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Unsupervised Learning
Introduction

• Supervised learning: n observations {(xi , yi )
n
i=1}, each consisting of fea-

ture vector xi ∈ Rp and a response observation yi .
• Construct prediction model f̂ such that

yi ≈ f̂ (xi ) in order to predict y = f̂ (x)

for values x not among data set.

• Unsupervised learning: only feature observations available, no response
data.

• Prediction not possible.
• Instead: statistical techniques for “discovering interesting things” about ob-
servations {xi}ni=1.

• Informative visualization of the data.
• Indentification of subgroups in the data/variables.
• Here: principal components analysis (PCA) and clustering.
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Unsupervised Learning
Challenges

• For supervised learning tasks, e.g., binary classification, large selection of
well developed algorithms (logistic regression, LDA, classification trees,
SVMs) as well as assessment techniques (CV, validation set, . . . ).

• Unsupervised learning more subjective.
• No clear goal of analysis (such as response prediction).
• Often performed as part of exploratory data analysis.
• Results harder to assess (by very nature).
• Examples:

• finding patterns in gene expression data for cancer patients;
• identifying subgroups of customers of online shopping platform which display
similar behavior/interest;

• determining which content a search engine should display to which individu-
als.
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Unsupervised Learning
Principal components analysis

• Many correlated feature/predictor variables X1, . . . ,Xp.
• Form new predictor variables Zm (components) as linear combinations of
original variables.

• Construct Zm to be uncorrelated, ordered by decreasing variance.
• Ideal situation: first few M < p components (principal components) ex-
plain large part of total variance of original variables. In this case data set
well explained by restriction to principal components.

• Have used this idea for principal components regression (Chapter 6).
There, used principal components as new (fewer) predictor variables.

• PCA: process by which principal components derived; also a technique for
data visualization.

• Unsupervised, since applies only to feature/predictor variables.
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Unsupervised Learning
Principal components

• To visualize p-variate data using bivariate scatterplots,
(p
2

)
= p(p − 1)/2

pairs to examine.
• Besides effort involved, individual scatterplots not necessarily that informa-
tive, containing only small fraction of information carried by complete data.

• Ideal: find low (1, 2 or 3)-dimensional representation of data containing all
(most) relevant information.

• First principal component: linear combination

Z1 = φ1,1X1 + · · ·+ φp,1Xp,

p∑

j=1

φ2j ,1 = 1, (9.1)

of original feature variables Xj with normalized coefficients (“ loadings”)
with maximal variance.
Loading vector φ1 := (φ1,1, . . . , φp,1)

>.
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Unsupervised Learning
Computing the first principal component

• Given data set

X ∈ Rn×p, i.e., n samples of p features X1, . . . ,Xp,

• Each column xj = (x1,j , . . . , xn,j )
> ∈ Rn, j = 1, . . . , p, contains n samples

(observations) of j-th feature.
• Each row x̃>i = (xi ,1, . . . , xi ,p) ∈ Rp, i = 1, . . . , n, contains one sample of p
features.

• Here information synonymous with variance, hence assume centered co-
lumns, i.e.,

e>xj = 0, j = 1, . . . , p, e =



1
...

1


 ∈ Rn,

hence sample mean of each column is zero.
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Unsupervised Learning
Computing the first principal component

• Loadings {φj ,1}pj=1 for first principal component determined as (normalized)
coefficients in linear combination

z1 = φ1,1x1 + · · ·+ φp,1xp = Xφ1

such that z1 has largest sample variance (mean remains zero).

• In other words, loadings {φj ,1}pj=1 solve optimization problem

max




1
n

n∑

i=1




p∑

j=1

φj ,1xi ,j




2

:

p∑

j=1

φ2j ,1 = 1



 (9.2)

• In other words, loading vector φ1 solves optimization problem

max
‖φ‖2=1

‖Xφ‖22 = max
‖φ‖2=1

φ>X>Xφ.

• In other words (Courant-Fischer max-min principle), φ1 is a normalized
eigenvector associated with largest eigenvalue of X>X.
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Unsupervised Learning
Computing the first principal component

• Equivalent characterization: φ1 is a right singular vector associated with
the largest singular values of (centered) data matrix X.

• Components z1,1, . . . , zn,1 of z1 referred to as scores of first principal com-
ponent.

