Introduction to Data Science

Winter Semester 2023/24

Oliver Ernst

TU Chemnitz, Fakultät für Mathematik, Professur Numerische Mathematik

Lecture Slides

Contents I

(1) What is Data Science?
(2) Learning Theory
2.1 What is Statistical Learning?
2.2 Assessing Model Accuracy
(3) Linear Regression
3.1 Simple Linear Regression
3.2 Multiple Linear Regression
3.3 Computational Solution of Least Squares Problems
3.4 Other Considerations in the Regression Model
3.5 Revisiting the Marketing Data Questions
3.6 Linear Regression vs. K-Nearest Neighbors
(4) Classification
4.1 Overview of Classification
4.2 Why Not Linear Regression?
4.3 Logistic Regression
4.4 Linear Discriminant Analysis
4.5 A Comparison of Classification Methods

Contents II

(5) Resampling Methods
5.1 Cross Validation
5.2 The Bootstrap
(6) Linear Model Selection and Regularization
6.1 Subset Selection
6.2 Shrinkage Methods
6.3 Dimension Reduction Methods
6.4 Considerations in High Dimensions
6.5 Miscellanea
(7) Nonlinear Regression Models
7.1 Polynomial Regression
7.2 Step Functions
7.3 Regression Splines
7.4 Smoothing Splines
7.5 Generalized Additive Models

8 Tree-Based Methods
8.1 Decision Tree Fundamentals

Contents III

8.2 Bagging, Random Forests and Boosting
 8.3 More on Boosting

(9) Unsupervised Learning
9.1 Principal Components Analysis
9.2 Clustering Methods
(10) Neural Networks

Contents

(3) Linear Regression
3.1 Simple Linear Regression
3.2 Multiple Linear Regression
3.3 Computational Solution of Least Squares Problems
3.4 Other Considerations in the Regression Model
3.5 Revisiting the Marketing Data Questions
3.6 Linear Regression vs. K-Nearest Neighbors

Linear Regression

Advertising again

Recall advertising data set from Slide 30:

We will use the simple and well-established statistical learning technique known as linear regression to answer the following questions:

Linear Regression

Questions about advertising data set
(1) Is there a relationship between advertising budget and sales? Otherwise, why bother?

Linear Regression

Questions about advertising data set
(1) Is there a relationship between advertising budget and sales?

Otherwise, why bother?
(2) How strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?

Linear Regression

Questions about advertising data set
(1) Is there a relationship between advertising budget and sales?

Otherwise, why bother?
(2) How strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?
(3) Which media contribute to sales?

Separate individual contributions

Linear Regression

Questions about advertising data set
(1) Is there a relationship between advertising budget and sales?

Otherwise, why bother?
(2) How strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?
(3) Which media contribute to sales?

Separate individual contributions
(4) How accurately can we estimate the effect of each medium on sales? Euro by Euro?

Linear Regression

Questions about advertising data set
(1) Is there a relationship between advertising budget and sales?

Otherwise, why bother?
(2) How strong is this relationship between advertising budget and sales?

Prediction possibly better than random guess?
(3) Which media contribute to sales?

Separate individual contributions
(4) How accurately can we estimate the effect of each medium on sales? Euro by Euro?
(5) How accurately can we predict future sales?

Precise prediction for each medium?

Linear Regression

Questions about advertising data set
(1) Is there a relationship between advertising budget and sales?

Otherwise, why bother?
(2) How strong is this relationship between advertising budget and sales?

Prediction possibly better than random guess?
(3) Which media contribute to sales?

Separate individual contributions
(4) How accurately can we estimate the effect of each medium on sales? Euro by Euro?
(5) How accurately can we predict future sales?

Precise prediction for each medium?
(6) Is the relationship linear?

If yes, linear regression appropriate (possibly after transforming data)

Linear Regression

Questions about advertising data set
(1) Is there a relationship between advertising budget and sales?

Otherwise, why bother?
(2) How strong is this relationship between advertising budget and sales?

Prediction possibly better than random guess?
(3) Which media contribute to sales?

Separate individual contributions
(4) How accurately can we estimate the effect of each medium on sales? Euro by Euro?
(5) How accurately can we predict future sales?

Precise prediction for each medium?
(6) Is the relationship linear?

If yes, linear regression appropriate (possibly after transforming data)
(7) Is there synergy among the advertising media?

Called interaction effect in statistics.

Contents

(3) Linear Regression
3.1 Simple Linear Regression
3.2 Multiple Linear Regression
3.3 Computational Solution of Least Squares Problems
3.4 Other Considerations in the Regression Model
3.5 Revisiting the Marketing Data Questions
3.6 Linear Regression vs. K-Nearest Neighbors

Simple Linear Regression

Definition, terminology, notation

Linear model for quantitative response Y of single predictor X :

$$
\begin{equation*}
Y \approx \beta_{0}+\beta_{1} X \tag{3.1}
\end{equation*}
$$

Statistician: "We are regressing Y onto X."

Simple Linear Regression

Definition, terminology, notation

Linear model for quantitative response Y of single predictor X :

$$
\begin{equation*}
Y \approx \beta_{0}+\beta_{1} X \tag{3.1}
\end{equation*}
$$

Statistician: "We are regressing Y onto X."
E.g., with predictor TV advertising and response sales,

$$
\text { sales } \approx \beta_{0}+\beta_{1} \times \text { TV }
$$

Simple Linear Regression

Definition, terminology, notation

Linear model for quantitative response Y of single predictor X :

$$
\begin{equation*}
Y \approx \beta_{0}+\beta_{1} X \tag{3.1}
\end{equation*}
$$

Statistician: "We are regressing Y onto X."
E.g., with predictor TV advertising and response sales,

$$
\text { sales } \approx \beta_{0}+\beta_{1} \times \mathrm{TV}
$$

The values of coefficients or parameters β_{0}, β_{1} obtained from fitting to the training data are denoted by $\hat{\beta}_{0}, \hat{\beta}_{1}$, leading to the prediction values

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x \tag{3.2}
\end{equation*}
$$

when $X=x$, where the hat on \hat{y} denotes the predicted value of the reponse.

Simple Linear Regression

Estimating the coefficients

The intercept $\hat{\beta}_{0}$ and slope $\hat{\beta}_{1}$ in (3.1) are determined choosing these parameters such that the residuals or data misfits

$$
r_{i}:=y_{i}-\hat{y}_{i}=y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right), \quad i=1, \ldots, n,
$$

are minimized.

Simple Linear Regression

Estimating the coefficients
The intercept $\hat{\beta}_{0}$ and slope $\hat{\beta}_{1}$ in (3.1) are determined choosing these parameters such that the residuals or data misfits

$$
r_{i}:=y_{i}-\hat{y}_{i}=y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right), \quad i=1, \ldots, n,
$$

are minimized.
There are many options for defining smallness here, in least squares estimation this is measured by the residual sum of squares (RSS)

$$
\begin{equation*}
\operatorname{RSS}:=r_{1}^{2}+\cdots+r_{n}^{2}=\left(y_{1}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{1}\right)^{2}+\cdots+\left(y_{n}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{n}\right)^{2} . \tag{3.3}
\end{equation*}
$$

An easy calculation reveals

$$
\begin{array}{ll}
\hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}, & \bar{x}:=\frac{1}{n} \sum_{i=1}^{n} x_{i}, \\
\hat{\beta}_{1}=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, & \bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i} . \tag{3.4}
\end{array}
$$

Simple Linear Regression

Example: LS fit for advertising data

Simple Linear Regression

Example: LS fit for advertising data

LS fit of sales vs. TV budget: RSS as a function of $\left(\beta_{0}, \beta_{1}\right)$

Left: Level curves.

Right: Surface plot.

Simple Linear Regression

Assessing the accuracy of the coefficient estimates
Linear regression yields a linear model

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X+\varepsilon \tag{3.5}
\end{equation*}
$$

where $\quad \beta_{0}$: intercept
β_{1} : slope
ε : model error, modeled as centered random variable, independent of X.

Simple Linear Regression

Assessing the accuracy of the coefficient estimates
Linear regression yields a linear model

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X+\varepsilon \tag{3.5}
\end{equation*}
$$

where	$\beta_{0}:$ intercept
	$\beta_{1}:$ slope

ε : model error, modeled as centered random variable, independent of X.

Model (3.5) defines the population regression line, the best linear approximation to the true (generally unknown) relationship between X and Y.

Simple Linear Regression

Assessing the accuracy of the coefficient estimates
Linear regression yields a linear model

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X+\varepsilon \tag{3.5}
\end{equation*}
$$

where $\quad \beta_{0}$: intercept
β_{1} : slope
ε : model error, modeled as centered random variable, independent of X.

Model (3.5) defines the population regression line, the best linear approximation to the true (generally unknown) relationship between X and Y.
The linear relation (3.2) containing the coefficients $\hat{\beta}_{0}, \hat{\beta}_{1}$ estimated from a given data set is called the least squares line.

Simple Linear Regression

Example: population regression line, least squares line

- Left: Simulated data set $(n=100)$ from model $f(X)=2+3 X$.

Red line: population regression line (true model).
Blue line: least squares line from data (black dots).

- Right: Additionally ten (light blue) least squares lines obtained from ten separate randomly generated data sets from same model; seen to average to the red line.

Simple Linear Regression

Analogy: estimation of mean

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
${ }^{4}$ Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from μ.

Simple Linear Regression

Analogy: estimation of mean

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate population mean μ (expectation, expected value) of random variable Y from observations y_{1}, \ldots, y_{n} by sample mean $\hat{\mu}:=\bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i}$.
${ }^{4}$ Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from μ.

Simple Linear Regression

Analogy: estimation of mean

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate population mean μ (expectation, expected value) of random variable Y from observations y_{1}, \ldots, y_{n} by sample mean $\hat{\mu}:=\bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i}$.
- Just as $\hat{\mu} \approx \mu$ but, in general, $\hat{\mu} \neq \mu$, the coefficients $\hat{\beta}_{0}, \hat{\beta}_{1}$ defining the least squares line are estimates of the true values β_{0}, β_{1} of the model.
${ }^{4}$ Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from μ.

Simple Linear Regression

Analogy: estimation of mean

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate population mean μ (expectation, expected value) of random variable Y from observations y_{1}, \ldots, y_{n} by sample mean $\hat{\mu}:=\bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i}$.
- Just as $\hat{\mu} \approx \mu$ but, in general, $\hat{\mu} \neq \mu$, the coefficients $\hat{\beta}_{0}, \hat{\beta}_{1}$ defining the least squares line are estimates of the true values β_{0}, β_{1} of the model.
- Sample mean $\hat{\mu}$ is an unbiased estimator of μ, i.e., it does not systematically over- or underestimate the true value μ. Same holds for estimators $\hat{\beta}_{0}, \hat{\beta}_{1}$.

[^0]
Simple Linear Regression

Analogy: estimation of mean

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate population mean μ (expectation, expected value) of random variable Y from observations y_{1}, \ldots, y_{n} by sample mean $\hat{\mu}:=\bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i}$.
- Just as $\hat{\mu} \approx \mu$ but, in general, $\hat{\mu} \neq \mu$, the coefficients $\hat{\beta}_{0}, \hat{\beta}_{1}$ defining the least squares line are estimates of the true values β_{0}, β_{1} of the model.
- Sample mean $\hat{\mu}$ is an unbiased estimator of μ, i.e., it does not systematically over- or underestimate the true value μ. Same holds for estimators $\hat{\beta}_{0}, \hat{\beta}_{1}$.
- How accurate is $\hat{\mu} \approx \mu$?

[^1]
Simple Linear Regression

Analogy: estimation of mean

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate population mean μ (expectation, expected value) of random variable Y from observations y_{1}, \ldots, y_{n} by sample mean $\hat{\mu}:=\bar{y}:=\frac{1}{n} \sum_{i=1}^{n} y_{i}$.
- Just as $\hat{\mu} \approx \mu$ but, in general, $\hat{\mu} \neq \mu$, the coefficients $\hat{\beta}_{0}, \hat{\beta}_{1}$ defining the least squares line are estimates of the true values β_{0}, β_{1} of the model.
- Sample mean $\hat{\mu}$ is an unbiased estimator of μ, i.e., it does not systematically over- or underestimate the true value μ. Same holds for estimators $\hat{\beta}_{0}, \hat{\beta}_{1}$.
- How accurate is $\hat{\mu} \approx \mu$?

