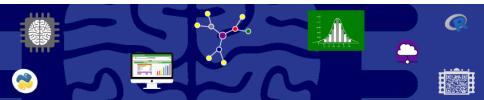
Introduction to Data Science

Winter Semester 2019/20

Oliver Ernst

TU Chemnitz, Fakultät für Mathematik, Professur Numerische Mathematik

Lecture Slides



Contents I

1 What is Data Science?

2 Learning Theory

- 2.1 What is Statistical Learning?
- 2.2 Assessing Model Accuracy

3 Linear Regression

- 3.1 Simple Linear Regression
- 3.2 Multiple Linear Regression
- 3.3 Other Considerations in the Regression Model
- 3.4 Revisiting the Marketing Data Questions
- 3.5 Linear Regression vs. K-Nearest Neighbors

4 Classification

- 4.1 Overview of Classification
- 4.2 Why Not Linear Regression?
- 4.3 Logistic Regression
- 4.4 Linear Discriminant Analysis
- 4.5 A Comparison of Classification Methods

5 Resampling Methods

Contents II

- 5.1 Cross Validation
- 5.2 The Bootstrap
- 6 Linear Model Selection and Regularization
- 6.1 Subset Selection
- 6.2 Shrinkage Methods
- 6.3 Dimension Reduction Methods
- 6.4 Considerations in High Dimensions
- 6.5 Miscellanea
- Nonlinear Regression Models
- 7.1 Polynomial Regression
- 7.2 Step Functions
- 7.3 Regression Splines
- 7.4 Smoothing Splines
- 7.5 Generalized Additive Models
- 8 Tree-Based Methods
- 8.1 Decision Tree Fundamentals
- 8.2 Bagging, Random Forests and Boosting

Contents III

O Unsupervised Learning

- 9.1 Principal Components Analysis
- 9.2 Clustering Methods

Contents

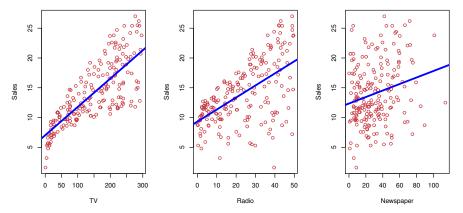
3 Linear Regression

- 3.1 Simple Linear Regression
- 3.2 Multiple Linear Regression
- 3.3 Other Considerations in the Regression Model
- 3.4 Revisiting the Marketing Data Questions
- 3.5 Linear Regression vs. K-Nearest Neighbors

Linear Regression

Advertising again

Recall advertising data set from Slide 29:



We will use the simple and well-established statistical learning technique known as **linear regression** to answer the following questions:

Linear Regression

Questions about advertising data set

Is there a relationship between advertising budget and sales? Otherwise, why bother?

- Is there a relationship between advertising budget and sales? Otherwise, why bother?
- Observe the strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?

- Is there a relationship between advertising budget and sales? Otherwise, why bother?
- Observe the strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?
- Which media contribute to sales? Separate individual contributions

- Is there a relationship between advertising budget and sales? Otherwise, why bother?
- 2 How strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?
- Which media contribute to sales? Separate individual contributions
- Output How accurately can we estimate the effect of each medium on sales? Euro by Euro?

- Is there a relationship between advertising budget and sales? Otherwise, why bother?
- 2 How strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?
- Which media contribute to sales? Separate individual contributions
- Output How accurately can we estimate the effect of each medium on sales? Euro by Euro?
- How accurately can we predict future sales? *Precise prediction for each medium?*

- Is there a relationship between advertising budget and sales? Otherwise, why bother?
- 2 How strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?
- Which media contribute to sales? Separate individual contributions
- Output How accurately can we estimate the effect of each medium on sales? Euro by Euro?
- How accurately can we predict future sales? *Precise prediction for each medium?*
- **6** Is the relationship linear?

If yes, linear regression appropriate (possibly after transforming data)

- Is there a relationship between advertising budget and sales? Otherwise, why bother?
- 2 How strong is this relationship between advertising budget and sales? Prediction possibly better than random guess?
- Which media contribute to sales? Separate individual contributions
- Output How accurately can we estimate the effect of each medium on sales? Euro by Euro?
- How accurately can we predict future sales?
 Precise prediction for each medium?
- Is the relationship linear?If yes, linear regression appropriate (possibly after transforming data)
- Is there synergy among the advertising media? Called interaction effect in statistics.

Contents

3 Linear Regression

3.1 Simple Linear Regression

- 3.2 Multiple Linear Regression
- 3.3 Other Considerations in the Regression Model
- 3.4 Revisiting the Marketing Data Questions
- 3.5 Linear Regression vs. K-Nearest Neighbors

Definition, terminology, notation

Linear model for quantitative response Y of single predictor X:

$$Y \approx \beta_0 + \beta_1 X. \tag{3.1}$$

Statistician: "We are regressing Y onto X."

Definition, terminology, notation

Linear model for quantitative response Y of single predictor X:

$$Y \approx \beta_0 + \beta_1 X. \tag{3.1}$$

Statistician: "We are regressing Y onto X."

E.g., with predictor TV advertising and response sales,

sales $\approx \beta_0 + \beta_1 \times TV$.

Definition, terminology, notation

Linear model for quantitative response Y of single predictor X:

$$Y \approx \beta_0 + \beta_1 X. \tag{3.1}$$

Statistician: "We are regressing Y onto X."

E.g., with predictor TV advertising and response sales,

sales
$$\approx \beta_0 + \beta_1 \times TV$$
.

The values of **coefficients** or **parameters** β_0 , β_1 obtained from fitting to the training data are denoted by $\hat{\beta}_0$, $\hat{\beta}_1$, leading to the prediction values

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \tag{3.2}$$

when X = x, where the hat on \hat{y} denotes the predicted value of the reponse.

Estimating the coefficients

Determining intercept $\hat{\beta}_0$ and slope $\hat{\beta}_1$ in (3.1) amounts to choosing these parameters such that the residuals or data misfits

$$r_i := y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i), \qquad i = 1, \dots, n,$$

are minimized.

Determining intercept $\hat{\beta}_0$ and slope $\hat{\beta}_1$ in (3.1) amounts to choosing these parameters such that the residuals or data misfits

$$r_i := y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i), \qquad i = 1, \dots, n,$$

are minimized.

There are many options for defining smallness here, in **least squares estimation** this is measured by the **residual sum of squares (RSS)**

$$\mathsf{RSS} := r_1^2 + \dots + r_n^2 = (y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2.$$
(3.3)

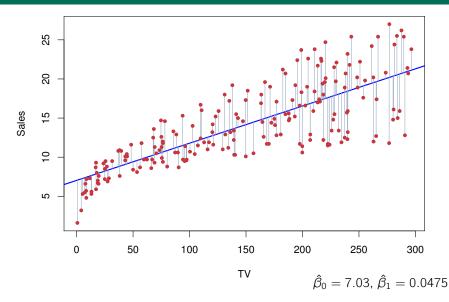
An easy calculation reveals

$$\hat{\beta}_{0} = \overline{y} - \hat{\beta}_{1}\overline{x}, \qquad \overline{x} := \frac{1}{n} \sum_{i=1}^{n} x_{i},$$

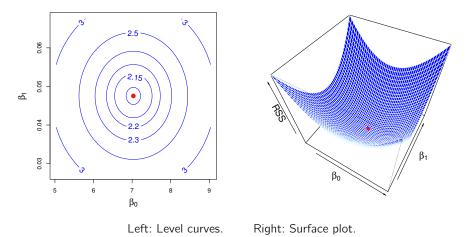
$$\hat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}, \qquad \overline{y} := \frac{1}{n} \sum_{i=1}^{n} y_{i}.$$
(3.4)

n

Example: LS fit for advertising data



LS fit of sales vs. TV budget: RSS as a function of (β_0, β_1)



Assessing the accuracy of the coefficient estimates

Linear regression yields a linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon \tag{3.5}$$

where

- β_0 : intercept
- β_1 : slope
 - ε : model error, modeled as centered random variable, independent of *X*.

