler divergence, applicable in much more general settings
than linear models; more general form:

AIC = 2 log L− 2d ,

where L is the maximum likelihood value of the fitted model.
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Linear Model Selection and Regularization
BIC

• Bayesian information criterion (BIC), derived from Bayes point of view, is
given by (up to irrelevant constants)

BIC =
RSS+d σ̂2 log n

n σ̂2 (6.3)

• Also tends to be small for models with small test error.
• Replaces 2d σ̂2 used by Cp with d σ̂2 log n, hence places heavier penalty on

models with many variables, results in selection of smaller models than Cp.
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Linear Model Selection and Regularization
Adjusted R2

• Recall R2 = 1− TSS /RSS,
TSS =

∑
(yi − y)2 total sum of squares for response.

• R2 increases as variables added to LS model.
• For LS model with d variables, adjusted R2 statistic given by

Adjusted R2 := 1−
RSS /(n − d − 1)
TSS /(n − 1)

= 1−
RSS

TSS
·

n − 1
n − d − 1

. (6.4)

• Unlike Cp, AIC and BIC, where small value indicates model with low test
error, here a large value of the adjusted R2 statistic indicates a model with
a small test error.

• Maximizing adjusted R2 equivalent to minimizing RSS /(n − d − 1).
• Intuition: once all relevant variables have been included, adding additional

noise variables will only lead to small decrease in RSS.
• Compared to R2, adjusted R2 pays a price for adding irrelevant variables.
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Linear Model Selection and Regularization
Cp, AIC, BIC, adjusted R2

• Rigorous justifications of Cp, AIC, BIC rely on asymptotic arguments (large
n limit).

• Adjusted R2 popular, intuitive, but not as well motivated statistically.
• All measures simple to use and compute.
• Modified formulas for more general models.
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Linear Model Selection and Regularization
Cp, AIC, BIC, adjusted R2
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Linear Model Selection and Regularization
Cross-validation

• Can apply validation and cross-validation to each model and select that
with lowest estimate.

• Advantage over Cp, AIC, BIC, adjusted R2: direct estimate of test error,
fewer assumptions about underlying model.

• More widely useable, e.g., when noise variance estimates difficult to obtain.
• CV initially less popular than Cp, AIC, BIC, adjusted R2 due to computatio-

nal cost; this is less and less an issue.

• Apply to Credit data set: display BIC, validation set errors, cross-validation
errors as function of d =# variables in model.
Validation: randomly choose 3/4 of observations as training set, remainder
as validation set.
Cross-validation using k = 10 folds.
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Linear Model Selection and Regularization
Cross-validation
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Linear Model Selection and Regularization
Cross-validation

• Observation: all 3 error estimates quite flat from 4 variables onward.
• Error estimate-minimizing model likely to change for different partitions of

observations or different choice of CV folds.
• One-standard-error rule: calculate standard error of estimated test MSE

for each model size, then select smallest model for which estimated test
error is within one standard error of lowest point on curve.
Rationale: if several models appear equally good, may as well choose simp-
lest.
Here: rule leads to 3-variable model.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 305 / 502



Contents

6 Linear Model Selection and Regularization
6.1 Subset Selection
6.2 Shrinkage Methods
6.3 Dimension Reduction Methods
6.4 Considerations in High Dimensions
6.5 Miscellanea

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 306 / 502



Linear Model Selection and Regularization
Shrinkage

• Inverse problems: branch of applied mathematics for solving problems
where solution extremely sensitive to data and/or solution not unique (e.g.:
X-ray tomography, image deblurring).

• Prevalent strategy: instead of original problem, solve nearby problem with
better stability properties: regularization.

• In LS methods: modify objective function by minimizing different norm or
adding penalty term, thus imposing “a priori information” on the coeffi-
cients.

• In statistics, particularly in LS regression, regularization is known as shrin-
kage, as certain coefficients are “shrunk” in magnitude relative to their va-
lues under LS estimation.

• Here we introduce two popular shrinkage techniques: ridge regression and
the LASSO.
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Linear Model Selection and Regularization
Ridge regression

Least-squares fitting determines coefficients β0, . . . , βp by minimizing

RSS =

n∑
i=1

yi − β0 −
p∑

j=1

βjXj

2

= ∥y −Xβ∥22.

In ridge regression, one minimizes instead the objective function

n∑
i=1

yi − β0 −
p∑

j=1

βjXj

2

+ λ

p∑
j=1

β2
j = RSS+λ∥β̃∥22, (6.5)

where λ is a tuning parameter to be suitably chosen and β̃ := (β1, . . . , βp)
⊤ ∈

Rp. From now on β ∈ Rp and tilde omitted.

In the inverse problems community, this general approach is known as Tikhonov
regularization and λ is called the regularization parameter.
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Linear Model Selection and Regularization
Ridge regression

• Tuning λ constitutes tradeoff between two objectives: minimizing RSS
(good fit to data) and minimizing shrinkage penalty λ∥β∥22, which shrinks
β1, . . . , βp to zero.