Standard error ${ }^{4}$ of $\hat{\mu}$, denoted $\operatorname{SE}(\hat{\mu})$, satisfies

$$
\begin{equation*}
\operatorname{Var} \hat{\mu}=\operatorname{SE}(\hat{\mu})^{2}=\frac{\sigma^{2}}{n}, \quad \text { where } \sigma^{2}=\operatorname{Var} Y \tag{3.6}
\end{equation*}
$$

${ }^{4}$ Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from μ.

Simple Linear Regression

Standard error of regression coefficients

For the regression coefficients (assuming uncorrelated observation errors)

$$
\begin{array}{ll}
\operatorname{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right], \tag{3.7}\\
\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, & \sigma^{2}=\operatorname{Var} \varepsilon
\end{array}
$$

Simple Linear Regression

Standard error of regression coefficients
For the regression coefficients (assuming uncorrelated observation errors)

$$
\begin{array}{ll}
\operatorname{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right], \tag{3.7}\\
\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, & \sigma^{2}=\operatorname{Var} \varepsilon
\end{array}
$$

- $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ smaller when x_{i} more spread out (provides more leverage to estimate slope).
- $\operatorname{SE}\left(\hat{\beta}_{0}\right)=\operatorname{SE}(\hat{\mu})$ if $\bar{x}=0$. (Then $\hat{\beta}_{0}=\bar{y}$.)

Simple Linear Regression

Standard error of regression coefficients

For the regression coefficients (assuming uncorrelated observation errors)

$$
\begin{array}{ll}
\operatorname{SE}\left(\hat{\beta}_{0}\right)^{2}=\sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right], \tag{3.7}\\
\operatorname{SE}\left(\hat{\beta}_{1}\right)^{2}=\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}, & \sigma^{2}=\operatorname{Var} \varepsilon .
\end{array}
$$

- $\operatorname{SE}\left(\hat{\beta}_{1}\right)$ smaller when x_{i} more spread out (provides more leverage to estimate slope).
- $\operatorname{SE}\left(\hat{\beta}_{0}\right)=\operatorname{SE}(\hat{\mu})$ if $\bar{x}=0$. (Then $\hat{\beta}_{0}=\bar{y}$.)
- σ generally unknown, can be estimated from the data by residual standard error

$$
\text { RSE }:=\sqrt{\frac{\mathrm{RSS}}{n-2}} .
$$

When RSE used in place of σ, should write $\widehat{\operatorname{SE}}\left(\hat{\beta}_{1}\right)$.

Simple Linear Regression

Confidence intervals

- 95\% confidence interval: range of values containing true unknown value of parameter with probability 95\%.

Simple Linear Regression

Confidence intervals

- 95\% confidence interval: range of values containing true unknown value of parameter with probability 95\%.
- For linear regression: $95 \% \mathrm{Cl}$ for β_{1} approximately

$$
\begin{equation*}
\hat{\beta}_{1} \pm 2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right) \tag{3.8}
\end{equation*}
$$

i.e., with probability 95\%,

$$
\begin{equation*}
\beta_{1} \in\left[\hat{\beta}_{1}-2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right)\right] \tag{3.9}
\end{equation*}
$$

Simple Linear Regression

Confidence intervals

- 95% confidence interval: range of values containing true unknown value of parameter with probability 95%.
- For linear regression: $95 \% \mathrm{Cl}$ for β_{1} approximately

$$
\begin{equation*}
\hat{\beta}_{1} \pm 2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right) \tag{3.8}
\end{equation*}
$$

i.e., with probability 95%,

$$
\begin{equation*}
\beta_{1} \in\left[\hat{\beta}_{1}-2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right)\right] . \tag{3.9}
\end{equation*}
$$

- Similarly, for $\beta_{0}, 95 \% \mathrm{Cl}$ approximately given by

$$
\begin{equation*}
\hat{\beta}_{0} \pm 2 \cdot \operatorname{SE}\left(\hat{\beta}_{0}\right) . \tag{3.10}
\end{equation*}
$$

Simple Linear Regression

Confidence intervals

- 95\% confidence interval: range of values containing true unknown value of parameter with probability 95\%.
- For linear regression: $95 \% \mathrm{Cl}$ for β_{1} approximately

$$
\begin{equation*}
\hat{\beta}_{1} \pm 2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right) \tag{3.8}
\end{equation*}
$$

i.e., with probability 95\%,

$$
\begin{equation*}
\beta_{1} \in\left[\hat{\beta}_{1}-2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right), \hat{\beta}_{1}+2 \cdot \operatorname{SE}\left(\hat{\beta}_{1}\right)\right] \tag{3.9}
\end{equation*}
$$

- Similarly, for $\beta_{0}, 95 \% \mathrm{Cl}$ approximately given by

$$
\begin{equation*}
\hat{\beta}_{0} \pm 2 \cdot \operatorname{SE}\left(\hat{\beta}_{0}\right) \tag{3.10}
\end{equation*}
$$

- For advertising example: with 95% probability

$$
\beta_{0} \in[6.130,7.935], \quad \beta_{1} \in[0.042,0.053] .
$$

Simple Linear Regression

Hypothesis tests
Use SE to test null hypothesis
H_{0} : no relationship between X and Y
and alternative hypothesis

$$
\begin{equation*}
H_{a}: \text { some relationship between } X \text { and } Y \tag{3.12}
\end{equation*}
$$

or, mathematically,

$$
H_{0}: \beta_{1}=0 \quad \text { vs. } \quad H_{a}: \beta_{1} \neq 0 .
$$

- Reject H_{0} if $\hat{\beta}_{1}$ sufficiently far from 0 relative to $\operatorname{SE}\left(\hat{\beta}_{1}\right)$.
- t-statistic

$$
\begin{equation*}
t=\frac{\hat{\beta}_{1}-0}{\mathrm{SE}\left(\hat{\beta}_{1}\right)} \tag{3.13}
\end{equation*}
$$

measures distance of $\hat{\beta}_{1}$ from 0 in \# standard deviations.

Simple Linear Regression

Hypothesis tests

- $\beta_{1}=0$ implies t follows t-distribution with $n-2$ degrees of freedom.
- We compute probability of observing $|t|$ or larger under assumption $\beta_{1}=0$, its p-value.

Simple Linear Regression

- $\beta_{1}=0$ implies t follows t-distribution with $n-2$ degrees of freedom.
- We compute probability of observing $|t|$ or larger under assumption $\beta_{1}=0$, its p-value.
- Small p-value: unlikely to observe substantial relation between X and Y due to purely random variation, unless the two actually are related.
- In this case we reject H_{0}.

Simple Linear Regression

- $\beta_{1}=0$ implies t follows t-distribution with $n-2$ degrees of freedom.
- We compute probability of observing $|t|$ or larger under assumption $\beta_{1}=0$, its p-value.
- Small p-value: unlikely to observe substantial relation between X and Y due to purely random variation, unless the two actually are related.
- In this case we reject H_{0}.
- Typical cutoffs for p-value: $1 \%, 5 \%$; for $n=30$ corresponds to t-statistic (3.13) values 2 and 2.75 . respectively.

Simple Linear Regression

- $\beta_{1}=0$ implies t follows t-distribution with $n-2$ degrees of freedom.
- We compute probability of observing $|t|$ or larger under assumption $\beta_{1}=0$, its p-value.
- Small p-value: unlikely to observe substantial relation between X and Y due to purely random variation, unless the two actually are related.
- In this case we reject H_{0}.
- Typical cutoffs for p-value: $1 \%, 5 \%$; for $n=30$ corresponds to t-statistic (3.13) values 2 and 2.75 . respectively.

For TV sales data in advertising data set:

	Estimate	SE	t-statistic	p-value
β_{0}	7.0325	0.4578	15.36	<0.0001
β_{1}	0.0475	0.0027	17.67	<0.0001

Simple Linear Regression

Reminder: Student's t distribution

- Given X_{1}, \cdots, X_{n} i.i.d. $\sim N\left(\mu, \sigma^{2}\right)$
- Sample mean:

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

- (Bessel corrected) sample variance:

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

- RV

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

distributed according to $N(0,1)$.

- RV

$$
\frac{\bar{x}-\mu}{S / \sqrt{n}}
$$

distributed according to Student's t-distribution with $n-1$ DoF.

Simple Linear Regression

Student's t distribution

Simple Linear Regression

- Residual standard error: estimate of standard deviation of ε (model error)

$$
\begin{equation*}
\mathrm{RSE}=\sqrt{\frac{\mathrm{RSS}}{n-2}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}} . \tag{3.14}
\end{equation*}
$$

- For TV data $\mathrm{RSS}=3.26$, i.e., deviation of sales from true regression line on average by 3,260 units (even if exact β_{0}, β_{1} known).
Corresponds to $3,260 / 14,000=23 \%$ error relative to mean value of all sales.

Simple Linear Regression

- Residual standard error: estimate of standard deviation of ε (model error)

$$
\begin{equation*}
\mathrm{RSE}=\sqrt{\frac{\mathrm{RSS}}{n-2}}=\sqrt{\frac{1}{n-2} \sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}} . \tag{3.14}
\end{equation*}
$$

- For TV data RSS $=3.26$, i.e., deviation of sales from true regression line on average by 3,260 units (even if exact β_{0}, β_{1} known).
Corresponds to $3,260 / 14,000=23 \%$ error relative to mean value of all sales.
- RSE measures lack of model fit.

Simple Linear Regression

Assessing model accuracy

- R^{2} statistic: alternative measure of fit: proportion of variance explained.
- $\in[0,1]$, independent of scale of Y.

Simple Linear Regression

- R^{2} statistic: alternative measure of fit: proportion of variance explained.
$\bullet \in[0,1]$, independent of scale of Y.
- Defined in terms of totall sum of squares (TSS) as

$$
\begin{equation*}
R^{2}=\frac{\mathrm{TSS}-\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}, \quad \mathrm{TSS}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2} \tag{3.15}
\end{equation*}
$$

- TSS : total variance in response Y, RSS : amount of variability left unexplained after regression, TSS - RSS : response variability explained by regression model, R^{2} : proportion of variability in Y explained using X.
- $R^{2} \approx 0$: linear model wrong, high model error variance.
- For TV data $R^{2}=0.61: 2 / 3$ of sales variability explained by (linear regression on) TV budget.
- $R^{2} \in[0,1]$, but sufficient value problem dependent.

Simple Linear Regression

Correlation

- Measure of linear relationship between X and Y : (sample) correlation:

$$
\begin{equation*}
\operatorname{Cor}(X, Y)=\frac{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}} \sqrt{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}} \tag{3.16}
\end{equation*}
$$

- In simple linear regression: $\operatorname{Cor}(X, Y)^{2}=R^{2}$.
- Correlation expresses association between single pair of variables; R^{2} between larger number of variables in multivariate linear regression.

Contents

(3) Linear Regression
3.1 Simple Linear Regression
3.2 Multiple Linear Regression
3.3 Computational Solution of Least Squares Problems
3.4 Other Considerations in the Regression Model
3.5 Revisiting the Marketing Data Questions
3.6 Linear Regression vs. K-Nearest Neighbors

Multiple Linear Regression

Justification

- $p>1$ predictor variables
(as in advertising data set: TV, newspaper, radio)
- Easiest option: simple linear regression for each

Multiple Linear Regression

Justification

- $p>1$ predictor variables
(as in advertising data set: TV, newspaper, radio)
- Easiest option: simple linear regression for each

For radio sales data in advertising data set:

	Estimate	SE	t-statistic	p-value
β_{0}	9.312	0.563	16.54	<0.0001
β_{1}	0.203	0.020	9.92	<0.0001

For newspaper sales data in advertising data set:

	Estimate	SE	t-statistic	p-value
β_{0}	12.351	0.621	19.88	<0.0001
β_{1}	0.055	0.017	3.30	<0.00115

Multiple Linear Regression

Justification

- How to predict total sales given 3 budgets?
- For given values of the 3 budgets, each simple regression model will give different sales prediction.
- Each separate regression equation ignores the other 2 media.
- For correlated media budgets this can lead to misleading estimates of individual media effects.

Multiple Linear Regression

Justification

- How to predict total sales given 3 budgets?
- For given values of the 3 budgets, each simple regression model will give different sales prediction.
- Each separate regression equation ignores the other 2 media.
- For correlated media budgets this can lead to misleading estimates of individual media effects.
Multiple linear regression model for p predictor variables:

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}+\varepsilon \tag{3.17}
\end{equation*}
$$

β_{j} : average effect on Y of 1-unit increase in X_{j} holding other predictors fixed.