• Geometric interpretation: loading vector φ1 defines direction in feature
space along which data varies the most.
“Projection of data points x̃1, . . . , x̃n (rows of X) in this direction yield prin-
cipal component scores z1.”
This is simply the dual interpretation of the matrix-vector product
z1 = Xφ1: rather than as a linear combination of the columns {xj}pj=1 ⊂
Rn of X, it is viewed as the vector of inner products of φ1 with the rows
{x̃i}ni=1 ⊂ R1×p of X:

z1 = Xφ1 =



x̃>1 φ1
...

x̃>n φ1


 .
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Unsupervised Learning
Computing the first principal component
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First principal component loading vector in advertising data set (green). Here p = 2
and observation data can be viewed along with principal component vectors.
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Unsupervised Learning
Computing the second principal component

• Second principal component Z2: linear combination of X1, . . . ,Xp with lar-
gest variance subject to condition that it is uncorrelated with Z1.

• Scores
z2 = φ1,2x1 + · · ·+ φp,2xp = Xφ2

with second principal components loading vector φ2 = (φ1,2, . . . , φp,2)
>.

• Uncorrelatedness equivalent with orthogonality in Euclidean inner product.
• Hence φ2 is normalized eigenvector associated with second-largest eingen-
value of X>X, or normalized right singular vector associated with second-
largest singular value of X.

• Previous figure: p = 2, only one possibility for φ2 (dashed blue line).
• Remaining components Zm defined analogously: linear combination of

X1, . . . ,Xp with maximal variance uncorrelated with Z1, . . . ,Zm−1 (Eucli-
dean orthogonality of recombined sample vectors).

• There are at most min{n − 1, p} principal components.
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Unsupervised Learning
Principal components and the SVD

• Denoting the SVD of the centered data matrix as X = UΣV > gives
X>X = VΣ>ΣV >.

• The eigenvalues of X>X in descending order are displayed on the diagonal
of Σ>Σ = diag(σ21, . . . , σ

2
p).

• The total variance in the data represented by X is given by ‖X‖2F = σ21 +
· · ·+ σ2p .

• The principal component loading vectors {φj}pj=1 are given by the normali-
zed eigenvectors of X>X or, equivalently, the right singular vectors of X,
i.e.,

φj = vj , j = 1, . . . ,min{n − 1, p}.

• For the scores zm, we have

zm = Xφm = UΣV >vm = σmum, m = 1, . . . ,min{n − 1, p}.
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Unsupervised Learning
Example: USArrests data set

• USArrests data set: arrests per 100,000 residents of each of the 50 states
of the USA for each of the crimes Assault, Murder and Rape.

• Also records UrbanPop, percentage of each state’s population living in ur-
ban areas.

• Number of samples = length of PC score vector n = 50.
• Dimension of feature space = length of PC loading vectors p = 4.
• PCA performed after standardizing data matrix (column mean zero, stan-
dard deviation one).

• PC loading vectors

PC1 PC2
Murder 0.5358995 -0.4181809
Assault 0.5831836 -0.1879856
Rape 0.5434321 0.1673186
UrbanPop 0.2781909 0.8728062
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Unsupervised Learning
Example: USArrests data set
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• Biplot of data in
space of first two prin-
cipal components.

• Blue state names:
score in first 2 PC.

• Orange arrows: first
two PC loading vec-
tors (axes on right
and top).

• Biplot: displays both
PC scores and PC
loadings.
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Unsupervised Learning
Example: USArrests data set: Interpretation of figure

• First loading vector places approximately equal weight on Assault, Murder
and Rape, much less weight on UrbanPop.
Hence first PC roughly corresponds to measure of overall rate of serious
violent crime.

• Second loading vector has more weight on UrbanPop, much less on remai-
ning three features, hence roughly corresponds to level of urbanization of
each state.

• Overall, crime-related variables close to each other in space spanned by
first two PC, UrbanPop far from these: indicates crime-related variables
highly correlated, weakly correlated with UrbanPop.

• State differences in first PC: states with high score in first component tend
to have high crime rates (e.g. California, Nevada, Florida); those with ne-
gative first PC scores tend to have low crime rates (e.g. North Dakota).

• State differences in 2nd PC: High score in 2nd PC (e.g. California) indica-
tes high level uf urbanisation, low score low level (e.g. Mississippi).

• States close to origin?
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Unsupervised Learning
PCA: another interpretation

• First two PC loading vectors
of a 3D data set along with
observations.

• Span a plane along which
observations have highest
variance.