• λ = 0: recover standard LS estimate.
• λ→∞: β → 0.
• Different estimate for each value of λ, choice critical.

• Intercept omitted from shrinkage: this is just the mean value of response
when all predictor variables are zero.
Under assumption that all columns of data matrix X have been centered
to have mean zero, then

β̂0 = y =
1
n

n∑
i=1

yi .

• In the following, for the standard linear model, we tacitly assume X to be
centered, the coefficient β0 to be set to its optimal value y and the coeffi-
cient vector to be estimated to consist of the components β1, . . . , βp.
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Linear Model Selection and Regularization
Ridge regression
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Ridge regression applied to Credit data set: values of coefficients of the 10 predictor
variables against λ. Lines for largest coefficients income, limit, rating and student
displayed in distinct colors. Right: x-axis is ∥β̂R

λ∥2/∥β̂∥2 in place of λ.
Predictor variables standardized before carrying out ridge regression.
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Linear Model Selection and Regularization
Ridge regression: standardizing the predictors

• For LS estimation of standard linear model, rescaling a predictor variable
Xj ← cXj simply results in reciprocal rescaling of estimate as β̂j ← β̂j/c .
Consequence: β̂jXj , hence data fit, remains the same. This property is cal-
led scale equivariance.

• This is no longer the case for ridge regression: value of β̂R
j ,λXj depends on λ

as well as the scaling of Xj (possibly even the scaling of other predictors).
• Therefore, best to standardize predictor variables by transformation

xi ,j ← x̃i ,j :=
xi ,j

sj
, sj :=

√√√√1
n

n∑
i=1

(xi ,j − x j)2. (6.6)

Denominator sj estimates variance of j-th predictor.
• Standardized predictor observations have unit variance estimate.
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Linear Model Selection and Regularization
Ridge regression: improvement over LS

Bias-variance tradeoff: as λ increases, model flexibility decreased, reducing va-
riance, increasing bias.
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Linear Model Selection and Regularization
Ridge regression: improvement over LS

• In general: for almost linear (true) model, LS estimate has low bias, but
possibly high variance, particularly when p large relative to n.

• For p > n LS fit not unique, but ridge regression still works, trading off
slight bias for much reduced variance.

• Computational advantage over best subset selection: ridge regression for
many values of λ can be computed at cost of essentially one LS fit, com-
pared to comparing 2p models.
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Linear Model Selection and Regularization
The LASSO

• Disadvantage of ridge regression: will generally include all p predictors in
the model, in contrast with subset selection methods.

• OK for prediction, challenging for interpretation.

• Example: Credit data set; most important variables are income, limit,
rating and student. Model including just these desirable, ridge regression
will generally include all 10 predictors.

• LASSO (least absolute shrinkage and selection operator): choose coeffi-
cients βj to minimize

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

+ λ

p∑
j=1

|βj | = RSS+λ∥β∥1. (6.7)

• ℓ2-penalty in ridge regression replaced by ℓ1-penalty, ∥β∥1 = |β1|+· · ·+|βp|.
• ℓ1-penalty: for λ sufficiently large, results in some estimates β̂L

j ,λ being ex-
actly zero, effecting an implicit variable selection, yielding in sparse mo-
dels, which are easier to interpret.
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Linear Model Selection and Regularization
The LASSO
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LASSO applied to Credit data set. Note difference to ridge regression for intermedia-
te values of λ: as λ increases, coefficients are successively set to zero, thereby remo-
ved from model.
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Linear Model Selection and Regularization
Equivalent constrained minimization problem

Can show: ridge regression and LASSO estimates solve constrained minimiza-
tion problems

β̂
L
λ = argmin

β

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

subject to ∥β∥1 ≤ s (6.8)

and

β̂
R
λ = argmin

β

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

subject to ∥β∥22 ≤ s, (6.9)

respectively.
In other words: for each value of λ, there is a corresponding value of s, such
that both problems give the same estimates.
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Linear Model Selection and Regularization
LASSO: relation to best subset selection

• Consider constrained minimization problem

β̂ = argmin
β

n∑
i=1

yi − β0 −
p∑

j=1

βjxi ,j

2

subject to
p∑

j=1

1{βj ̸=0} ≤ s (6.10)

• Minimizes RSS subject to constraint that no more than s coefficients are
nonzero.

• This is equivalent to best subset selection.
• Computationally infeasible for large p, since it involves considering all

(p
s

)
models containing s predictors.