Multiple Linear Regression

Justification

- How to predict total sales given 3 budgets?
- For given values of the 3 budgets, each simple regression model will give different sales prediction.
- Each separate regression equation ignores the other 2 media.
- For correlated media budgets this can lead to misleading estimates of individual media effects.
Multiple linear regression model for p predictor variables:

$$
\begin{equation*}
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\cdots+\beta_{p} X_{p}+\varepsilon \tag{3.17}
\end{equation*}
$$

β_{j} : average effect on Y of 1-unit increase in X_{j} holding other predictors fixed.
In advertising example:

$$
\begin{equation*}
\text { sales }=\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times \text { newspaper } \tag{3.18}
\end{equation*}
$$

Multiple Linear Regression

Estimating the coefficients

- Given estimates $\hat{\beta}_{0}, \hat{\beta}_{1}, \ldots, \hat{\beta}_{p}$, obtain prediction formula

$$
\begin{equation*}
\hat{y}=\hat{\beta}_{0}+\hat{\beta}_{1} x_{1}+\cdots+\hat{\beta}_{p} x_{p} . \tag{3.19}
\end{equation*}
$$

- Same fitting approach: choose $\left\{\hat{\beta}_{j}\right\}_{j=0}^{p}$ to minimize

$$
\begin{equation*}
\mathrm{RSS}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{\beta}_{0}-\hat{\beta}_{1} x_{i, 1}-\cdots-\hat{\beta}_{p} x_{i, p}\right)^{2}, \tag{3.20}
\end{equation*}
$$

yielding the multiple least squares regression coefficients

Multiple Linear Regression

Example: multiple linear regression, 2 predictors, 1 response

Multiple Linear Regression

Advertising data

	Estimate	SE	t-statistic	p-value
β_{0}	2.939	0.3119	9.42	<0.0001
β_{1} (TV)	0.046	0.0014	32.81	<0.0001
β_{2} (radio)	0.189	0.0086	21.89	<0.0001
β_{3} (newspaper)	-0.001	0.0059	-0.18	0.8599

Multiple Linear Regression

Advertising data

	Estimate	SE	t-statistic	p-value
β_{0}	2.939	0.3119	9.42	<0.0001
β_{1} (TV)	0.046	0.0014	32.81	<0.0001
β_{2} (radio)	0.189	0.0086	21.89	<0.0001
β_{3} (newspaper)	-0.001	0.0059	-0.18	0.8599

- Newspaper slope differs from simple regression: much smaller estimate, p value no longer significant.

Multiple Linear Regression

Advertising data

	Estimate	SE	t-statistic	p-value
β_{0}	2.939	0.3119	9.42	<0.0001
β_{1} (TV)	0.046	0.0014	32.81	<0.0001
β_{2} (radio)	0.189	0.0086	21.89	<0.0001
β_{3} (newspaper)	-0.001	0.0059	-0.18	0.8599

- Newspaper slope differs from simple regression: much smaller estimate, pvalue no longer significant.
- Now apparently no relation between sales and newspaper budget. Contradiction?

Multiple Linear Regression

Advertising data

Correlation matrix:

	TV	radio	newapaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Multiple Linear Regression

Advertising data

Correlation matrix:

	TV	radio	newapaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

- Correlation between newspaper and radio: ≈ 0.35 : tend to spend more on radio ads whenever more is spent on newspaper ads.

Multiple Linear Regression

Advertising data

Correlation matrix:

	TV	radio	newapaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

- Correlation between newspaper and radio: ≈ 0.35 : tend to spend more on radio ads whenever more is spent on newspaper ads.
- If correct, i.e., $\beta_{\text {newspaper }} \approx 0, \beta_{\text {radio }}>0$, radio ads increase sales, and where radio budget high, newpaper budget also tends to be high.

Multiple Linear Regression

Advertising data

Correlation matrix:

	TV	radio	newapaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

- Correlation between newspaper and radio: ≈ 0.35 : tend to spend more on radio ads whenever more is spent on newspaper ads.
- If correct, i.e., $\beta_{\text {newspaper }} \approx 0, \beta_{\text {radio }}>0$, radio ads increase sales, and where radio budget high, newpaper budget also tends to be high.
- Simple linear regression: indicates newspaper associated with higher sales. Multiple regression indicates absence of such affect.
- Newspaper receives credit for radio's affect on sales. Sales due to newspaper advertising is a surrogate for sales due to radio advertising.

Multiple Linear Regression

Absurd example, same effect

- Counterintuitive but not uncommon. Consider following (absurd) example.

Multiple Linear Regression

Absurd example, same effect

- Counterintuitive but not uncommon. Consider following (absurd) example.
- Data on shark attacks versus ice cream sales at beach community would show similar positive relationship as newpaper and radio ads.
- Should one ban ice cream sales to reduce risk of shark attacks?

Multiple Linear Regression

Absurd example, same effect

- Counterintuitive but not uncommon. Consider following (absurd) example.
- Data on shark attacks versus ice cream sales at beach community would show similar positive relationship as newpaper and radio ads.
- Should one ban ice cream sales to reduce risk of shark attacks?
- Answer: High temperatures cause both (more people at beach for shark encounters, more ice cream customers).
- Multiple regression reveals icre cream sales not a predictor for shark attacks after adjusting for temperature.

Multiple Linear Regression

(1) Is at least one of the predictors $X_{1}, X_{2}, \ldots, X_{p}$ useful in predicting the response?
(2) Do all predictors help to explain Y, or is only a subset of the predictors useful?
(3 How well does the model fit the data?
(4) Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

- As for simple regression, perform statistical hypothesis test: null hpothesis

$$
H_{0}: \quad \beta_{1}=\beta_{2}=\cdots=\beta_{p}=0
$$

versus alternative
H_{a} : at least one $\beta_{j}(j=1, \ldots, p)$ is nonzero.

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

- As for simple regression, perform statistical hypothesis test: null hpothesis

$$
H_{0}: \quad \beta_{1}=\beta_{2}=\cdots=\beta_{p}=0
$$

versus alternative

$$
H_{a}: \quad \text { at least one } \beta_{j}(j=1, \ldots, p) \text { is nonzero. }
$$

- Such a test can be based on the F-statistic (F ratio)

$$
\begin{equation*}
F=\frac{(\mathrm{TSS}-\mathrm{RSS}) / p}{\operatorname{RSS} /(n-p-1)} \sim F_{p, n-p-1} \tag{3.21}
\end{equation*}
$$

where, as before,

$$
\mathrm{TSS}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}, \quad \mathrm{RSS}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}
$$

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

$$
F=\frac{(\mathrm{TSS}-\mathrm{RSS}) / p}{\mathrm{RSS} /(n-p-1)}
$$

- Under linear model assumption, can show

$$
\mathbf{E}\left[\frac{\mathrm{RSS}}{n-p-1}\right]=\sigma^{2}
$$

(σ^{2} again the common noise variance).

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

$$
F=\frac{(\mathrm{TSS}-\mathrm{RSS}) / p}{\mathrm{RSS} /(n-p-1)}
$$

- Under linear model assumption, can show

$$
\mathbf{E}\left[\frac{\mathrm{RSS}}{n-p-1}\right]=\sigma^{2}
$$

(σ^{2} again the common noise variance).

- If also H_{0} is trueß, can show

$$
\mathbf{E}\left[\frac{\mathrm{TSS}-\mathrm{RSS}}{p}\right]=\sigma^{2}
$$

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

$$
F=\frac{(\mathrm{TSS}-\mathrm{RSS}) / p}{\mathrm{RSS} /(n-p-1)}
$$

- Under linear model assumption, can show

$$
\mathbf{E}\left[\frac{\mathrm{RSS}}{n-p-1}\right]=\sigma^{2}
$$

(σ^{2} again the common noise variance).

- If also H_{0} is trueß, can show

$$
\mathbf{E}\left[\frac{\mathrm{TSS}-\mathrm{RSS}}{p}\right]=\sigma^{2}
$$

- Hence $F \approx 1$ if no relationship between response and predictors. Alternatively, if H_{a} true, $\mathbf{E}[(\mathrm{TSS}-\mathrm{RSS}) / p]>\sigma^{2}$, hence $F>1$.

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

Statistics for multiple regression of sales onto radio, TV and newspaper in the advertising data set:

Quantity	Value
RSE	1.69
R^{2}	0.897
F	570

- $F \gg 1$ strong evidence against H_{0}.
- Proper threshold value for F depends on n, p.

Larger F needed to reject H_{0} for small n.

- H_{0} true, ε_{i} Gaussian, then F follows F-distribution; calculate p-value using statistical software.
- Here, p-value ≈ 0 for $F=570$ in this example, hence we safely reject H_{0}.

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

- To test whether subset of last $q<p$ coefficients relevant, use null hypothesis

$$
H_{0}: \quad \beta_{p-q+1}=\beta_{p-q+2}=\cdots=\beta_{p}=0
$$

- Fit model using all variables except last q, obtaining residual sum of squares RSS_{0}.
- Appropriate F-statistic now

$$
F=\frac{\left(\mathrm{RSS}_{0}-\mathrm{RSS}\right) / q}{\operatorname{RSS} /(n-p-1)}
$$

- For multiple regression, t-statistic and p values for each variable indicate whether each predictor related to response after adjusting for the remaining variables.
Equivalent to F-test omitting single variable $(q=1)$. Reports partial effect of adding each variable.

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

What does F statistic tell us that individual p-values don't?

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

What does F statistic tell us that individual p-values don't?

- Does single small p-value indicate at least one variable relevant? No.
- Example: $p=100, H_{0}: \beta_{1}=\cdots=\beta_{p}=0$ true.

Then by chance, 5% of p-values below 0.05 .
Almost guaranteed that $p<0.05$ for at least one variable by chance.

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

What does F statistic tell us that individual p-values don't?

- Does single small p-value indicate at least one variable relevant? No.
- Example: $p=100, H_{0}: \beta_{1}=\cdots=\beta_{p}=0$ true.

Then by chance, 5% of p-values below 0.05 .
Almost guaranteed that $p<0.05$ for at least one variable by chance.

- Thus, for large p, looking only at p-values of individual t-statistics tends to discover spurious relationships.

Multiple Linear Regression

(1) Is there a relationship between response and predictors?

What does F statistic tell us that individual p-values don't?

- Does single small p-value indicate at least one variable relevant? No.
- Example: $p=100, H_{0}: \beta_{1}=\cdots=\beta_{p}=0$ true.

Then by chance, 5% of p-values below 0.05 .
Almost guaranteed that $p<0.05$ for at least one variable by chance.

- Thus, for large p, looking only at p-values of individual t-statistics tends to discover spurious relationships.
- For F-statistic, if H_{0} true, only 5% chance of p-value <0.05 independently of n, p.
Note: F-statistic approach works for $p<n$.

Multiple Linear Regression

(2) Deciding on important variables

- Typically, not all predictors related to response (variable selection problem).
- One approach: try all possible models, select best one. Criteria? Mallow's C_{p}, Akaike information criterion (AIC), cross validation (CV), Bayesian information criterion (BIC), adjusted R^{2} (later)

Multiple Linear Regression

(2) Deciding on important variables

- Typically, not all predictors related to response (variable selection problem).
- One approach: try all possible models, select best one. Criteria? Mallow's C_{p}, Akaike information criterion (AIC), cross validation (CV), Bayesian information criterion (BIC), adjusted R^{2} (later)
- For p large, trying 2^{p} models with subsets of variables impractical.
- Forward selection: Start with null model (only β_{0}), fit p simple regressions, add variable leading to lowest RSS, then add variable leading to twovariable model with lowest RSS, continue until stopping criterion met.

Multiple Linear Regression

(2) Deciding on important variables

- Typically, not all predictors related to response (variable selection problem).
- One approach: try all possible models, select best one. Criteria? Mallow's C_{p}, Akaike information criterion (AIC), cross validation (CV), Bayesian information criterion (BIC), adjusted R^{2} (later)
- For p large, trying 2^{p} models with subsets of variables impractical.
- Forward selection: Start with null model (only β_{0}), fit p simple regressions, add variable leading to lowest RSS, then add variable leading to twovariable model with lowest RSS, continue until stopping criterion met.
- Backward selection: Start with full model, remove variable with largest p value, fit new ($p-1$)-variable model, keep removing least significant variable, until stopping criterion met.