Assessing the accuracy of the coefficient estimates

Linear regression yields a linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon \tag{3.5}$$

where β_0 : intercept

- β_1 : slope
 - ε : model error, modeled as centered random variable, independent of *X*.

Model (3.5) defines the **population regression line**, the best linear approximation to the true (generally unknown) relationship between X and Y.

Assessing the accuracy of the coefficient estimates

Linear regression yields a linear model

$$Y = \beta_0 + \beta_1 X + \varepsilon \tag{3.5}$$

where β_0 : intercept

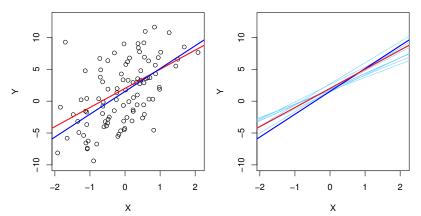
 β_1 : slope

 ε : model error, modeled as centered random variable, independent of *X*.

Model (3.5) defines the **population regression line**, the best linear approximation to the true (generally unknown) relationship between X and Y.

The linear relation (3.2) containing the coefficients $\hat{\beta}_0$, $\hat{\beta}_1$ estimated from a given data set is called the **least squares line**.

Example: population regression line, least squares line



• Left: Simulated data set (n = 100) from model f(X) = 2 + 3X. Red line: population regression line (true model). Blue line: least squares line from data (black dots).

• Right: Additionally ten (light blue) least squares lines obtained from ten separate randomly generated data sets from same model; seen to average to the red line.

Oliver Ernst (NM)

Introduction to Data Science

Analogy: estimation of mean

• Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.

 $^4 Standard$ deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from $\mu.$

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate **population mean** μ (expectation, expected value) of random variable Y from observations y_1, \ldots, y_n by **sample mean** $\hat{\mu} := \overline{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$.

 $^{^4}$ Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from $\mu.$

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate **population mean** μ (expectation, expected value) of random variable Y from observations y_1, \ldots, y_n by sample mean $\hat{\mu} := \overline{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$.
- Just like μ̂ ≈ μ but, in general, μ̂ ≠ μ, the coefficients β̂₀, β̂₁ defining the least squares line are estimates of the true values β₀, β₁ of the model.

⁴Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from μ .

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate **population mean** μ (expectation, expected value) of random variable Y from observations y_1, \ldots, y_n by sample mean $\hat{\mu} := \overline{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$.
- Just like $\hat{\mu} \approx \mu$ but, in general, $\hat{\mu} \neq \mu$, the coefficients $\hat{\beta}_0, \hat{\beta}_1$ defining the least squares line are estimates of the true values β_0, β_1 of the model.
- Sample mean μ̂ is an unbiased estimator of μ, i.e., it does not systematically over- or underestimate the true value μ.
 Same holds for estimators β̂₀, β̂₁.

 $^{^4} Standard$ deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from $\mu.$

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate **population mean** μ (expectation, expected value) of random variable Y from observations y_1, \ldots, y_n by sample mean $\hat{\mu} := \overline{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$.
- Just like $\hat{\mu} \approx \mu$ but, in general, $\hat{\mu} \neq \mu$, the coefficients $\hat{\beta}_0, \hat{\beta}_1$ defining the least squares line are estimates of the true values β_0, β_1 of the model.
- Sample mean μ̂ is an unbiased estimator of μ, i.e., it does not systematically over- or underestimate the true value μ.
 Same holds for estimators β̂₀, β̂₁.
- How accurate is $\hat{\mu} \approx \mu$?

 $^{^4}$ Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from $\mu.$

- Standard statistical approach: use information contained in a sample to estimate characteristics of a large (possibly infinite) population.
- Example: approximate **population mean** μ (expectation, expected value) of random variable Y from observations y_1, \ldots, y_n by **sample mean** $\hat{\mu} := \overline{y} := \frac{1}{n} \sum_{i=1}^{n} y_i$.
- Just like $\hat{\mu} \approx \mu$ but, in general, $\hat{\mu} \neq \mu$, the coefficients $\hat{\beta}_0, \hat{\beta}_1$ defining the least squares line are estimates of the true values β_0, β_1 of the model.
- Sample mean μ̂ is an unbiased estimator of μ, i.e., it does not systematically over- or underestimate the true value μ.
 Same holds for estimators β̂₀, β̂₁.
- How accurate is $\hat{\mu} \approx \mu$? **Standard error**⁴ of $\hat{\mu}$, denoted SE($\hat{\mu}$), satisfies

$$\operatorname{Var}\hat{\mu} = \operatorname{SE}(\hat{\mu})^2 = \frac{\sigma^2}{n}$$
, where $\sigma^2 = \operatorname{Var} Y$. (3.6)

⁴Standard deviation of the sample distribution, i.e., average amount $\hat{\mu}$ differs from μ .

For the regression coefficients (assuming uncorrelated observation errors)

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right],$$

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}, \qquad \sigma^2 = \operatorname{Var} \varepsilon.$$
(3.7)

For the regression coefficients (assuming uncorrelated observation errors)

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right],$$

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}, \qquad \sigma^2 = \operatorname{Var} \varepsilon.$$
(3.7)

- SE(β̂₁) smaller when x_i more spread out (provides more leverage to estimate slope).
- $SE(\hat{\beta}_0) = SE(\hat{\mu})$ if $\overline{x} = 0$. (Then $\hat{\beta}_0 = \overline{y}$.)

For the regression coefficients (assuming uncorrelated observation errors)

$$SE(\hat{\beta}_0)^2 = \sigma^2 \left[\frac{1}{n} + \frac{\overline{x}^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right],$$

$$SE(\hat{\beta}_1)^2 = \frac{\sigma^2}{\sum_{i=1}^n (x_i - \overline{x})^2}, \qquad \sigma^2 = \operatorname{Var} \varepsilon.$$
(3.7)

- SE(β̂₁) smaller when x_i more spread out (provides more leverage to estimate slope).
- $SE(\hat{\beta}_0) = SE(\hat{\mu})$ if $\overline{x} = 0$. (Then $\hat{\beta}_0 = \overline{y}$.)
- σ generally unknown, can be estimated from the data by residual standard error

$$\mathsf{RSE} := \sqrt{\frac{\mathsf{RSS}}{n-2}}.$$

When RSE used in place of σ , should write $\widehat{SE}(\hat{\beta}_1)$.

Confidence intervals

 95% confidence interval: range of values containing true unknown value of parameter with probability 95%.

- 95% confidence interval: range of values containing true unknown value of parameter with probability 95%.
- For linear regression: 95% CI for β_1 approximately

$$\hat{\beta}_1 \pm 2 \cdot \mathsf{SE}(\hat{\beta}_1), \tag{3.8}$$

i.e., with probability 95%,

$$\beta_1 \in [\hat{\beta}_1 - 2 \cdot \mathsf{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \mathsf{SE}(\hat{\beta}_1)].$$
(3.9)

- 95% confidence interval: range of values containing true unknown value of parameter with probability 95%.
- For linear regression: 95% CI for β_1 approximately

$$\hat{\beta}_1 \pm 2 \cdot \mathsf{SE}(\hat{\beta}_1), \tag{3.8}$$

i.e., with probability 95%,

$$\beta_1 \in [\hat{\beta}_1 - 2 \cdot \mathsf{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \mathsf{SE}(\hat{\beta}_1)].$$
(3.9)