• Alternative interpretation:
PC provide low-dimensional
surfaces that are closest to
the observations.
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Unsupervised Learning
PCA: another interpretation
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• First two PC loading vectors
of a 3D data set along with
observations.

• Span a plane along which
observations have highest
variance.

• Alternative interpretation:
PC provide low-dimensional
surfaces that are closest to
the observations.

• Projection of observations
to closest plane: variance is
maximized.
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Unsupervised Learning
PCA: another interpretation
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• Example from Chapter 6 (ad
spending vs. population)

• 1st PC loading vector: line in
Rp closest to observations (in
Euclidean distance).

• Dashed lines: distance bet-
ween each observation and
first PC loading vector.

• In this sense: good summary
of the data.
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Unsupervised Learning
PCA: another interpretation

Summary: the first M principal components and associated score vectors to-
gether yield a best approximation of the observational data:

xi ,j ≈
M∑

m=1

zi ,m φj ,m. (9.3)

Explanation: writing all n × p equations (9.3) in matrix form yields

X ≈
M∑

m=1

zmφ
>
m =

M∑

m=1

σmumv
>
m ,

which is simply the singular value expansion of X truncated after m terms. Re-
calling the best approximation property of the truncated SVD in the spectral
and Frobenius norms explains the nearness of the expression (9.3) to the data.
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Unsupervised Learning
PCA: scaling

• Data matrix centered before applying PCA.
• Individual scaling of the predictor variables (columns) will affect the outco-
me of PCA.

• Contrast with linear regression, where rescaling of a variable exactly com-
pensated by associated coefficient.

• In USArrests example, each variable was rescaled to have standard deviati-
on one.

• Reason: variables have different units (Murder, Rape, and Assault in #
occurrences / 100,000 people, UrbanPop in percentage living in urban are-
as.
Also: variances 18.97, 87.73, 6945.16 and 209.5, respectively, display large
variation.
Hence without scaling, first PC loading vector will have very large weight
on Assault.

• Scaling is recommended, but doing so should be deliberate.
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Unsupervised Learning
PCA: scaling
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Unsupervised Learning
PCA: uniqueness

• Singular vectors, normalized eigenvectors unique up to sign.
Hence same holds for principal components.

• Different software packages will yield same PC loading vectors up to sign.
• Sign flipping harmless, as PC represent directions in Euclidean space.
• Note that flipping sign in φm in (9.3) will result in sign flip in zm, leaving
product unchanged.
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Unsupervised Learning
PCA: proportion of variance explained

• How much information is lost by replacing original data with PC approxi-
mation (projecting observations on first M < p principal componants)?

• More precisely: how much of the variance of the original data is missing in
the PC approximation? What is the portion of variance explained (PVE)?

• Define total variance in (centered) X by

p∑

j=1

Var Xj :=

n∑

j=1

1
n

n∑

i=1

x2i ,j =
1
n
‖X‖2F .

• Variance explained by m-th PC:

1
n
‖zm‖22 =

1
n

n∑

i=1

z2i ,m =
1
n

n∑

i=1




p∑

j=1

φj ,mxi ,j




2

= ‖Xφm‖22.

• Hence PVE of m-th PC given by ‖Xφm‖22/‖X‖2F .
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Unsupervised Learning
PCA: proportion of variance explained

• In USArrests data set: first PC explains 62% of total variance, 2nd ex-
plains 24.7%. Hence first two explain ≈ 87%, remaining two only 13%.

• Therefore, the biplot gives an accurate summary of the data (using just 2
dimensions).

• Scree plots: display PVE of each PC as well as cumulative PVE
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Unsupervised Learning
PCA: sufficient number of principal components

• Can choose M between 1 and min{p, n − 1}.

• Ideal: smallest M conveying good understanding of data.
• Scree plot can provide guidance: fix M at “elbows”, i.e., where proportion
of variance explained has a noticeable drop.
In previous example, elbow after M = 2 could be argued.

• Such visual analysis is heuristic, subjective and ad-hoc, but there is no ge-
neral answer for determining how many PCs is enough (exploratory data
analysis).

• In supervised learning, M is a tuning parameter, which can be determined
by CV or similar validation technique.
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Unsupervised Learning
PCA: further uses for PC

• Supervised learning: new features, smaller in number than original.
• Low-rank approximation of X obtained by truncating SVD after M < p
terms often better than full X due to noise reduction (e.g. latent semantic
indexing).