Multiple Linear Regression

(2) Deciding on important variables

- Typically, not all predictors related to response (variable selection problem).
- One approach: try all possible models, select best one. Criteria? Mallow's C_{p}, Akaike information criterion (AIC), cross validation (CV), Bayesian information criterion (BIC), adjusted R^{2} (later)
- For p large, trying 2^{p} models with subsets of variables impractical.
- Forward selection: Start with null model (only β_{0}), fit p simple regressions, add variable leading to lowest RSS, then add variable leading to twovariable model with lowest RSS, continue until stopping criterion met.
- Backward selection: Start with full model, remove variable with largest pvalue, fit new $(p-1)$-variable model, keep removing least significant variable, until stopping criterion met.
- Mixed selection: Start with null model, adding variables with best fit one-by-one, remove variables whenever their p-value rises above threshold, until model contains only variables with low p-values and excludes those with high p-value.

Multiple Linear Regression

(3) Model fit

RSE, R^{2} computed and interpreted as in simple linear regression.

- $R^{2}=\operatorname{Cor}(X, Y)^{2}$ for simple linear regression.
- $R^{2}=\operatorname{Cor}(\hat{Y}, Y)^{2}$ for multiple linear regression, maximized by fitted model.
- $R^{2} \approx 1$: model explains large portion of response variance.

Multiple Linear Regression

(3) Model fit

RSE, R^{2} computed and interpreted as in simple linear regression.

- $R^{2}=\operatorname{Cor}(X, Y)^{2}$ for simple linear regression.
- $R^{2}=\operatorname{Cor}(\hat{Y}, Y)^{2}$ for multiple linear regression, maximized by fitted model.
- $R^{2} \approx 1$: model explains large portion of response variance.
- Advertising example:

$$
\begin{array}{ll}
\{T V, \text { radio, newspaper }\} & R^{2}=0.8972 \\
\{T V, \text { radio }\} & R^{2}=0.89719
\end{array}
$$

Small increase on including newspaper (even though newspaper not significant)

- Note: R^{2} always increases when variables are added.
- Tiny increase in R^{2} on including newspaper more evidence this variable can be dropped.
- Including redundant variables promotes overfitting.

Multiple Linear Regression

(3) Model fit

- Advertising example:

$$
\begin{array}{ll}
\{\mathrm{TV}\} & R^{2}=0.61 \\
\text { \{TV, radio }\} & R^{2}=0.89719
\end{array}
$$

Substantial improvement on adding radio.
(Could also look at p-value of radio's coefficient in last model.)

Multiple Linear Regression

(3) Model fit

- Advertising example:

$$
\begin{array}{ll}
\{\mathrm{TV}\} & R^{2}=0.61 \\
\{\mathrm{TV}, \text { radio }\} & R^{2}=0.89719
\end{array}
$$

Substantial improvement on adding radio.
(Could also look at p-value of radio's coefficient in last model.)

- Advertising example:

$$
\begin{aligned}
& \text { \{TV, radio, newspaper }\} \\
& \{\text { TV, radio }\} \\
& \{\mathrm{TV}\}
\end{aligned}
$$

RSE $=1.686$
RSE $=1.681$
RSE $=3.26$

- Note: for multiple linear regression RSE defined as

$$
\mathrm{RSE}=\sqrt{\frac{\mathrm{RSS}}{n-p-1}} .
$$

Multiple Linear Regression

(3) Model fit
\{TV, radio \}

Multiple Linear Regression

(3) Model fit

Previous figure:

- Some observations above, some below least squares regression plane.
- Linear model overestimates sales where most of budget spent either exclusively on TV or radio.
- Underestimation where budget split between two media.
- Such nonlinear pattern not reflected by linear model; suggests synergy effect between these two media.

Multiple Linear Regression

(4) Predictions

We note three sources of prediction uncertainty:
(1) Reducible error: $\hat{Y} \approx f(X)$ since $\hat{\beta}_{j} \approx \beta_{j}$.

Can construct confidence intervals to ascertain closeness \hat{Y} to $f(X)$.
(2) Model bias: linear model can only yield best linear approximation.
(3) Irreducible error: $Y=f(X)+\varepsilon$.

Assess prediction error with prediction intervals: incorporate both reducible and irreducible errors.

Multiple Linear Regression

(4) Predictions

We note three sources of prediction uncertainty:
(1) Reducible error: $\hat{Y} \approx f(X)$ since $\hat{\beta}_{j} \approx \beta_{j}$.

Can construct confidence intervals to ascertain closeness \hat{Y} to $f(X)$.
(2) Model bias: linear model can only yield best linear approximation.
(3) Irreducible error: $Y=f(X)+\varepsilon$.

Assess prediction error with prediction intervals: incorporate both reducible and irreducible errors.

Example: Prediction using \{TV, radio $\}$ model.
$X_{\mathrm{TV}}=100000 \$, X_{\text {radio }}=20000 \$$.
Confidence interval on sales: 95\% confidence interval : [10.985, 11.528].
Prediction interval on sales: $\quad 95 \%$ prediction interval : [7.930, 14.580].
Increased uncertainty about sales for given city in contrast with average sales over many locations.

Contents

(3) Linear Regression
3.1 Simple Linear Regression
3.2 Multiple Linear Regression
3.3 Computational Solution of Least Squares Problems
3.4 Other Considerations in the Regression Model
3.5 Revisiting the Marketing Data Questions
3.6 Linear Regression vs. K-Nearest Neighbors

Computational Solution of Least Squares Problems

Numerical methods for least squares fitting

- Determining the coefficients $\left\{\hat{\beta}_{j}\right\}_{j=0}^{p}$ to minimize the RSS in (3.20) is equivalent to minimizing $\|\boldsymbol{y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}\|_{2}^{2}$, where we have introduced the notation

$$
\boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{X}=\left[\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, p} \\
\vdots & \vdots & & \vdots \\
1 & x_{n, 1} & \ldots & x_{n, p}
\end{array}\right], \quad \widehat{\boldsymbol{\beta}}=\left[\begin{array}{c}
\hat{\beta}_{0} \\
\vdots \\
\hat{\beta}_{p}
\end{array}\right]
$$

for the vector $\boldsymbol{y} \in \mathbb{R}^{n}$ of response observations, the matrix $\boldsymbol{X} \in \mathbb{R}^{n \times(p+1)}$ of predictor observations and vector $\widehat{\boldsymbol{\beta}} \in \mathbb{R}^{p+1}$ of coefficient estimates.

Computational Solution of Least Squares Problems

Numerical methods for least squares fitting

- Determining the coefficients $\left\{\hat{\beta}_{j}\right\}_{j=0}^{p}$ to minimize the RSS in (3.20) is equivalent to minimizing $\|\boldsymbol{y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}\|_{2}^{2}$, where we have introduced the notation

$$
\boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{X}=\left[\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, p} \\
\vdots & \vdots & & \vdots \\
1 & x_{n, 1} & \ldots & x_{n, p}
\end{array}\right], \quad \widehat{\boldsymbol{\beta}}=\left[\begin{array}{c}
\hat{\beta}_{0} \\
\vdots \\
\hat{\beta}_{p}
\end{array}\right]
$$

for the vector $\boldsymbol{y} \in \mathbb{R}^{n}$ of response observations, the matrix $\boldsymbol{X} \in \mathbb{R}^{n \times(p+1)}$ of predictor observations and vector $\widehat{\boldsymbol{\beta}} \in \mathbb{R}^{p+1}$ of coefficient estimates.

- The problem of finding a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{b} \approx \boldsymbol{A} \boldsymbol{x}$ for given $\boldsymbol{A} \in$ $\mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$ is called a linear regression problem.

Computational Solution of Least Squares Problems

- Determining the coefficients $\left\{\hat{\beta}_{j}\right\}_{j=0}^{p}$ to minimize the RSS in (3.20) is equivalent to minimizing $\|\boldsymbol{y}-\boldsymbol{X} \widehat{\boldsymbol{\beta}}\|_{2}^{2}$, where we have introduced the notation

$$
\boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], \quad \boldsymbol{X}=\left[\begin{array}{cccc}
1 & x_{1,1} & \ldots & x_{1, p} \\
\vdots & \vdots & & \vdots \\
1 & x_{n, 1} & \ldots & x_{n, p}
\end{array}\right], \quad \widehat{\boldsymbol{\beta}}=\left[\begin{array}{c}
\hat{\beta}_{0} \\
\vdots \\
\hat{\beta}_{p}
\end{array}\right]
$$

for the vector $\boldsymbol{y} \in \mathbb{R}^{n}$ of response observations, the matrix $\boldsymbol{X} \in \mathbb{R}^{n \times(p+1)}$ of predictor observations and vector $\widehat{\boldsymbol{\beta}} \in \mathbb{R}^{p+1}$ of coefficient estimates.

- The problem of finding a vector $\boldsymbol{x} \in \mathbb{R}^{n}$ such that $\boldsymbol{b} \approx \boldsymbol{A} \boldsymbol{x}$ for given $\boldsymbol{A} \in$ $\mathbb{R}^{m \times n}$ and $\boldsymbol{b} \in \mathbb{R}^{m}$ is called a linear regression problem.
- One (of many) possible approaches for achieving this is choosing x to minimize $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$, which is a linear least squares problem.

Computational Solution of Least Squares Problems

Numerical methods for least squares fitting

- A somewhat more general fitting approach using a model

$$
y \approx \beta_{0}+\beta_{1} f_{1}(x)+\cdots+\beta_{p} f_{p}(x)
$$

with fixed regression functions $\left\{f_{j}\right\}_{j=1}^{p}$ also leads to a linear regression problem, where now $[\boldsymbol{X}]_{i, j}=f_{j}\left(x_{i}\right)$.

Computational Solution of Least Squares Problems

Numerical methods for least squares fitting

- A somewhat more general fitting approach using a model

$$
y \approx \beta_{0}+\beta_{1} f_{1}(x)+\cdots+\beta_{p} f_{p}(x)
$$

with fixed regression functions $\left\{f_{j}\right\}_{j=1}^{p}$ also leads to a linear regression problem, where now $[\boldsymbol{X}]_{i, j}=f_{j}\left(x_{i}\right)$.

- A linear least squares problem $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2} \rightarrow$ min with $m \geq n$ has a unique solution if the columns of \boldsymbol{A} are linearly independent, i.e., when \boldsymbol{A} has full rank, given by $\boldsymbol{x}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$.
In this case the solution can be computed using a Cholesky decomposition.

Computational Solution of Least Squares Problems

Numerical methods for least squares fitting

- A somewhat more general fitting approach using a model

$$
y \approx \beta_{0}+\beta_{1} f_{1}(x)+\cdots+\beta_{p} f_{p}(x)
$$

with fixed regression functions $\left\{f_{j}\right\}_{j=1}^{p}$ also leads to a linear regression problem, where now $[\boldsymbol{X}]_{i, j}=f_{j}\left(x_{i}\right)$.

- A linear least squares problem $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2} \rightarrow$ min with $m \geq n$ has a unique solution if the columns of \boldsymbol{A} are linearly independent, i.e., when \boldsymbol{A} has full rank, given by $\boldsymbol{x}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$.
In this case the solution can be computed using a Cholesky decomposition.
- In the (nearly) rank-deficient case, more sophisticated techniques of numerical linear algebra like the QR decomposition or the SVD are required to obtain a (stable) solution.

Computational Solution of Least Squares Problems

 Numerical methods for least squares fitting- A somewhat more general fitting approach using a model

$$
y \approx \beta_{0}+\beta_{1} f_{1}(x)+\cdots+\beta_{p} f_{p}(x)
$$

with fixed regression functions $\left\{f_{j}\right\}_{j=1}^{p}$ also leads to a linear regression problem, where now $[\boldsymbol{X}]_{i, j}=f_{j}\left(x_{i}\right)$.

- A linear least squares problem $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2} \rightarrow \min$ with $m \geq n$ has a unique solution if the columns of \boldsymbol{A} are linearly independent, i.e., when \boldsymbol{A} has full rank, given by $\boldsymbol{x}=\left(\boldsymbol{A}^{\top} \boldsymbol{A}\right)^{-1} \boldsymbol{A}^{\top} \boldsymbol{b}$.
In this case the solution can be computed using a Cholesky decomposition.
- In the (nearly) rank-deficient case, more sophisticated techniques of numerical linear algebra like the QR decomposition or the SVD are required to obtain a (stable) solution.
- When \boldsymbol{A} is large and sparse or structured, iterative methods such as CGLS or LSQR can be employed which require only matrix-vector products in place of manipulations of matrix entries.