• Hence ridge regression / LASSO computationally feasible alternatives to
best subset selection replacing intractable form of budget in (6.10).
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Linear Model Selection and Regularization
LASSO: variable selection property

• Formulations (6.8) and (6.9) key to understanding variable selection pro-
perty of LASSO:

Red: RSS contours, blue: constraints |β1|+ |β2| ≤ s (left) and β2
1 +β

2
2 ≤ s (right).
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Linear Model Selection and Regularization
LASSO: variable selection property

• Unit spheres of
∑p

j=1 |βj |q for q < 2 progressively sharper (no longer a
norm for q < 1).

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 3

q = 4 q = 2 q = 1 q = 0.5 q = 0.1

FIGURE 3.12. Contours of constant value ofP
j |βj |q for given values of q.

• Limiting case: q = 0 counts # nonzero components.
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Linear Model Selection and Regularization
Comparison of ridge regression with LASSO

Simulated data using all p = 45 predictors: (βj ̸= 0 ∀j in true model)
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Left: Test MSE (purple), squared bias (black) and variance (green) of LASSO for dif-
ferent values of λ.
Right: Comparison of test MSE (purple), squared bias (black) and variance (green)
against training R2; dotted lines denote corresponding quantities for ridge regression.
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Linear Model Selection and Regularization
Comparison of ridge regression with LASSO

Simulated data using only 2 out of p = 45 predictors: (only two βj ̸= 0 in true
model)
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Right: Comparison of test MSE (purple), squared bias (black) and variance (green)
against training R2; dotted lines denote corresponding quantities for ridge regression.
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Linear Model Selection and Regularization
Simple special case for ridge regression and the lasso

Assume data matrix X = I (p = n) and y = 0.

LS problem reduces to minimizing

p∑
j=1

(yj − βj)
2, hence βj = yj , j = 1, . . . , p. (6.11)

Ridge regression and lasso estimation result from minimizing

p∑
j=1

(yj − βj )
2 + λ

p∑
j=1

β2
j and

p∑
j=1

(yj − βj )
2 + λ

p∑
j=1

|βj |,

respectively, with solutions

β̂
R
=

yj

1 + λ
, β̂

L
=


yj − λ/2 if yj > λ/2,

yj + λ/2 if yj < −λ/2,
0 if |yj | ≤ λ/2.
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Linear Model Selection and Regularization
Simple special case for ridge regression and the lasso
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Ridge regression (left) and lasso (right) estimates for one variable of special case X =
I and p = n.

General case: more complicated (of course), but basic mechanism still holds:
• Ridge regression: shrinks every dimension roughly by same proportion.
• Lasso: shrinks all components to zero by similar amount, sufficiently small

coefficients damped to zero.
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Linear Model Selection and Regularization
Bayesian interpretation for ridge regression and the lasso

• Assume prior distribution on β = (β1, . . . , βp)
⊤, with density p(β).

• Likelihood of data: f (Y |X ,β), X = (X1, . . . ,Xp).
• Bayes’ rule then says (noting X is fixed)

p(β|X ,Y ) ∝ f (Y |X ,β) · p(β|X ) = f (Y |X ,β) · p(β).

• Assume standard linear model Y = β0 + β1X1 + · · ·+ βpXp + ε,
with independent Gaussian noise and p(β) =

∏p
j=1 g(βj ) for pdf g.

• Ridge regression/lasso results from two special cases for g:
• g centered Gaussian, λ-dependent variance, then ridge regression estimate is

posterior mode (and posterior mean) of β.
• g centered Laplace distribution with λ-dependent scale parameter, then pos-

terior mode for β given by lasso estimate. (Not posterior mean; posterior
mean itself not sparse.)
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Linear Model Selection and Regularization
Bayesian interpretation for ridge regression and the lasso
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Prior densities for Bayesian interpretation of shrinkage methods.
Left: centered Gaussian prior density, results in posterior distribution with ridge regres-
sion solution as posterior mode.
Right: centered Laplace (double-exponential) prior density, results on lasso solution as
posterior mode.
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Linear Model Selection and Regularization
Selection of λ

• Model selection methods required measure of goodness to compare models.
• Shrinkage methods require selection of shrinkage parameter λ.
• Cross-validation approach: fix a grid of λ values; compute cross-validation

error for each λ; select λ with smallest error; refit this model with all availa-
ble observations.
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Left: LOOCV errors vs. λ for ridge regression applied to Credit data set.
Right: Coefficient estimates vs. λ. Vertical dashed line indicates selected λ.
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Linear Model Selection and Regularization
Selection of λ
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10-fold CV applied to data set from Slide 321.
Left: CV error. Right: coefficient estimates. Vertical dashed line indicates CV error-
minimizing λ. Colored lines represent 2 predictors related to response, grey lines unre-
lated predictors (signal vs. noise).
Lasso assigns relevant predictors much larger estimates; CV chooses λ for which irrele-
vant predictors set to zero. Compare LS estimate (far right).
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Linear Model Selection and Regularization
Dimension reduction methods

• Previously: control variance by removing predictor variables or shrinking
coefficients.