• Signal of a data set often contained in first few PC, rest can be noise.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 439 / 463



Contents

9 Unsupervised Learning
9.1 Principal Components Analysis
9.2 Clustering Methods

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 440 / 463



Unsupervised Learning
Clustering methods

• Broad set of techniques for finding clusters or subgroups in a data set.
• Partition data into distinct subsets of similar observations, where notion of
similarity is problem-dependent.

• Unsupervised problem of finding structure in data set.
• Clustering and PCA seek to simplify data via small number of summaries,
but via different mechanisms
• PCA seeks low-dimensional representation of observations explaining good
fraction of their variance.

• Clustering seeks homogeneous subgroups among observations.

• Example: given marketing measurements (median household income, oc-
cupation, distance from nearest urban area, etc.) for large population, per-
form market segmentation to identify subgroups of people more receptive
to a particular form of advertising or more likely to buy a particular product
(cluster people in a data set)

• Here: 2 approaches, K-means clustering, hierarchical clustering.
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Unsupervised Learning
K -means clustering

• Partition data into K ∈ N disjoint clusters.
• Upon fixing K , algorithm assigns each observation to one of K clusters.

• Let {Ck}Kk=1 denote sets containing indices of n observations in cluster k
such that

K⋃

k=1

Ck = {1, . . . , n},

Ck ∩ C` = ∅ for k 6= `, k , ` = 1, . . . ,K ,

• A good clustering is one for which within-cluster variation is small.
• With W (Ck) denoting a measure of amount by which observations in clus-
ter k differ, K -means clustering tries to determine

argmin
C1,...,CK

K∑

k=1

W (Ck).
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Unsupervised Learning
K -means clustering

• Common measure for in-cluster-variation: squared Euclidean distance

W (Ck) =
1
|Ck |

∑

i ,i ′∈Ck

p∑

j=1

(xi ,j − xi ′,j )
2,

|Ck | denoting the cardinality of Ck .
• The cluster optimization problem thus becomes

argmin
C1,...,CK





K∑

k=1

1
|Ck |

∑

i ,i ′∈Ck

p∑

j=1

(xi ,j − xi ′,j )
2



 (9.4)

• The number of possible clusterings of n observations in to K clusters grows
10 like K n. There are, however, simple heuristics for finding good approxi-
mations of the solution.

10These are known as the Stirling numbers of the second kind, S(n,K) ∼ kn/k! as n →∞.
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Unsupervised Learning
K -means clustering

Algorithm 6: K -means clustering.
1 Randomly assign a number, from 1 to K , to each of the observations.
These serve as initial cluster assignments for the observations.

2 Iterate until the cluster assignments stop changing:
a For each of the K clusters, compute the cluster centroid. The k-th cluster

centroid is the vector of the p feature means for the observations in the kth
cluster.

b Assign each observation to the cluster whose centroid is closest (where clo-
sest is defined by Euclidean distance).

The name of the algorithm is due to the computation of the centroids in step
(2a), which are computed as the mean across all observations currently assigned
to each cluster.
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Unsupervised Learning
K -means clustering

K=2 K=3 K=4

Simulated data in 2D, n = 150. Results of applying K -means clustering with K =

2, 3, 4.
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Unsupervised Learning
K -means clustering

• Algorithm 6 guaranteed to decrease the value of the objective (9.4) in each
step.

• Introducing the cluster means

xk,j :=
1
|Ck |

∑

i∈Ck

xi ,j , j = 1, . . . , p,

there holds

1
|Ck |

∑

i ,i ′∈Ck

p∑

j=1

(xi ,j − xi ′,j)
2 = 2

∑

i∈Ck

p∑

j=1

(xi ,j − xk,j)
2.

• In Step (2a), cluster means for each feature are the constants that minimi-
zing the sum-of-squares deviations.

• In step (2b), reallocating the observations within the clusters can only de-
crease the objective.

• As Algorithm 6 is run, objective improves until it no longer changes, ending
in a local optimum.
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Unsupervised Learning
K -means clustering

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final ResultsProgress of K -means algorithm for running example, K = 3, beginning with just ob-
servations, initial random assignment to clusters, centroid computation (large colored
disks), reassignment to clusters, recomputation of centroid, and final result after 10
iterations.
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Unsupervised Learning
K -means clustering
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Unsupervised Learning
K -means clustering, dealing with local minima

320.9 235.8 235.8

235.8 235.8 310.9

Since result of K -means ty-
pically only local minimum,
advisable to run multiple ti-
mes using different random
initial clusterings and pick
the outcome with smallest
objective.