Computational Solution of Least Squares Problems

 QR decomposition
Theorem 3.1 (QR decomposition)

For any matrix $\boldsymbol{A} \in \mathbb{R}^{n \times p}$ of rank p with $n \geq p$ there exists an orthogonal matrix $Q \in \mathbb{R}^{n \times n}$ and an upper triangular matrix $R \in \mathbb{R}^{p \times p}$ such that

$$
\boldsymbol{A}=\boldsymbol{Q}\left[\begin{array}{l}
R \\
O
\end{array}\right] \quad \text { with a zero matrix } O \in \mathbb{R}^{(n-p) \times p} .
$$

The decomposition can be made unique by requiring the diagonal entries of R to be positive.

The solution of the least squares problem $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2} \rightarrow \min _{\boldsymbol{x} \in \mathbb{R}^{p}}$ is given by

$$
\hat{x}=\boldsymbol{R}^{-1} z_{1}, \quad\|\boldsymbol{b}-\boldsymbol{A} \hat{\boldsymbol{x}}\|_{2}=\left\|z_{2}\right\|_{2},
$$

where

$$
z_{1}:=\left[\boldsymbol{Q}^{\top} \boldsymbol{b}\right]_{1, \ldots, p}, \quad z_{2}:=\left[\boldsymbol{Q}^{\top} \boldsymbol{b}\right]_{p+1, \ldots, n} .
$$

Computational Solution of Least Squares Problems

 Singular value decomposition
Theorem 3.2 (Singular value decomposition)

For any matrix $\boldsymbol{A} \in \mathbb{R}^{n \times p}$ of rank $r(\leq \min \{n, p\})$ there exist orthogonal matrices $\boldsymbol{U} \in \mathbb{R}^{n \times n}$ and $\boldsymbol{V} \in \mathbb{R}^{p \times p}$ as well as a "diagonal" matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{r} & O \\
O & O
\end{array}\right] \in \mathbb{R}^{n \times p} \quad \text { where } \quad \boldsymbol{\Sigma}_{r}=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{r}\right) \in \mathbb{R}^{r \times r}
$$

and $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{r}>0$, such that

$$
\begin{equation*}
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top} . \tag{SVD}
\end{equation*}
$$

- The positive numbers $\sigma_{1}, \ldots, \sigma_{r}$ are called the singular values of \boldsymbol{A}.
- The columns of $\boldsymbol{U}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{n}\right]$ and $\boldsymbol{V}=\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{p}\right]$ are the left and right singular vectors, respectively.
- (SVD) is called the singular value decomposition of \boldsymbol{A}.

Singular Value Decomposition

Properties

(1) Representation of \boldsymbol{A} as sum of rank-1 matrices:

$$
\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}=\left[\boldsymbol{u}_{1}, \boldsymbol{u}_{2}, \ldots, \boldsymbol{u}_{r}\right] \boldsymbol{\Sigma}_{r}\left[\boldsymbol{v}_{1}, \boldsymbol{v}_{2}, \ldots, \boldsymbol{v}_{r}\right]^{\top}=\sum_{k=1}^{r} \sigma_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{\top}
$$

(2) Singular vector mapping properties:

$$
\boldsymbol{A} \boldsymbol{v}_{k}= \begin{cases}\sigma_{k} \boldsymbol{u}_{k} & k=1,2, \ldots, r \\ \mathbf{0} & k=r+1, \ldots, p\end{cases}
$$

and

$$
\boldsymbol{A}^{\top} \boldsymbol{u}_{k}= \begin{cases}\sigma_{k} \boldsymbol{v}_{k} & k=1,2, \ldots, r, \\ \mathbf{0} & k=r+1, \ldots, n .\end{cases}
$$

$$
\begin{aligned}
& \left\{\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r}\right\} \\
& \left\{\boldsymbol{u}_{r+1}, \ldots, \boldsymbol{u}_{n}\right\} \\
& \left\{\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r}\right\} \\
& \left\{\boldsymbol{v}_{r+1}, \ldots, \boldsymbol{v}_{p}\right\}
\end{aligned}
$$

is an ON-basis of
$\mathscr{R}(\boldsymbol{A})$.
is an ON-basis of
$\mathscr{N}\left(\boldsymbol{A}^{\top}\right)=\mathscr{R}(\boldsymbol{A})^{\perp}$.
is an ON-basis of
$\mathscr{R}\left(\boldsymbol{A}^{\top}\right)=\mathscr{N}(\boldsymbol{A})^{\perp}$.
$\mathscr{N}(\boldsymbol{A})$.

Singular Value Decomposition

Properties

(4) Eigenspaces of $\boldsymbol{A} \boldsymbol{A}^{\top}$ and $\boldsymbol{A}^{\top} \boldsymbol{A}$:

- $\sigma_{1}^{2}, \ldots, \sigma_{r}^{2}$ are the non-zero eigenvalues of $\boldsymbol{A}^{\top} \boldsymbol{A}$ and $\boldsymbol{A} \boldsymbol{A}^{\top}$, respectively:

$$
\begin{aligned}
& \boldsymbol{A}^{\top} \boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}=\boldsymbol{V}\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{r}^{2} & 0 \\
0 & 0
\end{array}\right] \boldsymbol{V}^{\top}, \\
& \boldsymbol{A} \boldsymbol{A}^{\top}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{\Sigma}^{\top} \boldsymbol{U}^{\top}=\boldsymbol{U}\left[\begin{array}{cc}
\boldsymbol{\Sigma}_{r}^{2} & 0 \\
0 & 0
\end{array}\right] \boldsymbol{U}^{\top} .
\end{aligned}
$$

- In particular, the singular values $\sigma_{1}, \ldots, \sigma_{r}$ are uniquely determined by \boldsymbol{A}.
- The right singular vectors $\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{p}$ form an ON-basis of \mathbb{R}^{p} of eigenvectors of $\boldsymbol{A}^{\top} \boldsymbol{A}$:

$$
\boldsymbol{A}^{\top} \boldsymbol{A} \boldsymbol{v}_{k}= \begin{cases}\sigma_{k}^{2} \boldsymbol{v}_{k} & k=1,2, \ldots, r \\ \mathbf{0} & k=r+1, \ldots, p\end{cases}
$$

The left singular vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{n}$ form an $O N$-basis of \mathbb{R}^{n} of eigenvectors of $\boldsymbol{A} \boldsymbol{A}^{\top}$:

$$
\boldsymbol{A} \boldsymbol{A}^{\top} \boldsymbol{u}_{k}= \begin{cases}\sigma_{k}^{2} \boldsymbol{u}_{k} & k=1,2, \ldots, r \\ \mathbf{0} & k=r+1, \ldots, n\end{cases}
$$

Singular Value Decomposition

Properties

(5) If $\boldsymbol{A}=\boldsymbol{A}^{\top} \in \mathbb{R}^{n \times n}$ with non-zero eigenvalues

$$
\lambda_{1}, \ldots, \lambda_{r}, \quad\left|\lambda_{1}\right| \geq \cdots \geq\left|\lambda_{r}\right|>0
$$

then the singular values of \boldsymbol{A} are given by $\sigma_{k}=\left|\lambda_{k}\right|$.
(6 The (p-dimensional) unit sphere is mapped by \boldsymbol{A} to an ellipsoid (in \mathbb{R}^{n}) with center $\mathbf{0}$ and semi-axes $\sigma_{k} \boldsymbol{u}_{k}\left(\sigma_{k}:=0\right.$ für $k>r$).
(7) For $\boldsymbol{A} \in \mathbb{R}^{n \times p}$ there holds $\|\boldsymbol{A}\|_{2}=\sigma_{1}$ and $\|\boldsymbol{A}\|_{F}=\sqrt{\sigma_{1}^{2}+\cdots+\sigma_{r}^{2}}$. For $\boldsymbol{A} \in \mathbb{R}^{n \times n}$ invertible, there holds in addition that $\left\|\boldsymbol{A}^{-1}\right\|_{2}=\sigma_{n}^{-1}$.
(8) Anlalogous statements hold for complex-valued matrices $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{H}(\boldsymbol{U}, \boldsymbol{V}$ unitary). (In (5) replace $\boldsymbol{A}=\boldsymbol{A}^{\top}$ by ' \boldsymbol{A} normal'.)

Singular Value Decomposition

Best rank-k approximation

- E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen. 1. Teil: Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann., 63 (1907), pp. 433-476
- C. Eckart, G. Young. The approximation of one matrix by another of lower rank. Psychometrika, 1 (1936), pp. 211-218
- L. Mirsky. Symmetric gauge functions and unitarily invariant norms. Quart. J. Math. Oxford, 11 (1960), pp. 50-59

Theorem 3.3 (Best approximation by matrices of lower rank)

For a matrix $\boldsymbol{A} \in \mathbb{R}^{n \times p}$ of rank r with $\operatorname{SVD} \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\top}$ the best approximation problem

$$
\min \left\{\|\boldsymbol{A}-\boldsymbol{B}\|_{2}: \boldsymbol{B} \in \mathbb{R}^{n \times p} \text { and } \operatorname{rank}(B) \leq k\right\}
$$

for $k<r$ is solved by

$$
\boldsymbol{A}_{k}:=\sum_{i=1}^{k} \sigma_{i} \boldsymbol{u}_{\boldsymbol{i}} \boldsymbol{v}_{i}^{\top} \quad \text { with } \quad\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\sigma_{k+1}
$$

- \boldsymbol{A}_{k} as above is also the closest rank- k matrix to \boldsymbol{A} in the Frobenius-norm $\|\cdot\|_{F}$, with distance $\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{F}=\sqrt{\sigma_{k+1}^{2}+\cdots+\sigma_{r}^{2}}$.

Optimality of LS Estimate

Theorem 3.4 (Gauss-Markov theorem)

Given observations $\boldsymbol{y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon} \in \mathbb{R}^{n}$, for which the uncorrelated random noise variables $\left\{\varepsilon_{i}\right\}_{i=1}^{n}$ have mean zero and constant variance $\sigma^{2}>0$, and assuming that the observation vectors $x_{1}, \ldots, x_{p} \in \mathbb{R}^{n}$ are linearly independent, then the least squares estimate

$$
\hat{\boldsymbol{\beta}}=\left(\boldsymbol{X}^{\top} \boldsymbol{X}\right)^{-1} \boldsymbol{X}^{\top} \boldsymbol{y}, \quad \boldsymbol{X}=\left[x_{1}|\cdots| x_{p}\right] \in \mathbb{R}^{n \times p}, \quad \boldsymbol{y} \in\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right]
$$

has minimal variance among all linear unbiased estimators of $\boldsymbol{\beta}$.

[^2]
Optimality of LS Estimate

Remarks

- No assumption is made on the distribution of the errors, only on their first two moments.
- The theorem also holds if $\operatorname{Var} \boldsymbol{\varepsilon}=\boldsymbol{C}$ is a (nonsingular) covariance matrix. In this case the best linear unbiased estimator solves the weighted or generalized least squares problem

$$
\|\boldsymbol{y}-\boldsymbol{X} \boldsymbol{\beta}\|_{\boldsymbol{C}^{-1}} \rightarrow \min _{\boldsymbol{\beta}}, \quad\|\boldsymbol{x}\|_{\boldsymbol{C}^{-1}}^{2}=\boldsymbol{x}^{\top} \boldsymbol{C}^{-1} \boldsymbol{x}
$$

- The theorem does not say there are no better estimators than LS, only that any better estimators are either nonlinear or biased.
- Examples of biased estimators are ridge regression and the lasso.
- ESL:
"Most models are distortions of the truth, and hence are biased; picking the right model amounts to creating the right balance between bias and variance.