• Similarly, for β_0 , 95% CI approximately given by

$$\hat{\beta}_0 \pm 2 \cdot \mathsf{SE}(\hat{\beta}_0). \tag{3.10}$$

- 95% confidence interval: range of values containing true unknown value of parameter with probability 95%.
- For linear regression: 95% CI for β_1 approximately

$$\hat{\beta}_1 \pm 2 \cdot \mathsf{SE}(\hat{\beta}_1), \tag{3.8}$$

i.e., with probability 95%,

$$\beta_1 \in [\hat{\beta}_1 - 2 \cdot \mathsf{SE}(\hat{\beta}_1), \hat{\beta}_1 + 2 \cdot \mathsf{SE}(\hat{\beta}_1)].$$
(3.9)

• Similarly, for β_0 , 95% CI approximately given by

$$\hat{\beta}_0 \pm 2 \cdot \mathsf{SE}(\hat{\beta}_0). \tag{3.10}$$

• For advertising example: with 95% probability

 $\beta_0 \in [6.130, 7.935], \qquad \beta_1 \in [0.042, 0.053].$

Oliver Ernst (NM)

Hypothesis tests

Use SE to test null hypothesis

$$H_0$$
: no relationship between X and Y (3.11)

and alternative hypothesis

 H_a : some relationship between X and Y (3.12)

or, mathematically,

$$H_0: \beta_1 = 0$$
 vs. $H_a: \beta_1 \neq 0.$

• Reject H_0 if $\hat{\beta}_1$ sufficiently far from 0 relative to $SE(\hat{\beta}_1)$.

• t-statistic

$$t = \frac{\hat{\beta}_1 - 0}{\mathsf{SE}(\hat{\beta}_1)} \tag{3.13}$$

measures distance of $\hat{\beta}_1$ from 0 in # standard deviations.

Hypothesis tests

- $\beta_1 = 0$ implies t follows t-distribution with n 2 degrees of freedom.
- We compute probability of observing |t| or larger under assumption β₁ = 0, its *p*-value.

Hypothesis tests

- $\beta_1 = 0$ implies t follows t-distribution with n 2 degrees of freedom.
- We compute probability of observing |t| or larger under assumption β₁ = 0, its *p*-value.
- Small *p*-value: unlikely to observe substantial relation between X and Y due to purely random variation, unless the two actually are related.
- In this case we reject H_0 .

Hypothesis tests

- $\beta_1 = 0$ implies t follows t-distribution with n 2 degrees of freedom.
- We compute probability of observing |t| or larger under assumption β₁ = 0, its *p*-value.
- Small *p*-value: unlikely to observe substantial relation between X and Y due to purely random variation, unless the two actually are related.
- In this case we reject H_0 .
- Typical cutoffs for *p*-value: 1%, 5%; for n = 30 corresponds to *t*-statistic (3.13) values 2 and 2.75. respectively.

Hypothesis tests

- $\beta_1 = 0$ implies *t* follows *t*-distribution with n 2 degrees of freedom.
- We compute probability of observing |t| or larger under assumption β₁ = 0, its *p*-value.
- Small *p*-value: unlikely to observe substantial relation between X and Y due to purely random variation, unless the two actually are related.
- In this case we reject H_0 .
- Typical cutoffs for *p*-value: 1%, 5%; for n = 30 corresponds to *t*-statistic (3.13) values 2 and 2.75. respectively.

For TV sales data in advertising data set:

	Estimate	SE	<i>t</i> -statistic	<i>p</i> -value
β_0	7.0325	0.4578	15.36	< 0.0001
eta_1	0.0475	0.0027	17.67	< 0.0001

Reminder: Student's t distribution

• Given
$$X_1, \cdots, X_n$$
 i.i.d. $\sim N(\mu, \sigma^2)$

• Sample mean:

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i.$$

• (Bessel corrected) sample variance:

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

• RV

$$\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}$$

distributed according to N(0, 1).

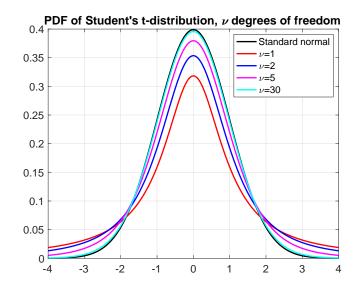
• RV

$$\frac{\overline{X} - \mu}{S/\sqrt{n}}$$

distributed according to Student's *t*-distribution with n-1 DoF.

Oliver Ernst (NM)

Student's *t* distribution



• **Residual standard error**: estimate of standard deviation of ε (model error)

RSE =
$$\sqrt{\frac{\text{RSS}}{n-2}} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}.$$
 (3.14)

• For TV data RSS = 3.26, i.e., deviation of sales from true regression line on average by 3,260 units (even if exact β_0, β_1 known). Corresponds to 3,260/14,000 = 23% error relative to mean value of all sales. • **Residual standard error**: estimate of standard deviation of ε (model error)

RSE =
$$\sqrt{\frac{\text{RSS}}{n-2}} = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2}.$$
 (3.14)

- For TV data RSS = 3.26, i.e., deviation of sales from true regression line on average by 3,260 units (even if exact β_0, β_1 known). Corresponds to 3,260/14,000 = 23% error relative to mean value of all sales.
- RSE measures lack of model fit.

Assessing model accuracy

- R^2 statistic: alternative measure of fit: proportion of variance explained.
- \in [0, 1], independent of scale of Y.

Assessing model accuracy

- *R*² **statistic**: alternative measure of fit: proportion of variance explained.
- \in [0, 1], independent of scale of Y.
- Defined in terms of total sum of squares (TSS) as

$$R^{2} = \frac{\mathsf{TSS} - \mathsf{RSS}}{\mathsf{TSS}} = 1 - \frac{\mathsf{RSS}}{\mathsf{TSS}}, \qquad \mathsf{TSS} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2}. \tag{3.15}$$

• TSS : total variance in response Y,

RSS : amount of variability left unexplained after regression, TSS – RSS : response variability explained by regression model, R^2 : proportion of variability in Y explained using X.

- $R^2 \approx 0$: linear model wrong, high model error variance.
- For TV data $R^2 = 0.61$: 2/3 of sales variability explained by (linear regression on) TV budget.
- $R^2 \in [0, 1]$, but sufficient value problem dependent.

• Measure of linear relationship between X and Y: (sample) correlation:

$$\operatorname{Cor}(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}}.$$
 (3.16)

- In simple linear regression: $Cor(X, Y)^2 = R^2$.
- Correlation expresses association between single pair of variables; *R*² between larger number of variables in multivariate linear regression.

Contents

3 Linear Regression

3.1 Simple Linear Regression

3.2 Multiple Linear Regression

- 3.3 Other Considerations in the Regression Model
- 3.4 Revisiting the Marketing Data Questions
- 3.5 Linear Regression vs. K-Nearest Neighbors

Justification

- p > 1 predictor variables

 (as in advertising data set: TV, newspaper, radio)
- Easiest option: simple linear regression for each

Justification

- p > 1 predictor variables

 (as in advertising data set: TV, newspaper, radio)
- Easiest option: simple linear regression for each

For radio sales data in advertising data set:

	Estimate	SE	<i>t</i> -statistic	<i>p</i> -value
β_0	9.312	0.563	16.54	< 0.0001
eta_1	0.203	0.020	9.92	< 0.0001

For newspaper sales data in advertising data set:

	Estimate	SE	<i>t</i> -statistic	<i>p</i> -value
β_0	12.351	0.621	19.88	< 0.0001
eta_1	0.055	0.017	3.30	< 0.00115

Justification

- How to predict total sales given 3 budgets?
- For given values of the 3 budgets, each simple regression model will give different sales prediction.
- Each separate regression equation ignores the other 2 media.
- For correlated media budgets this can lead to misleading estimates of individual media effects.

Justification

- How to predict total sales given 3 budgets?
- For given values of the 3 budgets, each simple regression model will give different sales prediction.
- Each separate regression equation ignores the other 2 media.
- For correlated media budgets this can lead to misleading estimates of individual media effects.
- **Multiple linear regression** model for *p* predictor variables:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$
(3.17)

 β_j : average effect on Y of 1-unit increase in X_j holding other predictors fixed.