• Now: reduce variance by projecting into subspace of dimension M < p.
• Set

Zm :=

p∑
j=1

φj ,m Xj , m = 1, . . . ,M, i.e., Φ ∈ Rp×M ,

[Z1, . . . ,ZM ] = [X1, . . . ,Xp]Φ.

• Fit standard linear regression model

Y = θ0 + θ1Z1 + · · ·+ θMZM + ε. (6.12)

• Dimension reduction: fit M + 1 < p + 1 coefficients.
• For well-chosen Φ, this reduced-dimension approach can outperform LS.
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Linear Model Selection and Regularization
Dimension reduction methods

• Note: for each observation i = 1, . . . , n, we have

M∑
m=1

zi ,m θm =

M∑
m=1

p∑
j=1

φj ,m xi ,j θm =

p∑
j=1

xi ,j

M∑
m=1

φj ,m θm =

p∑
j=1

xi ,j βj

with βj :=
∑M

m=1 φjk,m θm.
• Collecting the observations in the usual way as rows of the data matrices Z

and X leads to the more succinct representation

Zθ = XΦθ =: Xβ, β = Φθ.

Hence can view (6.12) as special case of original linear model (6.1).
• Dimension reduction constrains β to be a linear function of the M < p

variables {θm}Mm=1.
• May introduce bias, but when p ≫ n this is outweighed by resulting varian-

ce reduction.

• Next: 2 ways of choosing Φ.
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Linear Model Selection and Regularization
Principal components regression

• Principal components analysis (PCA): approach for deriving a low-
dimensional feature set from a large set of variables.

• First principal component: direction in Rp in which observations vary the
most.
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Population size pop vs. ad spending ad for 100 cities (purple dots). Green solid line:
first principal component; blue dashed line: second principal component.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 331 / 502



Linear Model Selection and Regularization
Principal components regression

• Principal components analysis (PCA): approach for deriving a low-
dimensional feature set from a large set of variables.

• First principal component: direction in Rp in which observations vary the
most.

10 20 30 40 50 60 70

0
5

1
0

1
5

2
0

2
5

3
0

3
5

Population

A
d
 S

p
e
n
d
in

g

Population size pop vs. ad spending ad for 100 cities (purple dots). Green solid line:
first principal component; blue dashed line: second principal component.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 331 / 502



Linear Model Selection and Regularization
Principal components regression
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• Project data on direction (line) along which it varies most.
• For pop / ad data: φ1,1 = 0.839, φ2,1 = 0.544, giving

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad)

• Out of every (normalized) linear compbination of the (centered) variables,
Z1 has maximal variance.
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Linear Model Selection and Regularization
Principal components regression

• Principal component data vector (“scores”) has same length n, e.g.

zi ,1 = 0.839× (popi − pop) + 0.544× (adi − ad), i = 1, . . . , n.

• Alternative interpretation of PCA: 1st principal component vector defines
line as close as possible to data in sense of minimizing sum of squared per-
pendicular distances between each data point and this line.
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Linear Model Selection and Regularization
Principal components regression
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First principal components scores zi ,1 for pop and ad. Strong relationship in both ca-
ses, i.e., principal component captures most of the information contained in the two
predictors.
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Linear Model Selection and Regularization
Principal components regression

• Second principal component Z2: direction of largest variance among all li-
near combinations of predictor variables which is orthogonal to (uncorrela-
ted with) Z1.

• Here:
Z2 = 0.544× (pop− pop)− 0.839× (ad− ad).

Since p = 2, this covers all of remaining variance.
• Of these, Z1 contains most of the information, cf. much larger variation in

Z1-coordinate than Z2-coordinate in right panel of figure on Slide 332.
• Plot on Slide 336 displays zi ,2 against pop and ad predictors: much less

relationship than with Z1.
Thus, Z1 sufficient to explain most of variability in data set.

• For p predictor variables, can construct up to p principal components.
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Linear Model Selection and Regularization
Principal components regression
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Linear Model Selection and Regularization
Principal components regression

• Principal components regression (PCR): construct first M principal com-
ponents Z1, . . . ,ZM , use these in a linear regression model fit by LS.

• Guiding principle: directions in span of X1, . . . ,Xp with most variance are
the directions associated with response Y .

• Under this assumption, fitting LS model to Z1, . . . ,ZM will yield better pre-
dictions than fitting X1, . . . ,Xp, since most information related to response
Y contained in Z1, . . . ,ZM , and estimating M ≪ p coefficients avoids over-
fitting.
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Linear Model Selection and Regularization
Principal components regression
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PCR fits to data sets from Slide 320 (left) and Slide 321 (right): MSE against # prin-
cipal components M. More components reduces bias, increases variance (U-shape).
p = M coincides with LS fit of original predictors. Compared with ridge regression and
lasso results in figures on Slides 312, 320 and 321, PCR seen to underperform shrinka-
ge.
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Linear Model Selection and Regularization
Principal components regression

Worse performance of PCR in previous example due to fact that many principal
components needed needed to explain response.
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Data generated so response depends exclusively on first 5 principal components.
Left: PCR, MSE has clear minumum at M = 5.
Right: ridge regression (dotted) and lasso (solid) results.
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Linear Model Selection and Regularization
Principal components regression

• PCR uses M < p new variables, but these all still depend on original predic-
tors.