Contents

(3) Linear Regression
3.1 Simple Linear Regression
3.2 Multiple Linear Regression
3.3 Computational Solution of Least Squares Problems
3.4 Other Considerations in the Regression Model
3.5 Revisiting the Marketing Data Questions
3.6 Linear Regression vs. K-Nearest Neighbors

Other Considerations in the Regression Model

Qualitative predictors

For a first regression model involving also qualitative predictor variables, consider the Credit data set:

- Quantitative predictors:
- balance: average credit card debt for a number of individuals
- age
- cards (\# credit cards)
- education (years of education)
- income (in thousands of dollars)
- limit (credit limit)
- rating (credit rating)
- Qualitative predictors:
- gender
- student (student status)
- status (marital status)
- ethnicity (Caucasian, African American or Asian)

Other Considerations in the Regression Model

Qualitative predictors

Other Considerations in the Regression Model

Two-valued predictors

- Goal: investigate differences in credit card balance between males/females.
- Gender (qualitative variable, factor) represented with indicator (dummy) variable

$$
x_{i}= \begin{cases}1 & \text { if } i \text {-th person female }, \tag{3.22}\\ 0 & \text { if } i \text {-th person male }\end{cases}
$$

- Using x_{i} in regression equation results in model

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\varepsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\varepsilon_{i} & \text { if } i \text {-th person female } \tag{3.23}\\ \beta_{0}+\varepsilon_{i} & \text { if } i \text {-th person male }\end{cases}
$$

- Interpretation
β_{0} : average credit card balance among males,
$\beta_{0}+\beta_{1}$: average credit card balance among females,
β_{1} : average difference in credit card balance male/female.

Other Considerations in the Regression Model

	Coefficient	Standard error	t-statistic	p-value
β_{0}	509.80	33.13	15.389	<0.0001
β_{1}	19.73	46.05	0.429	0.6690

- Average credit card debt males: $\$ 509.80$.
- Average additional credit card debt females: $\$ 19.73$.
- Total average female credit card debt: $\$ 529.53$.
- High p value for dummy variable. Conclusion?

Other Considerations in the Regression Model

Two-valued predictors

	Coefficient	Standard error	t-statistic	p-value
β_{0}	509.80	33.13	15.389	<0.0001
β_{1}	19.73	46.05	0.429	0.6690

- Average credit card debt males: $\$ 509.80$.
- Average additional credit card debt females: $\$ 19.73$.
- Total average female credit card debt: $\$ 529.53$.
- High p value for dummy variable. Conclusion? Gender not a statistically significant factor for credit card debt.

Other Considerations in the Regression Model

Two-valued predictors

	Coefficient	Standard error	t-statistic	p-value
β_{0}	509.80	33.13	15.389	<0.0001
β_{1}	19.73	46.05	0.429	0.6690

- Average credit card debt males: \$509.80.
- Average additional credit card debt females: \$19.73.
- Total average female credit card debt: \$529.53.
- High p value for dummy variable. Conclusion? Gender not a statistically significant factor for credit card debt.
- Switching male/female coding yields estimates

$$
\hat{\beta}_{0}=\$ 529.53, \quad \hat{\beta}_{1}=\$-19.73, \quad \hat{\beta}_{0}+\hat{\beta}_{1}=\$ 509.80
$$

Other Considerations in the Regression Model

Two-valued predictors

Another alternative coding of two-valued gender predictor:

$$
x_{i}= \begin{cases}1 & \text { if } i \text {-th person female } \\ -1 & \text { if } i \text {-th person male }\end{cases}
$$

Results in model

$$
y_{i}=\beta_{0}+\beta_{1} x+\varepsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\varepsilon_{i} & \text { if } i \text {-th person female } \\ \beta_{0}-\beta_{1}+\varepsilon_{i} & \text { if } i \text {-th person male }\end{cases}
$$

with interpretation now
β_{0} : average credit card balance (ignoring gender),
β_{1} : amount females are above/males below this average,
giving estimates

$$
\begin{array}{ll}
\hat{\beta}_{0}=\$ 519.665 & \text { (half way between male and female averages) } \\
\hat{\beta}_{1}=\$ 9.865 & \text { (half of } \$ 19.63, \text { average male/female difference) }
\end{array}
$$

Other Considerations in the Regression Model

Multi-valued qualitative predictors

To encode ethnicity $\in\{$ Caucasian, African American, Asian\}, use multiple dummy variables (\# values -1)

$$
\begin{align*}
& x_{i, 1}= \begin{cases}1 & \text { if } i \text {-th person Asian, } \\
0 & \text { if } i \text {-th person not Asian, }\end{cases} \tag{3.24}\\
& x_{i, 2}= \begin{cases}1 & \text { if } i \text {-th person Caucasian, } \\
0 & \text { if } i \text {-th person not Caucasian, }\end{cases} \tag{3.25}
\end{align*}
$$

resulting in model
$y_{i}=\beta_{0}+\beta_{1} x_{i, 1}+\beta_{2} x_{i .2}+\varepsilon_{i}= \begin{cases}\beta_{0}+\beta_{1}+\varepsilon_{i} & \text { if } i \text {-th person Asian } \\ \beta_{0}+\beta_{2}+\varepsilon_{i} & \text { if } i \text {-th person Caucasian } \\ \beta_{0}+\varepsilon_{i} & \text { if } i \text {-th person African American }\end{cases}$
(3.26)

Interpretation: β_{0} : average credit card balance for African Americans (baseline), β_{1} : difference between Asian and African Americans, β_{2} : difference between Caucasian and African Americans

Other Considerations in the Regression Model

Multi-valued qualitative predictors

	Coefficient	Standard error	t-statistic	p-value
β_{0} (Asian)	531.00	46.32	11.464	<0.0001
β_{1}	-18.69	65.02	-0.287	0.7740
β_{2} (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): $\$ 531.00$.

Other Considerations in the Regression Model

Multi-valued qualitative predictors

	Coefficient	Standard error	t-statistic	p-value
β_{0}	531.00	46.32	11.464	<0.0001
β_{1} (Asian)	-18.69	65.02	-0.287	0.7740
β_{2} (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): $\$ 531.00$.
- Asians estimated to have $\$ 18.69$ less debt than African Americans.
- Caucasians estimated to have $\$ 12.50$ less debt than African Americans.

Other Considerations in the Regression Model

Multi-valued qualitative predictors

	Coefficient	Standard error	t-statistic	p-value
β_{0}	531.00	46.32	11.464	<0.0001
β_{1} (Asian)	-18.69	65.02	-0.287	0.7740
β_{2} (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): $\$ 531.00$.
- Asians estimated to have $\$ 18.69$ less debt than African Americans.
- Caucasians estimated to have $\$ 12.50$ less debt than African Americans.
- $\hat{\beta}_{1}, \hat{\beta}_{2}$ have high p-values, indicating no statistical significance for ethnicity as factor in credit card balance.

Other Considerations in the Regression Model

Multi-valued qualitative predictors

	Coefficient	Standard error	t-statistic	p-value
β_{0}	531.00	46.32	11.464	<0.0001
β_{1} (Asian)	-18.69	65.02	-0.287	0.7740
β_{2} (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): $\$ 531.00$.
- Asians estimated to have $\$ 18.69$ less debt than African Americans.
- Caucasians estimated to have $\$ 12.50$ less debt than African Americans.
- $\hat{\beta}_{1}, \hat{\beta}_{2}$ have high p-values, indicating no statistical significance for ethnicity as factor in credit card balance.
- Coefficients and p-values depend on coding, result does not. F-test to reject $H_{0}: \beta_{1}=\beta_{2}=0$ has p-value 0.96 (cannot reject).

Other Considerations in the Regression Model

Multi-valued qualitative predictors

	Coefficient	Standard error	t-statistic	p-value
β_{0} (Asian)	531.00	46.32	11.464	<0.0001
β_{1}	-18.69	65.02	-0.287	0.7740
β_{2} (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): $\$ 531.00$.
- Asians estimated to have $\$ 18.69$ less debt than African Americans.
- Caucasians estimated to have $\$ 12.50$ less debt than African Americans.
- $\hat{\beta}_{1}, \hat{\beta}_{2}$ have high p-values, indicating no statistical significance for ethnicity as factor in credit card balance.
- Coefficients and p-values depend on coding, result does not. F-test to reject $H_{0}: \beta_{1}=\beta_{2}=0$ has p-value 0.96 (cannot reject).
- Dummy variable approach works for combining qualitative and quantitative predictors.
(Other coding schemes for qualitative variables possible.)

Other Considerations in the Regression Model

Extending the linear model

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_{j} independent of remaining variables.
- Linearity: rate of change in Y with respect to X_{j} constant in X_{j}.

Other Considerations in the Regression Model

Extending the linear model

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_{j} independent of remaining variables.
- Linearity: rate of change in Y with respect to X_{j} constant in X_{j}.
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).

Other Considerations in the Regression Model

Extending the linear model

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_{j} independent of remaining variables.
- Linearity: rate of change in Y with respect to X_{j} constant in X_{j}.
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

Other Considerations in the Regression Model

Extending the linear model

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_{j} independent of remaining variables.
- Linearity: rate of change in Y with respect to X_{j} constant in X_{j}.
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon
$$

Other Considerations in the Regression Model

Extending the linear model

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_{j} independent of remaining variables.
- Linearity: rate of change in Y with respect to X_{j} constant in X_{j}.
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

$$
\begin{aligned}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon \\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} X_{2}\right) X_{1}+\beta_{2} X_{2}+\varepsilon
\end{aligned}
$$

Other Considerations in the Regression Model

Extending the linear model

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_{j} independent of remaining variables.
- Linearity: rate of change in Y with respect to X_{j} constant in X_{j}.
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

$$
\begin{array}{rlr}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon & \\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} X_{2}\right) X_{1}+\beta_{2} X_{2}+\varepsilon \\
& =\beta_{0}+\tilde{\beta}_{1} X_{1}+\beta_{2} X_{2}+\varepsilon, \quad \tilde{\beta}_{1}:=\beta_{1}+\beta_{3} X_{2} .
\end{array}
$$

Other Considerations in the Regression Model

Extending the linear model

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_{j} independent of remaining variables.
- Linearity: rate of change in Y with respect to X_{j} constant in X_{j}.
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

$$
\begin{array}{rlr}
Y & =\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{1} X_{2}+\varepsilon & \\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} X_{2}\right) X_{1}+\beta_{2} X_{2}+\varepsilon & \\
& =\beta_{0}+\tilde{\beta}_{1} X_{1}+\beta_{2} X_{2}+\varepsilon, & \tilde{\beta}_{1}:=\beta_{1}+\beta_{3} X_{2} .
\end{array}
$$

$\tilde{\beta}_{1}$ changes with X_{2}, hence effect of X_{1} on Y changes with X_{2}.

Other Considerations in the Regression Model

Extending the linear model: factory example

Example: factory productivity.

- Predict \# produced units based on \# production lines and \# workers.

Other Considerations in the Regression Model

Extending the linear model: factory example

Example: factory productivity.

- Predict \# produced units based on \# production lines and \# workers.
- Expected: increase in \# production lines will depend on \# workers.
- In linear model of units, include interaction term between lines and workers. A regression fit may yield, e.g.,

$$
\begin{aligned}
\text { units } & \approx 1.2+3.4 \times \text { lines }+0.22 \times \text { workers }+1.4 \times(\text { lines } \times \text { workers }) \\
& =1.2+(3.4+1.4 \times \text { workers }) \times \text { lines }+0.22 \times \text { workers }
\end{aligned}
$$

- Adding additional line will increase \# produced units by $3.4+1.4 \times$ workers. The more workers, the stronger the effect of adding a line.

Other Considerations in the Regression Model

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

$$
\begin{align*}
\text { sales } & =\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times(\text { radio } \times \mathrm{TV})+\varepsilon \\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} \times \text { radio }\right) \times \mathrm{TV}+\beta_{2} \times \text { radio }+\varepsilon \tag{3.27}
\end{align*}
$$

Other Considerations in the Regression Model

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

$$
\begin{align*}
\text { sales } & =\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times(\text { radio } \times \mathrm{TV})+\varepsilon \tag{3.27}\\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} \times \text { radio }\right) \times \mathrm{TV}+\beta_{2} \times \text { radio }+\varepsilon
\end{align*}
$$

Interpretation of β_{3} : increase in effectiveness of TV advertising for one-unit increase in radio advertising.

Other Considerations in the Regression Model

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

$$
\begin{align*}
\text { sales } & =\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times(\text { radio } \times \mathrm{TV})+\varepsilon \tag{3.27}\\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} \times \text { radio }\right) \times \mathrm{TV}+\beta_{2} \times \text { radio }+\varepsilon
\end{align*}
$$

Interpretation of β_{3} : increase in effectiveness of TV advertising for one-unit increase in radio advertising.