Justification

- How to predict total sales given 3 budgets?
- For given values of the 3 budgets, each simple regression model will give different sales prediction.
- Each separate regression equation ignores the other 2 media.
- For correlated media budgets this can lead to misleading estimates of individual media effects.

Multiple linear regression model for *p* predictor variables:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \varepsilon$$
(3.17)

 β_j : average effect on Y of 1-unit increase in X_j holding other predictors fixed.

In advertising example:

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times newspaper$$
 (3.18)

Estimating the coefficients

• Given estimates $\hat{\beta}_0, \hat{\beta}_1, \dots, \hat{\beta}_p$, obtain prediction formula

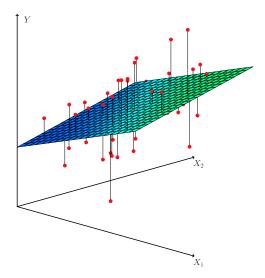
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p.$$
 (3.19)

• Same fitting approach: choose $\{\hat{\beta}_j\}_{j=0}^p$ to minimize

$$\mathsf{RSS} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i,1} - \dots - \hat{\beta}_p x_{i,p})^2, \qquad (3.20)$$

yielding the multiple least squares regression coefficients

Example: multiple linear regression, 2 predictors, 1 response



Numerical methods for least squares fitting

• Determining the coefficients $\{\hat{\beta}_j\}_{j=0}^p$ to minimize the RSS in (3.20) is equivalent to minimizing $\|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2$, where we have introduced the notation

$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \dots & x_{n,p} \end{bmatrix}, \quad \widehat{\boldsymbol{\beta}} = \begin{bmatrix} \widehat{\beta}_0 \\ \vdots \\ \widehat{\beta}_p \end{bmatrix}$$

for the vector $\mathbf{y} \in \mathbb{R}^n$ of response observations, the matrix $\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$ of predictor observations and vector $\widehat{\boldsymbol{\beta}} \in \mathbb{R}^{p+1}$ of coefficient estimates.

Numerical methods for least squares fitting

• Determining the coefficients $\{\hat{\beta}_j\}_{j=0}^p$ to minimize the RSS in (3.20) is equivalent to minimizing $\|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2$, where we have introduced the notation

$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \dots & x_{n,p} \end{bmatrix}, \quad \widehat{\boldsymbol{\beta}} = \begin{bmatrix} \widehat{\beta}_0 \\ \vdots \\ \widehat{\beta}_p \end{bmatrix}$$

for the vector $\mathbf{y} \in \mathbb{R}^n$ of response observations, the matrix $\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$ of predictor observations and vector $\widehat{\boldsymbol{\beta}} \in \mathbb{R}^{p+1}$ of coefficient estimates.

• The problem of finding a vector $x \in \mathbb{R}^n$ such that $b \approx Ax$ for given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ is called a **linear regression problem**.

Numerical methods for least squares fitting

• Determining the coefficients $\{\hat{\beta}_j\}_{j=0}^p$ to minimize the RSS in (3.20) is equivalent to minimizing $\|\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|_2^2$, where we have introduced the notation

$$\boldsymbol{y} = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, \quad \boldsymbol{X} = \begin{bmatrix} 1 & x_{1,1} & \dots & x_{1,p} \\ \vdots & \vdots & & \vdots \\ 1 & x_{n,1} & \dots & x_{n,p} \end{bmatrix}, \quad \widehat{\boldsymbol{\beta}} = \begin{bmatrix} \widehat{\beta}_0 \\ \vdots \\ \widehat{\beta}_p \end{bmatrix}$$

for the vector $\mathbf{y} \in \mathbb{R}^n$ of response observations, the matrix $\mathbf{X} \in \mathbb{R}^{n \times (p+1)}$ of predictor observations and vector $\widehat{\boldsymbol{\beta}} \in \mathbb{R}^{p+1}$ of coefficient estimates.

- The problem of finding a vector $x \in \mathbb{R}^n$ such that $b \approx Ax$ for given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$ is called a **linear regression problem**.
- One (of many) possible approaches for achieving this is choosing x to minimize ||b Ax||₂, which is a linear least squares problem.

• A somewhat more general fitting approach using a model

$$y \approx \beta_0 + \beta_1 f_1(\mathbf{x}) + \cdots + \beta_p f_p(\mathbf{x})$$

with fixed **regression functions** $\{f_j\}_{j=1}^p$ also leads to a linear regression problem, where now $[\mathbf{X}]_{i,j} = f_j(x_i)$.

• A somewhat more general fitting approach using a model

$$y \approx \beta_0 + \beta_1 f_1(\mathbf{x}) + \cdots + \beta_p f_p(\mathbf{x})$$

with fixed **regression functions** $\{f_j\}_{j=1}^p$ also leads to a linear regression problem, where now $[\mathbf{X}]_{i,j} = f_j(x_i)$.

• A linear least squares problem $\|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2 \to \min$ with $m \ge n$ has a unique solution if the columns of \boldsymbol{A} are linearly independent, i.e., when \boldsymbol{A} has full rank, given by $\boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$.

In this case the solution can be computed using a Cholesky decomposition.

• A somewhat more general fitting approach using a model

$$y \approx \beta_0 + \beta_1 f_1(\mathbf{x}) + \cdots + \beta_p f_p(\mathbf{x})$$

with fixed **regression functions** $\{f_j\}_{j=1}^p$ also leads to a linear regression problem, where now $[\mathbf{X}]_{i,j} = f_j(x_i)$.

• A linear least squares problem $\|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2 \to \min$ with $m \ge n$ has a unique solution if the columns of \boldsymbol{A} are linearly independent, i.e., when \boldsymbol{A} has full rank, given by $\boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$.

In this case the solution can be computed using a Cholesky decomposition.

• In the (nearly) rank-deficient case, more sophisticated techniques of numerical linear algebra like the QR decomposition or the SVD are required to obtain a (stable) solution.

• A somewhat more general fitting approach using a model

$$y \approx \beta_0 + \beta_1 f_1(\mathbf{x}) + \cdots + \beta_p f_p(\mathbf{x})$$

with fixed **regression functions** $\{f_j\}_{j=1}^p$ also leads to a linear regression problem, where now $[\mathbf{X}]_{i,j} = f_j(x_i)$.

• A linear least squares problem $\|\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}\|_2 \to \min$ with $m \ge n$ has a unique solution if the columns of \boldsymbol{A} are linearly independent, i.e., when \boldsymbol{A} has full rank, given by $\boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$.

In this case the solution can be computed using a Cholesky decomposition.

- In the (nearly) rank-deficient case, more sophisticated techniques of numerical linear algebra like the QR decomposition or the SVD are required to obtain a (stable) solution.
- When **A** is large and sparse or structured, iterative methods such as CGLS or LSQR can be employed which require only matrix-vector products in place of manipulations of matrix entries.

Advertising data

	Estimate	SE	<i>t</i> -statistic	<i>p</i> -value
β_0	2.939	0.3119	9.42	< 0.0001
$\beta_1 (TV)$	0.046	0.0014	32.81	< 0.0001
β_2 (radio)	0.189	0.0086	21.89	< 0.0001
eta_3 (newspaper)	-0.001	0.0059	-0.18	0.8599

Advertising data

	Estimate	SE	t-statistic	<i>p</i> -value
β_0	2.939	0.3119	9.42	< 0.0001
β_1 (TV)	0.046	0.0014	32.81	< 0.0001
β_2 (radio)	0.189	0.0086	21.89	< 0.0001
eta_3 (newspaper)	-0.001	0.0059	-0.18	0.8599

• Newspaper slope differs from simple regression. Small estimate, *p*-value no longer significant.

Advertising data

	Estimate	SE	t-statistic	<i>p</i> -value
β_0	2.939	0.3119	9.42	< 0.0001
$\beta_1 (TV)$	0.046	0.0014	32.81	< 0.0001
β_2 (radio)	0.189	0.0086	21.89	< 0.0001
eta_3 (newspaper)	-0.001	0.0059	-0.18	0.8599

- Newspaper slope differs from simple regression. Small estimate, *p*-value no longer significant.
- Now no relation between sales and newspaper budget. Contradiction?