• Hence, PCR not a feature selection method.
• In this aspect, PCR closer to ridge regression than lasso.
• Ridge regression can be viewed as a continuous version of PCR.
• # principal components M can be chosen by CV.
• Recommended: first standardize data.
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Linear Model Selection and Regularization
Principal components regression
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Left: standardized coefficients. Right: CV MSE against M.
Lowest error for 10 components (only one less than full model).
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Linear Model Selection and Regularization
Partial least squares

• PCR only looks at predictor variability, not at response.
• In this sense, it is unsupervised.
• Partial least squares (PLS): supervised variant of PCR: find linear combi-

nation of predictors containing most variability and best explain response.

• To construct Z1, set each coefficient in Z1 =
∑p

j=1 φj ,1Xj to coefficient of
simple linear regression of Y onto Xj . Results in coefficient proportional to
Cor(Xj ,Y ).
This places highest weight on variables most strongly related to response
Y .

• To identify Z2, first adjust all predictors for Z1 by regressing these on Z1

and taking residuals. Interpretation: remaining information not explained by
first PLS direction. Compute Z2 using this orthogonalized data just as Z1

was computed using original data.
• In the same way, compute further PLS directions Z3, . . . ,ZM .
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Linear Model Selection and Regularization
Partial least squares
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PLS on synthetic data set giving Sales data in each of 100 regions as response to
two predictors Population Size and Advertising Spending. Solid line: first PLS
direction, dotted: first principal components direction.
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Linear Model Selection and Regularization
Partial least squares

• PLS was developed by Wold in the 1970s for use in Chemometrics and
Econometrics (large p, small n).

• In statistics the most common implementation is by the NIPALS (nonlinear
iterative partial least squares) algorithm.

• The PLS estimate β̂PLS = β̂PLS,m,m = 1, 2, . . . is generated iteratively, the
iterates are contained in the Krylov subspace

Km(X
⊤X,X⊤y) = span{X⊤y , (X⊤X)X⊤y , . . . , (X⊤X)m−1X⊤y}.

• Equivalent: apply the Conjugate Gradient method to the normal equati-
ons X⊤Xβ = X⊤y . (Converges to β̂LS, even in rank-deficient case.)

• Note: in contrast with LS, the PLS estimate depends nonlinearly on y .
• State of the art implementation based on iterative Golub-Kahan bidiago-

nalization.
• Typically faster reduction of ∥y −Xβ∥ than for LS.

Can show ∥Xβ̂LS −Xβ̂PLS∥2 ≤ ∥Xβ̂LS −Xβ̂PCR∥2.
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Linear Model Selection and Regularization
The high-dimensional setting

• Most traditional statistical techniques: n ≫ p (low-dimensional setting).

• Typical example: Predict patient’s blood pressure based on age, gender, bo-
dy mass index (BMI). Three predictors, and typically thousands of patients’
data.

• More recently, in many fields such as medicine, finance, marketing, trend
towards collecting almost unlimited number of feature measurements (p
large), while cost of obtaining sufficienly many samples prohibitive.

• Example: in place of age, gender, BMI, collect measurements of half million
single nucleotide polymorphisms, i.e., common individual DNA mutati-
ons. Results in p ≈ 500, 000, n ≈ 200.

• Example: ‘Bag-of-words’ model to understand customers’ online shopping
patterns, using as features all search terms entered in search engine (bina-
ry feature vector). Only few hundred users consented to their data being
used. Results in n ≈ 100, p much larger.
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Linear Model Selection and Regularization
The high-dimensional setting: what goes wrong?

• When p ≥ n LS cannot (should not) be used, since data will be fit perfect-
ly.

• Example: p = 1, n = 20 vs. n = 2:
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Right model will not generalize well (overfitting), model too flexible..
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Linear Model Selection and Regularization
The high-dimensional setting: what goes wrong?

Another example: n = 20 observations for 1 ≤ p ≤ 20 features, each completely
unrelated to response.
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As p increases, R2 → 1, training MSE → 0 despite no relation of predictors to
response. At the same time, test MSE sharply increases as model increasingly
flexible.

Casual observer may find large model superior if only first two quantities moni-
tored.
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Linear Model Selection and Regularization
The high-dimensional setting: what goes wrong?

• Model selection techniques based on Cp, AIC, BIC not appropriate for high-
dimensional setting, as estimating σ̂2 problematic.

• Adjusted R2 may easily yield value of 1 in high-dimensional setting.