	Coefficient	Standard error	t-statistic	p-value
β_{0}	6.7502	0.248	27.23	<0.0001
β_{1}	0.0191	0.002	12.70	<0.0001
β_{2}	0.0289	0.009	3.24	0.0014
β_{3}	0.0011	0.000	20.73	<0.0001

Other Considerations in the Regression Model

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

$$
\begin{align*}
\text { sales } & =\beta_{0}+\beta_{1} \times \mathrm{TV}+\beta_{2} \times \text { radio }+\beta_{3} \times(\text { radio } \times \mathrm{TV})+\varepsilon \tag{3.27}\\
& =\beta_{0}+\left(\beta_{1}+\beta_{3} \times \text { radio }\right) \times \mathrm{TV}+\beta_{2} \times \text { radio }+\varepsilon
\end{align*}
$$

Interpretation of β_{3} : increase in effectiveness of TV advertising for one-unit increase in radio advertising.

	Coefficient	Standard error	t-statistic	p-value
β_{0}	6.7502	0.248	27.23	<0.0001
β_{1}	0.0191	0.002	12.70	<0.0001
β_{2}	0.0289	0.009	3.24	0.0014
β_{3}	0.0011	0.000	20.73	<0.0001

- Model with interaction term superior to that including only main effects.
- Low p-value of interaction term strong evidence for rejecting $H_{0}: \beta_{3}=0$.

Other Considerations in the Regression Model

Extending the linear model: advertising example

- Model (3.27) has $R^{2}=96.8 \%$ (vs. $R^{2}=89.7 \%$ for model without interaction term).

Other Considerations in the Regression Model

Extending the linear model: advertising example

- Model (3.27) has $R^{2}=96.8 \%$
(vs. $R^{2}=89.7 \%$ for model without interaction term).
- Interpretation: of the variability remaining after fitting the model without interaction term,

$$
\frac{96.8 \%-89.7 \%}{100 \%-89.7 \%}=69 \%
$$

is explained by model (3.27) which includes the interaction term.

Other Considerations in the Regression Model

Extending the linear model: advertising example

- Model (3.27) has $R^{2}=96.8 \%$
(vs. $R^{2}=89.7 \%$ for model without interaction term).
- Interpretation: of the variability remaining after fitting the model without interaction term,

$$
\frac{96.8 \%-89.7 \%}{100 \%-89.7 \%}=69 \%
$$

is explained by model (3.27) which includes the interaction term.

- \$1000 increase in TV budget associated with sales increase of $\left(\hat{\beta}_{1}+\hat{\beta}_{3} \times\right.$ radio $) \times 1000=19+1.1 \times$ radio units .
$\$ 1000$ increase in radio budget associated with sales increase of $\left(\hat{\beta}_{2}+\hat{\beta}_{3} \times \mathrm{TV}\right) \times 1000=29+1.1 \times$ TV units.

Other Considerations in the Regression Model

Extending the linear model: advertising example

- Model (3.27) has $R^{2}=96.8 \%$
(vs. $R^{2}=89.7 \%$ for model without interaction term).
- Interpretation: of the variability remaining after fitting the model without interaction term,

$$
\frac{96.8 \%-89.7 \%}{100 \%-89.7 \%}=69 \%
$$

is explained by model (3.27) which includes the interaction term.

- $\$ 1000$ increase in TV budget associated with sales increase of $\left(\hat{\beta}_{1}+\hat{\beta}_{3} \times\right.$ radio $) \times 1000=19+1.1 \times$ radio units.
$\$ 1000$ increase in radio budget associated with sales increase of $\left(\hat{\beta}_{2}+\hat{\beta}_{3} \times \mathrm{TV}\right) \times 1000=29+1.1 \times \mathrm{TV}$ units.
- Hierarchical principle: for every interaction term, include all associated main effects, even if the p values of their coefficients not significant. Rationale: If $X_{1} X_{2}$ related to response, vanishing coefficients for X_{1}, X_{2} unimportant. $X_{1} X_{2}$ typically correlated with X_{1}, X_{2}; leaving these out alters meaning of interaction.

Other Considerations in the Regression Model

Extending the linear model: credit example

Credit data set: predict balance using income (quantitative) and student (qualitative). Without interaction term:

$$
\begin{align*}
\text { balance }_{i} & \approx \beta_{0}+\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{2} & \text { if } i \text {-th person student } \\
0 & \text { otherwise }\end{cases} \\
& =\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{0}+\beta_{2} & \text { if } i \text {-th person student } \\
\beta_{0} & \text { otherwise }\end{cases} \tag{3.28}
\end{align*}
$$

Other Considerations in the Regression Model

Extending the linear model: credit example

Credit data set: predict balance using income (quantitative) and student (qualitative). Without interaction term:

$$
\begin{align*}
\text { balance }_{i} & \approx \beta_{0}+\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{2} & \text { if } i \text {-th person student } \\
0 & \text { otherwise }\end{cases} \\
& =\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{0}+\beta_{2} & \text { if } i \text {-th person student } \\
\beta_{0} & \text { otherwise }\end{cases} \tag{3.28}
\end{align*}
$$

- Results in fitting two parallel lines to data (one each for students and nonstudents).
- Parallel implies: average affect on balance of one-unit increase in income independent of Student status.
- Reflects model shortcoming: change in income may have very different effect on credit card balance for students and non-students.

Other Considerations in the Regression Model

Extending the linear model: credit example

With interaction term: multiply income with dummy variable for student

$$
\begin{aligned}
\text { balance }_{i} & \approx \beta_{0}+\beta_{1} \times \text { income }_{i}+ \begin{cases}\beta_{2}+\beta_{3} \times \text { income }_{i} & \text { if } i \text {-th person student } \\
0 & \text { otherwise }\end{cases} \\
& = \begin{cases}\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) \times \text { income }_{i} & \text { if } i \text {-th person student } \\
\beta_{0}+\beta_{1} \times \text { income }_{i} & \text { otherwise. }\end{cases}
\end{aligned}
$$

Other Considerations in the Regression Model

Extending the linear model: credit example

- Now the two lines have different intercepts and different slopes.
- Slope for students lower, indicates increases in income associated with smaller increase in credit card balance than for non-students.

Other Considerations in the Regression Model

Extending the linear model: nonlinear relationships
Polynomial regression vs. linear regression:

Auto data set showing mpg (miles per gallon) versus horsepower for different cars.

Other Considerations in the Regression Model

Extending the linear model: nonlinear relationships

Since the data seem to suggest curved relationship, add quadratic term:

$$
\begin{equation*}
\mathrm{mpg}=\beta_{0}+\beta_{1} \times \text { horsepower }+\beta_{2} \times \text { horsepower }{ }^{2}+\varepsilon \tag{3.30}
\end{equation*}
$$

	Coefficient	Standard error	t-statistic	p-value
β_{0}	56.9001	1.8004	31.6	<0.0001
β_{1}	-0.4662	0.0311	-15.0	<0.0001
β_{2}	0.0012	0.0001	10.1	<0.0001

- Linear fit has $R^{2}=0.606$, quadratic fit has $R^{2}=0.688$.
- p-value for quadratic term highly significant.
- Degree 5 fit more oscillatory, doesn't appear to explain data any better than quadratic.

Other Considerations in the Regression Model

Potential problems

Most common problems when fitting a linear regression model to a data set: (identification and solution as much an art as a science)
(1) Nonlinear dependence of response on predictors

2 Correlated error terms
(3) Non-constant variance of error terms
(4) Outliers
(5) High-leverage points
(6) Collinearity

Other Considerations in the Regression Model

Potential problems: (1) Nonlinear dependence

Inference and prediction from linear regression model are suspect when true model nonlinear.

- Identifying nonlinearity aided by residual plots

$$
r_{i}=y_{i}-\hat{y}_{i} \quad \text { against predictors } x_{i}
$$

- For multiple regression models, plot residuals against predicted (fitted) values \hat{y}_{i}.
- Ideal picture: no discernible pattern.
- Presence of pattern indicates possible problem with model.
- When nonlinearity is suggested, introduce nonlinear functions of predictors as regression functions into the regression model.

Other Considerations in the Regression Model

Potential problems: (1) Nonlinear dependence

Residuals versus predicted values for Auto data set.
Red line is smooth fit to residuals to aid in identifying trends.
Left: linear regression of mpg on horsepower (strong pattern).
Right: linear regression of mpg on horsepower and horsepower ${ }^{2}$ (little pattern).

Other Considerations in the Regression Model

Potential problems: (2) Correlated error terms

- Linear regression assumes uncorrelated errors ε_{i}.
- Computation of SE for coefficient estimates, fitted values, based on this assumption. Otherwise estimated SE tend to underestimate true SE, confidence and prediction intervals too optimistic (narrow), p-values lower than they should be.

Other Considerations in the Regression Model
 Potential problems: (2) Correlated error terms

- Linear regression assumes uncorrelated errors ε_{i}.
- Computation of SE for coefficient estimates, fitted values, based on this assumption. Otherwise estimated SE tend to underestimate true SE, confidence and prediction intervals too optimistic (narrow), p-values lower than they should be.
- Extreme example: double data (observations, error terms identical in pairs). SE calculations use sample size $2 n$ in place of n, hence Cl narrower by factor of $\sqrt{2}$.
- Detection for time series: plot residuals as function of time. No correlations implies no visible pattern; correlations lead to tracking of residuals.
- Example (next slide): time series with error correlation $\rho=0,0.5,0.9$
- Example: study of persons' heights predicted from their weights. Uncorrelatedness assumption violated if, e.g., individuals related, same diet or environmantal factors.

Other Considerations in the Regression Model

Potential problems: (2) Correlated error terms

Other Considerations in the Regression Model

Potential problems: (3) Non-constant variance of error terms

- SE, CI, hypothesis tests associated with linear model rely on assumption $\operatorname{Var} \varepsilon_{i}=\sigma^{2}(\forall i)$.

Other Considerations in the Regression Model

Potential problems: (3) Non-constant variance of error terms

- SE, CI, hypothesis tests associated with linear model rely on assumption $\operatorname{Var} \varepsilon_{i}=\sigma^{2}(\forall i)$.
- Non-constant error variance (heteroscedasticity), e.g. increase with response value, leads to funnel-shaped residual plot.
- Possible solution: transform response Y using concave function such as $\log Y$ or \sqrt{Y}, leads to damping of larger responses, reducing heteroscedasticity.

Other Considerations in the Regression Model

Potential problems: (3) Non-constant variance of error terms

- SE, CI, hypothesis tests associated with linear model rely on assumption $\operatorname{Var} \varepsilon_{i}=\sigma^{2}(\forall i)$.
- Non-constant error variance (heteroscedasticity), e.g. increase with response value, leads to funnel-shaped residual plot.
- Possible solution: transform response Y using concave function such as $\log Y$ or \sqrt{Y}, leads to damping of larger responses, reducing heteroscedasticity.
- When variation of response variance known, e.g., i-th response average of n_{i} observations which are uncorrelated with variance σ^{2}, then average has variance $\sigma_{i}^{2}=\sigma^{2} / n_{i}$. Remedy: weighted least squares with weights proportional to inverse variances.

Other Considerations in the Regression Model

Potential problems: (3) Non-constant variance of error terms

Residual plots. Red: smooth fit of residuals. Blue: track outer quantiles of residuals. Left: funnel shape indicating heteroscedasticity. Right: After log-transforming response, heteroscedasticity removed.

Other Considerations in the Regression Model

Potential problems: (4) Outliers

- Outlier: point where y_{i} far from value predicted by model.
- Possible causes: observation errors.

Left: red solid line: least squares line with outlier, blue: without.
Center: Residual plot identifies outlier.
Right: Outlier seen to have studentized residual (divide e_{i} by its estimated standard error) of 6 (between -3 and 3 expected).
R^{2} declines from 0.892 to 0.805 on including outlier.

Other Considerations in the Regression Model

Potential problems: (5) High-leverage points

- Outliers: observations where y_{i} is unusual given x_{i}.
- Observations with high leverage have unusual value for x_{i}.
- If least squares line strongly affected by certain points, problems with these may invalidate entire fit, hence important to identify such observations.
- Simple linear regression: extremal x-values;
multiple linear regression: in range of all other observation coordinates, but unusual (difficult to detect for more than two predictors).
- Large value of leverage statistic indicates high leverage. For simple linear regression:

$$
\begin{equation*}
h_{i}=\frac{1}{n}+\frac{\left(x_{i}-\bar{x}\right)^{2}}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}} \in\left(\frac{1}{n}, 1\right) \tag{3.31}
\end{equation*}
$$

Average value always $\frac{p+1}{n}$, deviation from average indicates high leverage.

Other Considerations in the Regression Model

Potential problems: (5) High-leverage points

Left: Same data as previous figure, with added observation 41 (red) of high leverage. Red solid line is least squares fit with, blue dashed without observation 41.