Here K -means with K = 3
was run on the data in the
previous toy example with
different random initializati-
ons. Three outcomes achie-
ved the same (suboptimal)
objective value.
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Unsupervised Learning
Hierarchical clustering

• Alternative to K -means algorithm, does not require K to be specified in
advance.

• Results in tree-based cluster representation called a dendrogram.
• Here: bottom-up or agglomerative clustering.
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Unsupervised Learning
Hierarchical clustering, interpreting a dendrogram

• Each leaf corresponds to one of the original 45 observations.
• Moving up the tree, some leaves begin to fuse into branches, reflecting
similarity of the leaves.

• Advancing further up, branches fuse with leaves or other branches.
• Earlier fusion (bottom-up) indicates stronger similarity of (groups of) ob-
servations.

• More precisely: for any pair of observations, the distance (from bottom) to
where their subtrees are first joined is a measure of their non-similarity.
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Unsupervised Learning
Hierarchical clustering, interpreting a dendrogram
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Left: dendrogram of 9 observations of two-dimensional data. Right: Original data.
1 and 6 as well as 5 and 7 very similar; 9 no more similar to 2 than to 8, 5 and 7, even
though 9 and 2 close horizontally in dendrogram; 2, 8, 5, 7 all fuse with 9 at same
height, ≈ 1.8.
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Unsupervised Learning
Hierarchical clustering, identifying clusters from a dendrogram

Cutting a dendrogram horizontally, the distinct sets of observations beneath the
cut can be interpreted as clusters.
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On the left, cutting den-
drogram at height of 9
yields 2 clusters.

On the right, cutting at
height 5 yields 3 clusters.

Further cuts can be ma-
de at different heights
yielding clusters of size
between 1 (no cut) and n
(cut at height 0).

Height plays same role as
K in K -means clustering.
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Unsupervised Learning
Hierarchical clustering, identifying clusters from a dendrogram

• Single dendrogram yields any number of clusterings.
• Cut usually chosen by inspection.
• Hierarchical refers to the fact that clusters from different heights in the
same dendrogram are nested. However, nested structure not always reali-
stic. (Group split 50-50 among males and females, and equally split among
3 nationalities.) In such situations K -means may yield better results.
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Unsupervised Learning
Hierarchical clustering algorithm

• Introduce measure of dissimilarity between observation pairs. e.g. Euclidean
distance.

• Start at bottom, each observation treated as its own cluster.
• Two most similar clusters fused, yielding n − 1 clusters.
• Next fusion yields n − 2 clusters.
• Proceed until single cluster remains.

Algorithm 7: Hierarchical clustering.
1 Begin with n observations and a measure of all n(n − 1)/2 pairwise dissimi-
larities. Treat each observation as its own cluster.

2 For i = n, n − 1, . . . , 2:
a Examine all pairwise inter-cluster dissimilarities among the i clusters and

identify the pair of clusters that are least dissimilar (that is, most similar).
Fuse these two clusters. The dissimilarity between these two clusters indica-
tes the height in the dendrogram at which the fusion should be placed.

b Compute the new pairwise inter-cluster dissimilarities among the i − 1 remai-
ning clusters.
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Unsupervised Learning
Hierarchical clustering algorithm: linkage

• How is distance measure between groups of observations defined?
• Different notions of linkage possible

10.3 Clustering Methods 395

Algorithm 10.2 Hierarchical Clustering

1. Begin with n observations and a measure (such as Euclidean dis-
tance) of all the

(
n
2

)
= n(n− 1)/2 pairwise dissimilarities. Treat each

observation as its own cluster.

2. For i = n, n− 1, . . . , 2:

(a) Examine all pairwise inter-cluster dissimilarities among the i
clusters and identify the pair of clusters that are least dissimilar
(that is, most similar). Fuse these two clusters. The dissimilarity
between these two clusters indicates the height in the dendro-
gram at which the fusion should be placed.

(b) Compute the new pairwise inter-cluster dissimilarities among
the i− 1 remaining clusters.

Linkage Description

Complete

Maximal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the largest of these
dissimilarities.

Single

Minimal intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the smallest of these
dissimilarities. Single linkage can result in extended, trailing
clusters in which single observations are fused one-at-a-time.

Average

Mean intercluster dissimilarity. Compute all pairwise dis-
similarities between the observations in cluster A and the
observations in cluster B, and record the average of these
dissimilarities.