• Less flexible regression models (stepwise selection, shrinkage, PCR) parti-
cularly useful in high dimensions. Avoid overfitting by constraining flexibility.

• Next figure: Lasso on n = 100 simulated training observations using p =
20, 50 and 2, 000 features, of which 20 related to response.
Then MSE evaluated on independent test set.
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Linear Model Selection and Regularization
The high-dimensional setting: what goes wrong?
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• For p = 20, lowest test MSE for low value of λ. For larger p, best model obtai-
ned for larger λ. When p = 2000, lasso performs badly for all values of λ.

• Rather than λ, plot shows degrees of freedom of model, i.e., # nonzero coeffi-
cients of lasso estimate.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 350 / 502



Linear Model Selection and Regularization
The high-dimensional setting: what goes wrong?

Summary:
1 Shrinkage plays key role in high dimensions.
2 Correct value of tuning parameter essential.
3 Test error increases with dimension, unless additional features informative.

• Third observation related to curse of dimensionality: quality of model
need not increase as features added.

• Compare left and right panel in figure: test MSE almost doubles as p incre-
ased from 20 to 2000.

• Noise features (not related to response) increase dimension, exacerbate
overfitting danger.

• Adding features truly related to response will generally improve model.
• New sensor technology allowing for millions of observations can lead to

worse results if features not relevant. Even if relevant, variance incurred
by fitting their coefficients may outweigh reduction in bias from additional
features.
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Linear Model Selection and Regularization
The high-dimensional setting: what goes wrong?

• In high dimensions: collinearity problem extreme. (Why?)

• Never know which variables truly predictive, can never obtain best coeffi-
cients.

• At best: assign large coefficients to variables correlated with variables truly
predictive for response.

• For p > n can easily obtain useless model with zero residual.
• Traditional measures of model quality based on training data often highly

misleading in high dimensions.
• Reporting MSE on independent test data particularly important here.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 352 / 502



Linear Model Selection and Regularization
The high-dimensional setting: what goes wrong?

• In high dimensions: collinearity problem extreme. (Why?)
• Never know which variables truly predictive, can never obtain best coeffi-

cients.
• At best: assign large coefficients to variables correlated with variables truly

predictive for response.
• For p > n can easily obtain useless model with zero residual.
• Traditional measures of model quality based on training data often highly

misleading in high dimensions.
• Reporting MSE on independent test data particularly important here.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 352 / 502



Contents

6 Linear Model Selection and Regularization
6.1 Subset Selection
6.2 Shrinkage Methods
6.3 Dimension Reduction Methods
6.4 Considerations in High Dimensions
6.5 Miscellanea

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2023/24 353 / 502



Ridge regression
. . . and the SVD

• Recall the ridge regression estimate β̂R for the LS problem Xβ ≈ y with
data matrix X ∈ Rn×p and observation vector y ∈ Rn: for a given value of
the tuning (or regularization) parameter λ ≥ 0 it was defined by

β̂R = argmin
β∈Rp

Qλ(β), Qλ(β) := ∥y −Xβ∥22 + λ∥β∥22.

• Rewriting the objective function Qλ(β) as

Qλ(β) = (y −Xβ)⊤(y −Xβ) + λβ⊤β =

[
y −Xβ√
λβ

]⊤ [
y −Xβ√
λβ

]
=

∥∥∥∥[y0
]
−
[
X√
λI

]
β

∥∥∥∥2

2
,

we observe that ridge regression can be viewed as a standard LS formulati-
on for the augmented problem[

X√
λI

]
β ≈

[
y

0

]
.
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Ridge regression
. . . and the SVD

• The associated normal equations of ridge regression

(X⊤X + λI)β = X⊤y (6.13)

are obtained from those of original LS problem by adding λI to the coeffi-
cient matrix, guaranteeing positive definiteness for λ > 0.

• Given an SVD X = UΣV ⊤ of the data matrix X with orthogonal matrices
U = [u1| . . . |un] ∈ Rn×n, V = [v1| . . . |vp] ∈ Rp×p and, and assuming it has

full rank p ≤ n, Σ =

[
Σp

O

]
, Σp = diag(σ1, . . . , σp), σ1 ≥ · · · ≥ σp > 0, this

implies

X⊤X = VΣ⊤ΣV ⊤, Σ⊤Σ = diag(σ2
1, . . . , σ

2
p),

X⊤y = VΣ⊤U⊤y =

p∑
j=1

σp(u
⊤
j y)vj

.
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Ridge regression
. . . and the SVD

• Inserting these expressions into the normal equations (6.13) yields

V (Σ⊤Σ+ λI)V ⊤β = VΣ⊤U⊤y

or, setting γ := V ⊤β,

(Σ⊤Σ+ λI)γ = Σ⊤U⊤y , giving γj =
σj

σ2
j + λ

u⊤j y , j = 1, . . . , p,

and finally, with β = V γ, the ridge regression estimate

β̂R =

p∑
j=1

σj

σ2
j + λ

(u⊤j y)vj .