Advertising data

	Estimate	SE	t-statistic	<i>p</i> -value
β_0	2.939	0.3119	9.42	< 0.0001
$\beta_1 (TV)$	0.046	0.0014	32.81	< 0.0001
β_2 (radio)	0.189	0.0086	21.89	< 0.0001
eta_3 (newspaper)	-0.001	0.0059	-0.18	0.8599

- Newspaper slope differs from simple regression. Small estimate, *p*-value no longer significant.
- Now no relation between sales and newspaper budget. Contradiction?

Advertising data

Correlation matrix:

	TV	radio	newapaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

Advertising data

Correlation matrix:

	TV	radio	newapaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

 Correlation between newspaper and radio: ≈ 0.35: Tend to spend more on radio ads where more is spent on newspaper ads.

Advertising data

Correlation matrix:

	TV	radio	newapaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

- Correlation between newspaper and radio: ≈ 0.35: Tend to spend more on radio ads where more is spent on newspaper ads.
- If correct, i.e., $\beta_{\text{newspaper}} \approx 0$, $\beta_{\text{radio}} > 0$, radio increased sales, and where radio budget high, newpaper budget tends to also be high.

Advertising data

Correlation matrix:

	TV	radio	newapaper	sales
TV	1.0000	0.0548	0.0567	0.7822
radio		1.0000	0.3541	0.5762
newspaper			1.0000	0.2283
sales				1.0000

- Correlation between newspaper and radio: ≈ 0.35: Tend to spend more on radio ads where more is spent on newspaper ads.
- If correct, i.e., $\beta_{\text{newspaper}} \approx 0$, $\beta_{\text{radio}} > 0$, radio increased sales, and where radio budget high, newpaper budget tends to also be high.
- Simple linear regression: indicates newspaper associated with higher sales. Multiple regression reveals no such affect.
- Newspaper receives credit for radio's affect on sales. Sales due to newspaper advertising is a **surrogate** for sales due to radio advertising.

Absurd example, same effect

• Counterintuitive but not uncommon. Consider following (absurd) example.

Absurd example, same effect

- Counterintuitive but not uncommon. Consider following (absurd) example.
- Data on shark attacks versus ice cream sales at beach community would show similar positive relationship as newpaper and radio ads.
- Should one ban ice cream sales to reduce risk of shark attacks?

Absurd example, same effect

- Counterintuitive but not uncommon. Consider following (absurd) example.
- Data on shark attacks versus ice cream sales at beach community would show similar positive relationship as newpaper and radio ads.
- Should one ban ice cream sales to reduce risk of shark attacks?
- Answer: High temperatures cause both (more people at beach for shark encounters, more ice cream customers).
- Multiple regression reveals icre cream sales not a predictor for shark attacks after adjusting for temperature.

Questions to consider

- Is at least one of the predictors X₁, X₂, ..., X_p useful in predicting the response?
- O all predictors help to explain Y, or is only a subset of the predictors useful?
- **3** How well does the model fit the data?
- Given a set of predictor values, what response value should we predict, and how accurate is our prediction?

• As for simple regression, perform statistical hypothesis test: null hpothesis

$$H_0: \quad \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

versus alternative

$$H_a$$
: at least one $\beta_j (j = 1, ..., p)$ is nonzero.

• As for simple regression, perform statistical hypothesis test: null hpothesis

$$H_0: \quad \beta_1 = \beta_2 = \cdots = \beta_p = 0$$

versus alternative

$$H_a$$
: at least one $\beta_j (j = 1, ..., p)$ is nonzero.

• Such a test can be based on the F-statistic

$$F = \frac{(\text{TSS} - \text{RSS})/p}{\text{RSS}/(n - p - 1)}$$
(3.21)

where, as before,

$$\mathsf{TSS} = \sum_{i=1}^{n} (y_i - \overline{y})^2, \qquad \mathsf{RSS} = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2.$$

(1) Is there a relationship between response and predictors?

$$F = \frac{(\mathsf{TSS} - \mathsf{RSS})/p}{\mathsf{RSS}/(n-p-1)}$$

• Under linear model assumption, can show

$$\mathbf{E}\left[\frac{\mathsf{RSS}}{n-p-1}\right] = \sigma^2.$$

(σ^2 again the variance of the sample distribution)

(1) Is there a relationship between response and predictors?

$$F = \frac{(\mathsf{TSS} - \mathsf{RSS})/p}{\mathsf{RSS}/(n-p-1)}$$

• Under linear model assumption, can show

$$\mathbf{E}\left[\frac{\mathsf{RSS}}{n-p-1}\right] = \sigma^2.$$

(σ^2 again the variance of the sample distribution)

• If also H_0 is true, can show

$$\mathbf{E}\left[\frac{\mathsf{TSS}-\mathsf{RSS}}{p}\right] = \sigma^2.$$

(1) Is there a relationship between response and predictors?

$$F = \frac{(\mathsf{TSS} - \mathsf{RSS})/p}{\mathsf{RSS}/(n-p-1)}$$

• Under linear model assumption, can show

$$\mathbf{E}\left[\frac{\mathsf{RSS}}{n-p-1}\right] = \sigma^2.$$

(σ^2 again the variance of the sample distribution)

• If also H_0 is true, can show

$$\mathbf{E}\left[\frac{\mathsf{TSS}-\mathsf{RSS}}{p}\right] = \sigma^2.$$

• Hence $F \approx 1$ if no relationship between response and predictors. Alternatively, if H_a true, **E** [(TSS - RSS)/p] > σ^2 , hence F > 1.

Statistics for multiple regression of sales onto radio, TV and newspaper in the advertising data set:

Quantity	Value
RSE	1.69
R^2	0.897
F	570

- $F \gg 1$ strong evidence against H_0 .
- Proper threshold value for *F* depends on *n*, *p*. Larger *F* needed to reject *H*₀ for small *n*.
- H_0 true, ε_i Gaussian, then F follows **F**-distribution; calculate p-value using statistical software.
- Here, *p*-value \approx 0 for F = 590 in this example, hence we safely reject H_0 .

To test whether subset of last q sis

$$H_0: \quad \beta_{p-q+1} = \beta_{p-q+2} = \cdots = \beta_p = 0.$$

- Fit model using all variables *except* last *q*, obtaining residual sum of squares RSS₀.
- Appropriate *F*-statistic now

$$F = \frac{(\text{RSS}_0 - \text{RSS})/q}{\text{RSS}/(n - p - 1)}$$

• For multiple regression, *t*-statistic and *p* values for each variable indicate whether each predictor related to response after adjusting for the remaining variables.

Equivalent to *F*-test omitting single variable (q = 1). Reports partial effect of adding each variable.

(1) Is there a relationship between response and predictors?

What does F statistic tell us that individual p-values don't?

What does *F* statistic tell us that individual *p*-values don't?

- Does single small *p*-value indicate at least one variable relevant? No.
- Example: p = 100, H₀: β₁ = ··· = β_p = 0 true. Then by chance, 5% of p-values below 0.05. Almost guaranteed that p < 0.05 for at least one variable by chance.

What does F statistic tell us that individual p-values don't?

- Does single small *p*-value indicate at least one variable relevant? No.
- Example: p = 100, H₀: β₁ = ··· = β_p = 0 true. Then by chance, 5% of p-values below 0.05. Almost guaranteed that p < 0.05 for at least one variable by chance.
- Thus, for large *p*, looking only at *p*-values of individual *t*-statistics tends to discover spurious relationships.

What does F statistic tell us that individual p-values don't?