Centroid
Dissimilarity between the centroid for cluster A (a mean
vector of length p) and the centroid for cluster B. Centroid
linkage can result in undesirable inversions.

TABLE 10.2. A summary of the four most commonly-used types of linkage in
hierarchical clustering.

linkage are generally preferred over single linkage, as they tend to yield
more balanced dendrograms. Centroid linkage is often used in genomics,
but suffers from a major drawback in that an inversion can occur, whereby

inversion
two clusters are fused at a height below either of the individual clusters in
the dendrogram. This can lead to difficulties in visualization as well as in in-
terpretation of the dendrogram. The dissimilarities computed in Step 2(b)
of the hierarchical clustering algorithm will depend on the type of linkage
used, as well as on the choice of dissimilarity measure. Hence, the resulting
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Unsupervised Learning
Hierarchical clustering algorithm: linkage
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First few steps of hierarchical clustering algorithm of previous data using complete
linkage and Euclidean distance.
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Unsupervised Learning
Hierarchical clustering algorithm: linkage

Average Linkage Complete Linkage Single Linkage

Dendrogram resulting from hierarchical clustering algorithm using average, complete
and single linkage applied to the same data set. Average and complete linkage tend to
produce more balanced dendrograms.
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Unsupervised Learning
Hierarchical clustering: choice of dissimilarity measure

• Alternative to Euclidean distance: correlation-based distance, which con-
siders two observations similar if their features are highly correlated.

• This may be true even if their Euclidean distance is large.
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3 observations of 20 variables each. 1 and 3 have similar values (small Euclidean di-
stance) but are weakly correlated. 1 and 2 have a large Euclidean distance but are
closely correlated.
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Unsupervised Learning
Hierarchical clustering: choice of dissimilarity measure

Example: Online retailer clustering customers

• Objective: cluster shoppers based on their past shopping histories; identify
subgroups of similar shoppers so each group can be shown items/ads of
shared interest.

• Data as matrix: rows shoppers, columns items for sale, entries # times
shopper has purchased item.

• In Euclidean distance, shoppers who have purchased very few items would
be close (may not be desirable).

• In correlation-based distance, shoppers with similar preferences (e.g. who
bought items A and B but never C and D) would be close, even if some
have purchased in higher volume than others.

• Here correlation-based distance probably better.
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Unsupervised Learning
Hierarchical clustering: scaling issues

Scale data to standard deviation one before applying dissimilarity measure?
• Online store again: some items likely purchased more often than others
(socks vs. computers).

• High-frequency purchases tend to have stronger effect on inter-shopper
dissimilarity.

• Scaling to unit standard deviation before computing inter-observation dissi-
milarity gives each variable equal importance.

• Also advisable when observation features measured in different scales/units.
• Applies to K -means clustering as well.
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Hierarchical clustering: scaling issues

Socks Computers
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Online retailer selling only socks and computers. Left: # socks/computers purcha-
sed by 8 customers (distinguished by color). In Euclidean-based distance of raw data,
computer purchases have little or no effect (less informative, computers have higher
margins). Center: each variable scaled by its standard deviation. Right: same data,
with y -axis showing amount spent on each item.
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Unsupervised Learning
Practical issues in clustering

Decisions to make a priori
• Standardize observations/features before measuring similarity? (Centering,
scaling)

• For hierarchical clustering:
• Choice of dissimilarity measure?
• Choice of linkage?
• Choice of dendrogram cutting height?

• For K -means: choice of K?

Validating obtained clusters
• Have we found meaningful subgroups or only clustered the noise?
• Some proposals for assigning p-values to clusters given in [Hastie et al.,

2009]
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Unsupervised Learning
Practical issues in clustering

Further issues
• Sometimes assigning all observations to clusters may be inappropriate.
• Example: most observations belong to small number of (unknown) sub-
groups. A few observations very different from rest. This presence of out-
liers which shouldn’t be in any cluster can heavily distort the clustering out-
come.

• This issue addressed by mixture models (soft version of K -means cluste-
ring), described in [Hastie et al., 2009].

• Non-robustness to data perturbations: perform clustering on n observati-
ons, repeat after randomly removing observations. Often result will strongly
differ.

• Recommendations: Perform clustering repeatedly with different parameter
choices and look for patterns which consistently emerge. Also cluster sub-
sets to obtain sense of robustness. View results not as absolute truth, but
as starting point for further investigation.
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