• Observe that β̂R is obtained from the standard LS estimate β̂ =
∑p

j=1
u⊤j y

σj
vj

by multiplying each coefficient with the filter factor

σ2
j

σ2
j + λ

, j = 1, . . . , p.

• Given SVD, ridge regression estimates for additional λ essentially for free.
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Principal Components
Covariance matrix of a random vector

• Recall: the variance of a random variable X with expectation µ := E [X ] is
given by

σ2 = Var X = E
[
(X − µ)2

]
.

• For a random vector X = (X1, . . . ,Xp)
⊤ ∈ Rp with expectation µ :=

E [X ], the variance or covariance matrix is given by

C := Var X = E
[
(X − µ)(X − µ)⊤

]
= C⊤ ∈ Rp×p,

with matrix entries

Ci ,j = E [(Xi − µi )(Xj − µj)] = Cov(Xi ,Xj), i , j = 1, . . . , p.
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Principal Components
Total variance a random vector

• A scalar measure of the total variance contained in a random vector X ∈
Rp is provided by the trace of its covariance matrix

trC =

p∑
j=1

Cj ,j =

p∑
j=1

Cov(Xj ,Xj) =

p∑
j=1

Var Xj .

• Justification:

E
[
∥X − E [X ] ∥22

]
= E

[
∥X − µ∥22

]
= E

[
(X − µ)⊤(X − µ)

]
= E

 p∑
j=1

(Xj − µj)
2

 =

p∑
j=1

E
[
(Xj − µj )

2] = p∑
j=1

Var Xj .

• By a well-known result from linear algebra, if λj (C) denotes the j-th eigen-
value (in descending order) of C9, there also holds

trC =

p∑
j=1

λj(C).

9Note that these are real and positive as C is symmetric and positive-definite.
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Principal Components
Total variance a random vector

• Given a spectral decomposition

C = WΛW⊤, W⊤W = I, Λ = diag(λ1, . . . , λp),

of C and the fact that the Frobenius norm ∥ · ∥F is unitarily invariant, we
also have

trC = ∥Λ1/2∥2F = ∥WΛ1/2W⊤∥2F = ∥C1/2∥2F .

• In view of the fact that |λj(C)| = λj(C) for covariance matrices, the spec-
tral decomposition WΛW⊤ is also a singular value decomposition.

• Combining with Theorem 3.3, we conclude that for any k ∈ {1, . . . , p} the
matrix

Ck =

k∑
j=1

λjwjw
⊤
j ,

where W = [w1| . . . |wp], is the best approximation of the covariance matrix
C in the spectral and Frobenius norms among all matrices of rank ≤ k .
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Principal Components
Linear combinations of random vector components

• Given a random vector X = (X1, . . . ,Xp)
⊤ ∈ Rp and wj a normalized

eigenvector of its covariance matrix C with associated eigenvalue λj , define
the scalar random variable Zj := w

⊤
j X . Then

Var Zj = E
[
(w⊤j X − E

[
w⊤j X

]
)2
]
= E

[(
w⊤j (X − µ)

)2
]
.

= E
[
(w⊤j (X − µ))(X − µ)⊤wj)

]
= w⊤j E

[
(X − µ)(X − µ)⊤

]
wj

= w⊤j Cwj = λj .

• More generally, for any linear combination Z = φ⊤X , φ = (φ1, . . . , φp)
⊤,

we have

Var Z = E
[
(φ⊤X − E

[
φ⊤X

]
)2
]
= E

[
(φ⊤(X − µ))2

]
= E

( p∑
j=1

φj(Xj − µj)

)2
 =

p∑
j ,k=1

φjφkE [(Xj − µj)(Xk − µk)]

= φ⊤Cφ.
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Principal Components
Linear combinations of random vector components

• For two general linear combinations Z1 = φ⊤1 X , Z2 = φ⊤2 X , we conclude by
an analogous calculation that

Cov(Z1,Z2) = φ
⊤
2 Cφ1

and therefore that Z1 and Z2 are uncorrelated if and only if φ⊤2 Cφ1 = 0,
i.e., if the coefficient vectors φ1 and φ2 are orthogonal in the inner product
generated by the (symmetric and positive definite) matrix C.

• If we seek a change of variables Z = Φ⊤X with a nonsingular Φ ∈ Rp×p

such that the components of Z are uncorrelated with unit variance, then it
is necessary that

I = E
[
(Z − E [Z ])(Z − E [Z ])⊤

]
= E

[
Φ⊤(X − µ)(X − µ)⊤Φ

]
= Φ⊤CΦ.