- Does single small *p*-value indicate at least one variable relevant? No.
- Example: p = 100, H₀: β₁ = ··· = β_p = 0 true. Then by chance, 5% of p-values below 0.05. Almost guaranteed that p < 0.05 for at least one variable by chance.
- Thus, for large *p*, looking only at *p*-values of individual *t*-statistics tends to discover spurious relationships.
- For *F*-statistic, if *H*₀ true, only 5% chance of *p*-value < 0.05 independently of *n*, *p*.

Note: *F*-statistic approach works for p < n.

- Typically, not all predictors related to response (variable selection problem).
- One approach: try all possible models, select best one. Criteria? Mallow's C_ρ, Akaike information criterion (AIC), Bayesian information criterion (BIC) (later)

- Typically, not all predictors related to response (variable selection problem).
- One approach: try all possible models, select best one. Criteria? Mallow's C_ρ, Akaike information criterion (AIC), Bayesian information criterion (BIC) (later)
- For p large, trying 2^p models with subsets of variables impractical.
- Forward selection: Start with null model (only β_0), fit *p* simple regressions, add variable leading to lowest RSS, then add variable leading to two-variable model with lowest RSS, continue until stopping criterion met.

- Typically, not all predictors related to response (variable selection problem).
- One approach: try all possible models, select best one. Criteria? Mallow's C_ρ, Akaike information criterion (AIC), Bayesian information criterion (BIC) (later)
- For p large, trying 2^p models with subsets of variables impractical.
- Forward selection: Start with null model (only β_0), fit *p* simple regressions, add variable leading to lowest RSS, then add variable leading to two-variable model with lowest RSS, continue until stopping criterion met.
- Backward selection: Start with full model, remove variable with largest p-value, fit new (p 1)-variable model, keep removing least significant variable, until stopping criterion met.

- Typically, not all predictors related to response (variable selection problem).
- One approach: try all possible models, select best one. Criteria? Mallow's C_ρ, Akaike information criterion (AIC), Bayesian information criterion (BIC) (later)
- For p large, trying 2^p models with subsets of variables impractical.
- Forward selection: Start with null model (only β_0), fit *p* simple regressions, add variable leading to lowest RSS, then add variable leading to two-variable model with lowest RSS, continue until stopping criterion met.
- Backward selection: Start with full model, remove variable with largest p-value, fit new (p 1)-variable model, keep removing least significant variable, until stopping criterion met.
- *Mixed selection:* Start with null model, adding variables with best fit oneby-one, remove variables whenever their *p*-value rises above threshold, until model contains only variables with low *p*-values and excludes those with high *p*-value.

RSE, R^2 computed and interpreted as in simple linear regression.

- $R^2 = \text{Cor}(X, Y)^2$ for simple linear regression.
- $R^2 = \text{Cor}(\hat{Y}, Y)^2$ for multiple linear regression, maximized by fitted model.
- $R^2 \approx 1$: model explains large portion of response variance.

RSE, R^2 computed and interpreted as in simple linear regression.

- $R^2 = \text{Cor}(X, Y)^2$ for simple linear regression.
- $R^2 = \text{Cor}(\hat{Y}, Y)^2$ for multiple linear regression, maximized by fitted model.
- $R^2 \approx 1$: model explains large portion of response variance.
- Advertising example:

 $\{ {\rm TV, radio, newspaper} \} \qquad \qquad R^2 = 0.8972 \\ \{ {\rm TV, radio} \} \qquad \qquad \qquad R^2 = 0.89719 \\ \end{cases}$

Small *increase* on including **newspaper** (even though **newspaper** not significant)

- Note: R^2 always increases when variables are added.
- Tiny increase in R² on including newspaper more evidence this variable can be dropped.
- Including redundant variables promotes overfitting.

• Advertising example:

$\{TV\}$	$R^2 = 0.61$
{TV,radio}	$R^2 = 0.89719$

Substantial improvement on adding radio.

(Could also look at *p*-value of radio's coefficient in last model.)

• Advertising example:

{TV}
$$R^2 = 0.61$$

{TV, radio} $R^2 = 0.89719$

Substantial improvement on adding radio.

(Could also look at *p*-value of radio's coefficient in last model.)

• Advertising example:

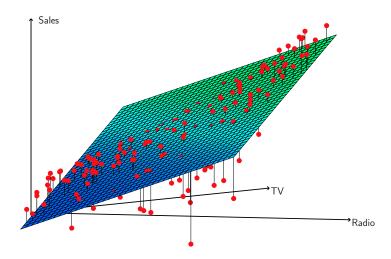
{TV,radio,	newspaper}	RSE = 1.686
$\{TV, radio\}$		RSE = 1.681
$\{TV\}$		RSE = 3.26

• Note: for multiple linear regression RSE defined as

$$\mathsf{RSE} = \sqrt{\frac{\mathsf{RSS}}{n-p-1}}.$$

(3) Model fit

{TV,radio}



Previous figure:

- Some observations above, some below least squares regression plane.
- Linear model overestimates sales where most of budget spent either exclusively on TV or radio.
- Underestimation where budget split between two media.
- Such *nonlinear pattern* not reflected by linear model; suggests *synergy* effect between these two media.

(4) Predictions

We note three sources of prediction uncertainty:

- Reducible error: $\hat{Y} \approx f(X)$ since $\hat{\beta}_j \approx \beta_j$. Can construct confidence intervals to ascertain closeness \hat{Y} to f(X).
- 2 Model bias: linear model can only yield best linear approximation.

3 Irreducible error:
$$Y = f(X) + \varepsilon$$
.

Assess prediction error with **prediction intervals**: incorporate both reducible and irreducible errors.

(4) Predictions

We note three sources of prediction uncertainty:

1 Reducible error: $\hat{Y} \approx f(X)$ since $\hat{\beta}_j \approx \beta_j$. Can construct confidence intervals to ascertain closeness \hat{Y} to f(X).

2 Model bias: linear model can only yield best linear approximation.

3 Irreducible error:
$$Y = f(X) + \varepsilon$$
.

Assess prediction error with **prediction intervals**: incorporate both reducible and irreducible errors.

Example: Prediction using {TV, radio} model. $X_{TV} = 100\,000$ \$, $X_{radio} = 20\,000$ \$.

Confidence interval on sales: 95% confidence interval : [10.985, 11.528]. Prediction interval on sales: 95% prediction interval : [7.930, 14.580].

Increased uncertainty about sales for given city in contrast with average sales over many locations.

Contents

3 Linear Regression

- 3.1 Simple Linear Regression
- 3.2 Multiple Linear Regression

3.3 Other Considerations in the Regression Model

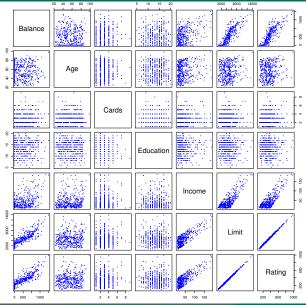
- 3.4 Revisiting the Marketing Data Questions
- 3.5 Linear Regression vs. K-Nearest Neighbors

Qualitative predictors

For a first regression model involving also **qualitative predictor variables**, consider the Credit data set:

- Quantitative predictors:
 - balance: average credit card debt for a number of individuals
 - age
 - cards (# credit cards)
 - education (years of education)
 - income (in thousands of dollars)
 - limit (credit limit)
 - rating (credit rating)
- Qualitative predictors:
 - gender
 - student (student status)
 - status (marital status)
 - ethnicity (Caucasian, African American or Asian)

Qualitative predictors



Oliver Ernst (NM)

Introduction to Data Science

Two-valued predictors

- Goal: investigate differences in credit card balance between males/females.
- Gender (qualitative variable, factor) represented with indicator (dummy variable)

$$x_i = \begin{cases} 1 & \text{if } i\text{-th person female,} \\ 0 & \text{if } i\text{-th person male.} \end{cases}$$
(3.22)

• Using x_i in regression equation results in model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i = \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i\text{-th person female,} \\ \beta_0 + \varepsilon_i & \text{if } i\text{-th person male.} \end{cases}$$
(3.23)

- Interpretation
 - β_0 : average credit card balance among males,
 - $\beta_0 + \beta_1$: average credit card balance among females,
 - β_1 : average difference in credit card balance male/female.