Center: two predictor variables, most observations within blue dashed ellipse, red observation distinctly outside, but either coordinate well within normal range.

Right: same data as in left panel, studentized residuals vs. leverage statistic. Observation 41 has high leverage and high residual, i.e., outlier and high-leverage point. Outlier observation 20 has low leverage.

Other Considerations in the Regression Model

Potential problems: (6) Collinearity
Collinearity: two or more predictor variables closely related.

From Credit data set.

Left: limit vs. age.

Right: limit vs. rating (strongly collinear).

Other Considerations in the Regression Model

Potential problems: (6) Collinearity

Difficult to separate individual effects of collinear variables on response.

Contour plots of RSS for different coefficient estimates for Credit data set. Axes scaled to include 4 SE on either side of optimum. Regression of balance

Left: on limit and age.
Right: on limit and rating.

Other Considerations in the Regression Model

Potential problems: (6) Collinearity

- Collinearity increases SE, hence reduces t-statistic, and we will more likely fail to reject $H_{0}: \beta_{j}=0$. This reduces the power of the hypothesis test, i.e., the probability of correctly detecting a nonzero coefficient.

	Coefficient	Standard error	t-statistic	p-value
Model 1				
β_{0}	-173.411	43.828	-3.957	<0.0001
β_{1} (age)	-2.292	0.672	-3.407	0.0007
β_{2} (limit)	0.173	0.005	34.496	< 0.0001
Model 2				
β_{0}	-377.537	45.254	-8.343	<0.0001
β_{1} (rating)	2.202	0.952	2.312	0.0213
β_{2} (limit)	0.025	0.064	0.384	0.7012

- Model 1: age, limit both highly significant.

Model 2: collinearity between rating and limit increases SE for limit coefficient by factor $12, p$-value increases to 0.701 . Collinearity masks importance of limit variable.

Other Considerations in the Regression Model
 Potential problems: (6) Collinearity

- Important to detect collinearity when fitting a model.
- Correlation matrix may give indication.
- Multicollinearity: collinearity between 3 or more variables which each have low pairwise correlation.
- Variance inflation factor (VIF): ratio of variance of $\hat{\beta}_{j}$ when fitting the full model and variance of $\hat{\beta}_{j}$ when fitted separately.
- VIF ≥ 1, minimum at complete absence of collinearity. Problematic if VIF exceeds 5 or 10 .
-

$$
\operatorname{VIF}\left(\hat{\beta}_{j}\right)=\frac{1}{1-R_{X_{j} \mid X_{-j}}^{2}}
$$

$R_{X_{j} \mid X_{-j}}^{2}: R^{2}$ from regression of X_{j} onto all other predictors.

- In Credit data example: predictors have VIF values of 1.01, 160.67, 160.59.
- Remedies: drop problematic variables, combine collinear variables into single predictor.

Contents

(3) Linear Regression
3.1 Simple Linear Regression
3.2 Multiple Linear Regression
3.3 Computational Solution of Least Squares Problems
3.4 Other Considerations in the Regression Model
3.5 Revisiting the Marketing Data Questions
3.6 Linear Regression vs. K-Nearest Neighbors

Revisiting the Marketing Data Questions

Recall the seven questions relating to the Advertising data set we set out to answer on Slide 75:
(1) Is there a relationship between advertising budget and sales?
(2) How strong is this relationship between advertising budget and sales?
(3) Which media contribute to sales?
(4) How accurately can we estimate the effect of each medium on sales?
(5) How accurately can we predict future sales?
(6) Is the relationship linear?
(7) Is there synergy among the advertising media?

We revisit each in turn.

Revisiting the Marketing Data Questions

(1) Is there a relationship between advertising budget and sales?

Revisiting the Marketing Data Questions

(1) Is there a relationship between advertising budget and sales?

- Fit multiple regression model of sales onto TV, radio and newspaper.
- Test hypothesis

$$
H_{0}: \beta_{\mathrm{TV}}=\beta_{\text {radio }}=\beta_{\text {newspaper }}=0
$$

- Rejection/non-rejection based on F-statistic (Slide 102).
- For advertising data: Iow p-value of F-statistic (table on Slide 104) strong evidence for rejecting H_{0}.

Revisiting the Marketing Data Questions

(2) How strong is this relationship between advertising budget and sales?

Revisiting the Marketing Data Questions

(2) How strong is this relationship between advertising budget and sales?

- Measure of model error: RSE (see Slide 84), estimates standard deviation of response from (true) population regression line.
- Advertising data:

For multiple regression model of sales on TV and radio, $\mathrm{RSE}=1,681$ units (Slide 109).
Relative to response sample mean of 14,022 units, this is an error of 12%.

Revisiting the Marketing Data Questions

(2) How strong is this relationship between advertising budget and sales?

- Measure of model error: RSE (see Slide 84), estimates standard deviation of response from (true) population regression line.
- Advertising data:

For multiple regression model of sales on TV and radio, $\mathrm{RSE}=1,681$ units (Slide 109).
Relative to response sample mean of 14,022 units, this is an error of 12%.

- Measure of model error: R^{2} (Slide 91), measures proportion of response variability explained by model.
- Advertising data:

For multiple regression model of sales on TV, radio and newspaper, $R^{2}=0.897$, i.e., $\approx 90 \%$ of sales variability explained by multiple linear regression model (Slide 104).

Revisiting the Marketing Data Questions

(3) Which media contribute to sales?

Revisiting the Marketing Data Questions

(3) Which media contribute to sales?

- p-values of t-statistic in multiple regression model of sales on TV, radio and newspaper: small for TV and radio, large for newspaper.
- Suggest only TV and radio budgets related to sales.

Revisiting the Marketing Data Questions

(4) How accurately can we estimate the effect of each medium on sales?

Revisiting the Marketing Data Questions

(4) How accurately can we estimate the effect of each medium on sales?

- Confidence intervals for β_{j} constructed from SE of $\hat{\beta}_{j}$.
- Advertising data: 95%-confidence intervals for multiple regression coefficients are

TV	$(0.043,0.049)$
radio	$(0.172,0.206)$
newspaper	$(-0.013,0.011)$

Revisiting the Marketing Data Questions

(4) How accurately can we estimate the effect of each medium on sales?

- Confidence intervals for β_{j} constructed from SE of $\hat{\beta}_{j}$.
- Advertising data: 95%-confidence intervals for multiple regression coefficients are

TV	$(0.043,0.049)$
radio	$(0.172,0.206)$
newspaper	$(-0.013,0.011)$

- Wide Cl due to collinearity? (Slide 151).

VIF scores for TV, radio and newspaper are $1.005,1.145,1.145$, so not likely.

Revisiting the Marketing Data Questions

(4) How accurately can we estimate the effect of each medium on sales?

- Confidence intervals for β_{j} constructed from SE of $\hat{\beta}_{j}$.
- Advertising data: 95%-confidence intervals for multiple regression coefficients are

```
TV
radio
newspaper
```

(0.043, 0.049) ($0.172,0.206$)
($-0.013,0.011$)

- Wide Cl due to collinearity? (Slide 151).

VIF scores for TV, radio and newspaper are 1.005, 1.145, 1.145, so not likely.

- Separate simple regressions of sales on TV, radio and newspaper show strong association of TV and radio with sales, mild association of newspaper with sales, when remaining two predictors ignored.

Revisiting the Marketing Data Questions

(5) How accurately can we predict future sales?

Revisiting the Marketing Data Questions

(5) How accurately can we predict future sales?

- Can use (3.19) for prediction.
- Prediction intervals assess accuracy of predicting individual responses $Y=f(X)+\varepsilon$.
- Confidence intervals assess accuracy of predicting average responses $Y=f(X)$.
- Former always wider due to accounting for additional variability due to irreducible error ε.

Revisiting the Marketing Data Questions

(6) Is the relationship linear?

Revisiting the Marketing Data Questions

(6) Is the relationship linear?

- Identify nonlinearity using residual plots of linear model (Slide 142).
- Advertising data:

Nonlinear effects visible in figure on Slide 110.

- Discussed regression functions which are nonlinear in the predictor variables.

Revisiting the Marketing Data Questions

(7) Is there synergy among the advertising media?

Revisiting the Marketing Data Questions

(7) Is there synergy among the advertising media?

- Non-additive relationships modeled by interaction term in model (Slide 132).
- Presence of interaction (synergy) confirmed by small p-value of interaction term.
- Advertising data:

Including interaction term increased R^{2} from $\approx 90 \%$ to $\approx 97 \%$.

Contents

(3) Linear Regression
3.1 Simple Linear Regression
3.2 Multiple Linear Regression
3.3 Computational Solution of Least Squares Problems
3.4 Other Considerations in the Regression Model
3.5 Revisiting the Marketing Data Questions
3.6 Linear Regression vs. K-Nearest Neighbors

Linear Regression vs. K-Nearest Neighbors

Non-parametric approach

- Linear regression is a parametric method.
- Non-parametric methods make no (strong) a priori assumptions on functional form of model $Y \approx f(X)$, more flexibility in adapting to data.

Linear Regression vs. K-Nearest Neighbors

Non-parametric approach

- Linear regression is a parametric method.
- Non-parametric methods make no (strong) a priori assumptions on functional form of model $Y \approx f(X)$, more flexibility in adapting to data.
- Here: K-nearest neighbors (KNN) regression (Cf. KNN classifier in Chapter 2).

Linear Regression vs. K-Nearest Neighbors

Non-parametric approach

- Linear regression is a parametric method.
- Non-parametric methods make no (strong) a priori assumptions on functional form of model $Y \approx f(X)$, more flexibility in adapting to data.
- Here: K-nearest neighbors (KNN) regression (Cf. KNN classifier in Chapter 2).
- Given prediction point x_{0}, first determine set \mathscr{N}_{0} consisting of $K(K \in \mathbb{N})$ training observations closest to x_{0}.
- Predict \hat{y}_{0} to be average training response in \mathscr{N}_{0}, i.e.,

$$
\hat{f}\left(x_{0}\right)=\frac{1}{K} \sum_{x_{i} \in \mathscr{N}_{0}} y_{i}
$$

Linear Regression vs. K-Nearest Neighbors

Non-parametric approach

Two KNN fits on a data set with 64 observations using $p=2$ predictors.
Left: $K=1$. Interpolation, rough step-like function.
Right: $K=9$. Not interpolatory, smoother.

Linear Regression vs. K-Nearest Neighbors

Tuning K

- Flexibility of model controlled by K : less flexible. smoother fit, for large K.
- Bias-variance tradeoff.
- Flexible model: low bias, high variance (prediction depends on only one nearby observation).
Unflexible model: high bias, low variance (changing one observation has smaller effect, averaging introduces bias).
- Optimal value of K ? (later)

Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric
Q: In what setting will a parametric approach outperform a non-parametric approach?

Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

Q: In what setting will a parametric approach outperform a non-parametric approach?
A: Depends on how closely assumed form of f matches true form.

Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric
Q: In what setting will a parametric approach outperform a non-parametric approach?
A: Depends on how closely assumed form of f matches true form.

1D data, 100 observations (red), linear true model (black), KNN regression (blue).
Left: $K=1$, right: $K=9$.

Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

Left: same data, linear regression fit.
Right: test set MSE for linear regression (dotted line) and KNN for different values of K (plotted against $1 / K$).

Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

Left: slightly nonlinear data, true model (black), KNN regression with $K=1$ (blue) and $K=9$ (red).
Right: test set MSE for linear regression (dotted line) and KNN (against 1/K). KNN wins for $K \geq 4$.

Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

Left: stronly nonlinear data, true model (black), KNN regression with $K=1$ (blue) and $K=9$ (red).
Right: test set MSE for linear regression (dotted line) and KNN (against $1 / K$). KNN wins for all K displayed.

Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

Strongly nonlinear case, added noise predictors not associated with response. Linear regression MSE deteriorates only slightly as p rises, KNN regression MSE much more sensitive.

- For $p=1 \mathrm{KNN}$ seems at most slightly worse than linear regression. For $p>1$ this is no longer true.
- Curse of dimensionality: for $p=20$, many of the 100 observations have no nearby observations.

Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

- General rule: parametric methods tend to outperform non-parametric methods when there is a small number of observations per predictor.
- Even for small p, parametric methods offer the added advantage of better interpretability.

[^0]: ${ }^{4}$ Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from μ.

[^1]: ${ }^{4}$ Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from μ.

[^2]: ${ }^{5}$ C.F. Gauss, 1777-1855, A.A. Markov, 1856-1922