The set of all matrices Φ ∈ Rp×p which achieve this is precisely the set of
all congruences taking C to I.
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Principal Components
Linear combinations of random vector components

• Example 1: given Cholesky factorization C = LL⊤, choosing Φ := L−⊤

gives
Φ⊤CΦ = L−1(LL⊤)L−⊤ = I.

• Example 2: given spectral decomposition C = WΛW⊤, choosing Φ :=
WΛ−1/2 gives

Φ⊤CΦ = Λ−1/2W⊤(WΛW⊤)WΛ−1/2 = I.

• Example 3: given square-root-free Cholesky factorization C = LDL⊤,
where L is lower triangular with a unit diagonal and D is diagonal, choosing
Φ := L−⊤ gives

Φ⊤CΦ = L−1(LDL⊤)L−⊤ = D.

• Example 4: given spectral decomposition C = WΛW⊤, choosing Φ := W
gives

Φ⊤CΦ = W⊤(WΛW⊤)W = Λ.
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Principal Components
Courant-Fischer min-max-characterization

For a square matrix A ∈ Rn×n the expression
x⊤Ax

x⊤x
, 0 ̸= x ∈ Rn, is called a

Rayleigh quotient.

Theorem 6.1 (Fischer, 1905; Courant, 1920)

Let A ∈ Rn×n be a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn and
k ∈ {1, 2, . . . , n}. Then

λk = min
w1,w2,...,wn−k∈Rn

max
0̸=x∈Rn

x⊥w1,w2,...,wn−k

x⊤Ax

x⊤x
, (6.14)

λk = max
w1,w2,...,wk−1∈Rn

min
0̸=x∈Rn

x⊥w1,w2,...,wk−1

x⊤Ax

x⊤x
(6.15)

• The extremal values of the Rayleigh quotient are attained when x is an
eigenvector associated with λ1 or λn, respectively.
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Principal Components
Courant-Fischer min-max-characterization

Consequences of Theorem 6.1:
• Linear combination φ⊤X where ∥φ∥2 = 1 with maximal variance obtained

for φ = φ1 = w1. This is the first principal component.
• Linear combination φ⊤X where ∥φ∥2 = 1 with maximal variance subject to
φ ⊥ w1 obtained for φ = φ2 = w2 (second principal component).

• Linear combination φ⊤X where ∥φ∥2 = 1 with maximal variance subject to
φ ⊥ w1, . . . ,wj−1 obtained for φ = φj = wj (j-th principal component).

• The change of variables afforded by replacing the original random variables
X1, . . . ,Xp by the principal components Z = W⊤X is the (unscaled) con-
gruence obtained from the spectral decomposition.
The total variance contained in Z is given by

E
[
∥Z − E [Z ] ∥22

]
=

p∑
j=1

Var Zj =

p∑
j=1

λj = tr

p∑
j=1

λjwjw
⊤
j = trC,

which coincides with the total variance contained in X .
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Principal Components
PCR

• Performing regression of a data vector y on M < p principal components
results in principal components regression (PCR).

• The total variance contained in random vector (Z1, . . . ,ZM)⊤ is

E
[
∥Z − E [Z ] ∥22

]
=

M∑
j=1

Var Zj =

M∑
j=1

λj = tr

M∑
j=1

λjwjw
⊤
j = trCk .

• The fraction of neglected variance in PCR using M principal components is∑p
j=k+1 λj∑p

j=1 λj
= 1−

∑k
j=1 λj∑p
j=1 λj

.
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Principal Components
Data

• The covariance matrix C and expectation vector µ are theoretical con-
structs and typically unavailable hence estimated from data.

• As usual, we denote the data matrix (design matrix) by

X =

x1,1 . . . x1,p
...

...

xn,1 . . . xn,p

 = [x1| · · · |xp] ∈ Rn×p,

each column corresponding to one of p predictor variables (features) and
each row to one of n observations (samples, realizations).

• We denote the vector of sample means by X := 1
ne
⊤X = [x1, . . . , xp] and

obtain the centered data matrix as

X̃ := [x1 − x1e| · · · |xp − xpe] = X − eX = X − e
1
n
e⊤X = (I −

1
n
ee⊤)X.

• Finally, the unbiased sample covariance matrix is

Sn :=
1

n − 1
X̃⊤X̃ =

1
n − 1

X(I −
1
n
ee⊤)2X =

1
n − 1

X(I −
1
n
ee⊤)X.
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Principal Components
Data

• In practice the sample covariance matrix Sn takes the place of the cova-
riance matrix C.

• For PCA/PCR, one can compute a spectral decompositon of Sn.
• Alternatively, given an SVD X̃ = UΣV ⊤, a spectral decomposition of Sn is

obtained as
Sn =

1
n − 1

X̃⊤X̃ =
1

n − 1
VΣ⊤ΣV ⊤.

• The SVD approach is generally numerically stabler, in particular if X̃ is ill-
conditioned. The spectral decomposition may be cheaper, as X̃⊤X̃ is smal-
ler than X̃.
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