Two-valued predictors

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	509.80	33.13	15.389	< 0.0001
eta_1	19.73	46.05	0.429	0.6690

- Average credit card debt males: \$509.80.
- Average additional credit card debt females: \$19.73.
- Total average female credit card debt: \$529.53.
- High *p* value for dummy variable. Conclusion?

Two-valued predictors

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	509.80	33.13	15.389	< 0.0001
eta_1	19.73	46.05	0.429	0.6690

- Average credit card debt males: \$509.80.
- Average additional credit card debt females: \$19.73.
- Total average female credit card debt: \$529.53.
- High *p* value for dummy variable. Conclusion? Gender not a statistically significant factor for credit card debt.

Two-valued predictors

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	509.80	33.13	15.389	< 0.0001
eta_1	19.73	46.05	0.429	0.6690

- Average credit card debt males: \$509.80.
- Average additional credit card debt females: \$19.73.
- Total average female credit card debt: \$529.53.
- High *p* value for dummy variable. Conclusion? Gender not a statistically significant factor for credit card debt.
- Switching male/female coding yields estimates

$$\hat{\beta}_0 =$$
 \$529.53, $\hat{\beta}_1 =$ \$-19.73, $\hat{\beta}_0 + \hat{\beta}_1 =$ \$509.80.

Two-valued predictors

Another alternative coding of two-valued gender predictor:

$$x_i = \begin{cases} 1 & \text{if } i\text{-th person female,} \\ -1 & \text{if } i\text{-th person male.} \end{cases}$$

Results in model

$$y_i = \beta_0 + \beta_1 x + \varepsilon_i = \begin{cases} \beta_0 + \beta_1 + \varepsilon_i & \text{if } i\text{-th person female,} \\ \beta_0 - \beta_1 + \varepsilon_i & \text{if } i\text{-th person male,} \end{cases}$$

with interpretation now

 β_0 : average credit card balance (ignoring gender),

 eta_1 : amount females are above/males below this average,

giving estimates

 $\hat{\beta}_0 =$ \$519.665 (half way between male and female averages) $\hat{\beta}_1 =$ \$ 9.865 (half of \$19.63, average male/female difference).

Multi-valued qualitative predictors

To encode ethnicity \in {Caucasian, African American, Asian}, use multiple dummy variables (# values -1)

$$x_{i,1} = \begin{cases} 1 & \text{if } i\text{-th person Asian,} \\ 0 & \text{if } i\text{-th person not Asian,} \end{cases}$$
(3.24)
$$x_{i,2} = \begin{cases} 1 & \text{if } i\text{-th person Caucasian,} \\ 0 & \text{if } i\text{-th person not Caucasian,} \end{cases}$$
(3.25)

resulting in model

$$y_{i} = \beta_{0} + \beta_{1}x_{i,1} + \beta_{2}x_{i,2} + \varepsilon_{i} = \begin{cases} \beta_{0} + \beta_{1} + \varepsilon_{i} & \text{if } i\text{-th person Asian} \\ \beta_{0} + \beta_{2} + \varepsilon_{i} & \text{if } i\text{-th person Caucasian} \\ \beta_{0} + \varepsilon_{i} & \text{if } i\text{-th person African American} \end{cases}$$

$$(3.26)$$

Interpretation: β_0 : average credit card balance for African Americans (baseline),

- β_1 : difference between Asian and African Americans,
- β_2 : difference between Caucasian and African Americans

Oliver Ernst (NM)

Multi-valued qualitative predictors

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	531.00	46.32	11.464	< 0.0001
β_1 (Asian)	-18.69	65.02	-0.287	0.7740
eta_2 (Caucasian)	-12.50	56.68	-0.221	0.8260

• Estimated balance for African Americans (baseline): \$531.00.

Multi-valued qualitative predictors

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	531.00	46.32	11.464	< 0.0001
β_1 (Asian)	-18.69	65.02	-0.287	0.7740
β_2 (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): \$531.00.
- Asians estimated to have \$18.69 less debt than African Americans.
- Caucasians estimated to have \$12.50 less debt than African Americans.

Multi-valued qualitative predictors

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	531.00	46.32	11.464	< 0.0001
β_1 (Asian)	-18.69	65.02	-0.287	0.7740
β_2 (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): \$531.00.
- Asians estimated to have \$18.69 less debt than African Americans.
- Caucasians estimated to have \$12.50 less debt than African Americans.
- $\hat{\beta}_1, \hat{\beta}_2$ have high *p*-values, indicating no statistical significance for ethnicity as factor in credit card balance.

Multi-valued qualitative predictors

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	531.00	46.32	11.464	< 0.0001
β_1 (Asian)	-18.69	65.02	-0.287	0.7740
β_2 (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): \$531.00.
- Asians estimated to have \$18.69 less debt than African Americans.
- Caucasians estimated to have \$12.50 less debt than African Americans.
- $\hat{\beta}_1, \hat{\beta}_2$ have high *p*-values, indicating no statistical significance for ethnicity as factor in credit card balance.
- Coefficients and *p*-values depend on coding, result does not. *F*-test to reject $H_0: \beta_1 = \beta_2 = 0$ has *p*-value 0.96 (cannot reject).

Multi-valued qualitative predictors

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	531.00	46.32	11.464	< 0.0001
β_1 (Asian)	-18.69	65.02	-0.287	0.7740
β_2 (Caucasian)	-12.50	56.68	-0.221	0.8260

- Estimated balance for African Americans (baseline): \$531.00.
- Asians estimated to have \$18.69 less debt than African Americans.
- Caucasians estimated to have \$12.50 less debt than African Americans.
- $\hat{\beta}_1, \hat{\beta}_2$ have high *p*-values, indicating no statistical significance for ethnicity as factor in credit card balance.
- Coefficients and *p*-values depend on coding, result does not. *F*-test to reject $H_0: \beta_1 = \beta_2 = 0$ has *p*-value 0.96 (cannot reject).
- Dummy variable approach works for combining qualitative and quantitative predictors.

(Other coding schemes for qualitative variables possible.)

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_j independent of remaining variables.
- Linearity: rate of change in Y with respect to X_j constant in X_j .

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_j independent of remaining variables.
- Linearity: rate of change in Y with respect to X_j constant in X_j .
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_j independent of remaining variables.
- Linearity: rate of change in Y with respect to X_j constant in X_j .
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add **interaction term** to two-predictor model:

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_j independent of remaining variables.
- Linearity: rate of change in Y with respect to X_j constant in X_j .
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_j independent of remaining variables.
- Linearity: rate of change in Y with respect to X_j constant in X_j .
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon$$
$$= \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \varepsilon$$

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_j independent of remaining variables.
- Linearity: rate of change in Y with respect to X_j constant in X_j .
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

$$\begin{split} Y &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon \\ &= \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \varepsilon \\ &= \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \varepsilon, \\ \end{split} \qquad \qquad \tilde{\beta}_1 &:= \beta_1 + \beta_3 X_2. \end{split}$$

Extending the linear model

- Restrictive assumptions in linear model: linearity, additivity.
- Additivity: effect on Y of changing X_j independent of remaining variables.
- Linearity: rate of change in Y with respect to X_j constant in X_j .
- Recall advertising data set: indication that higher radio budget made effect of TV spending stronger (interaction effect, synergy).
- Add interaction term to two-predictor model:

$$\begin{aligned} Y &= \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2 + \varepsilon \\ &= \beta_0 + (\beta_1 + \beta_3 X_2) X_1 + \beta_2 X_2 + \varepsilon \\ &= \beta_0 + \tilde{\beta}_1 X_1 + \beta_2 X_2 + \varepsilon, \qquad \qquad \tilde{\beta}_1 := \beta_1 + \beta_3 X_2. \end{aligned}$$

 $\tilde{\beta}_1$ changes with X_2 , hence effect of X_1 on Y changes with X_2 .

Extending the linear model: factory example

Example: factory productivity.

• Predict # produced units based on # production lines and # workers.

Extending the linear model: factory example

Example: factory productivity.

- Predict # produced units based on # production lines and # workers.
- Expected: increase in # production lines will depend on # workers.
- In linear model of units, include interaction term between lines and workers. A regression fit may yield, e.g.,

units $\approx 1.2 + 3.4 \times \text{lines} + 0.22 \times \text{workers} + 1.4 \times (\text{lines} \times \text{workers})$ = 1.2 + (3.4 + 1.4 × workers) × lines + 0.22 × workers

• Adding additional line will increase # produced units by 3.4+1.4×workers. The more workers, the stronger the effect of adding a line.

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

$$\begin{aligned} \text{sales} &= \beta_0 + \beta_1 \times \text{TV} + \beta_2 \times \text{radio} + \beta_3 \times (\text{radio} \times \text{TV}) + \varepsilon \\ &= \beta_0 + (\beta_1 + \beta_3 \times \text{radio}) \times \text{TV} + \beta_2 \times \text{radio} + \varepsilon \end{aligned}$$

(3.27

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \varepsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \varepsilon$ (3.27)

Interpretation of β_3 : increase in effectiveness of TV advertising for one-unit increase in radio advertising.

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \varepsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \varepsilon$ (3.27)

Interpretation of β_3 : increase in effectiveness of TV advertising for one-unit increase in radio advertising.

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	6.7502	0.248	27.23	< 0.0001
β_1	0.0191	0.002	12.70	< 0.0001
β_2	0.0289	0.009	3.24	0.0014
β_3	0.0011	0.000	20.73	< 0.0001

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \beta_3 \times (radio \times TV) + \varepsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \varepsilon$ (3.27)

Interpretation of β_3 : increase in effectiveness of TV advertising for one-unit increase in radio advertising.

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	6.7502	0.248	27.23	< 0.0001
β_1	0.0191	0.002	12.70	< 0.0001
β_2	0.0289	0.009	3.24	0.0014
β_3	0.0011	0.000	20.73	< 0.0001

- Model with interaction term superior to that including only main effects.
- Low *p*-value of interaction term strong evidence for rejecting H_0 : $\beta_3 = 0$.

Extending the linear model: advertising example

 Model (3.27) has R² = 96.8% (vs. R² = 89.7% for model without interaction term).

Extending the linear model: advertising example

- Model (3.27) has R² = 96.8% (vs. R² = 89.7% for model without interaction term).
- Interpretation: of the variability remaining after fitting the model without interaction term,

$$\frac{96.8\% - 89.7\%}{100\% - 89.7\%} = 69\%$$

is explained by model (3.27) which includes the interaction term.

Extending the linear model: advertising example

- Model (3.27) has R² = 96.8% (vs. R² = 89.7% for model without interaction term).
- Interpretation: of the variability remaining after fitting the model without interaction term,

$$\frac{96.8\% - 89.7\%}{100\% - 89.7\%} = 69\%$$

is explained by model (3.27) which includes the interaction term.

• \$1000 increase in TV budget associated with sales increase of $(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$ units. \$1000 increase in radio budget associated with sales increase of $(\hat{\beta}_2 + \hat{\beta}_3 \times \text{TV}) \times 1000 = 29 + 1.1 \times \text{TV}$ units.

Extending the linear model: advertising example

- Model (3.27) has R² = 96.8% (vs. R² = 89.7% for model without interaction term).
- Interpretation: of the variability remaining after fitting the model without interaction term,

$$\frac{96.8\% - 89.7\%}{100\% - 89.7\%} = 69\%$$

is explained by model (3.27) which includes the interaction term.

- \$1000 increase in TV budget associated with sales increase of (β₁ + β₃ × radio) × 1000 = 19 + 1.1 × radio units.
 \$1000 increase in radio budget associated with sales increase of (β₂ + β₃ × TV) × 1000 = 29 + 1.1 × TV units.
- Hierarchical principle: for every interaction term, include all associated main effects, even if the *p* values of their coefficients not significant. Rationale: If X_1X_2 related to response, vanishing coefficients for X_1 , X_2 unimportant. X_1X_2 typically correlated with X_1 , X_2 ; leaving these out alters meaning of interaction.

Oliver Ernst (NM)

Extending the linear model: credit example

Credit data set: predict balance using income (quantitative) and student (qualitative). Without interaction term:

$$\begin{aligned} \text{balance}_{i} &\approx \beta_{0} + \beta_{1} \times \text{income}_{i} + \begin{cases} \beta_{2} & \text{if } i\text{-th person student} \\ 0 & \text{otherwise} \end{cases} \\ &= \beta_{1} \times \text{income}_{i} + \begin{cases} \beta_{0} + \beta_{2} & \text{if } i\text{-th person student} \\ \beta_{0} & \text{otherwise.} \end{cases} \end{aligned}$$
(3.28)

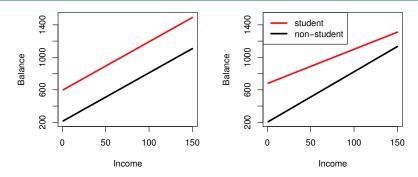
Extending the linear model: credit example

Credit data set: predict balance using income (quantitative) and student (qualitative). Without interaction term:

$$\begin{aligned} \text{balance}_{i} &\approx \beta_{0} + \beta_{1} \times \text{income}_{i} + \begin{cases} \beta_{2} & \text{if } i\text{-th person student} \\ 0 & \text{otherwise} \end{cases} \\ &= \beta_{1} \times \text{income}_{i} + \begin{cases} \beta_{0} + \beta_{2} & \text{if } i\text{-th person student} \\ \beta_{0} & \text{otherwise.} \end{cases} \end{aligned}$$
(3.28)

- Results in fitting two parallel lines to data (one each for students and nonstudents).
- Parallel implies: average affect on balance of one-unit increase in income independent of Student status.
- Reflects model shortcoming: change in **income** may have very different effect on credit card balance for students and non-students.

Extending the linear model: credit example



With interaction term: multiply income with dummy variable for student

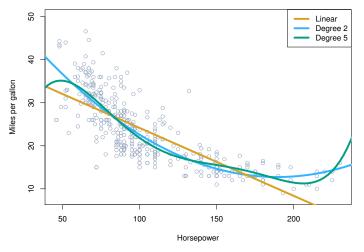
$$\begin{aligned} \text{balance}_{i} &\approx \beta_{0} + \beta_{1} \times \text{income}_{i} + \begin{cases} \beta_{2} + \beta_{3} \times \text{income}_{i} & \text{if } i\text{-th person student} \\ 0 & \text{otherwise} \end{cases} \\ &= \begin{cases} (\beta_{0} + \beta_{2}) + (\beta_{1} + \beta_{3}) \times \text{income}_{i} & \text{if } i\text{-th person student} \\ \beta_{0} + \beta_{1} \times \text{income}_{i} & \text{otherwise.} \end{cases} \end{aligned}$$

$$(3.29)$$

Extending the linear model: credit example

- Now the two lines have different intercepts and different slopes.
- Slope for students lower, indicates increases in income associated with smaller increase in credit card balance than for non-students.

Extending the linear model: nonlinear relationships



Auto data set showing mpg (miles per gallon) versus horsepower for different cars.

Oliver Ernst (NM)

Extending the linear model: nonlinear relationships

Since the data seem to suggest curved relationship, add quadratic term:

 $mpg = \beta_0 + \beta_1 \times horsepower + \beta_2 \times horsepower^2 + \varepsilon.$

(3.30)

	Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value
β_0	56.9001	1.8004	31.6	< 0.0001
β_1	-0.4662	0.0311	-15.0	< 0.0001
β_2	0.0012	0.0001	10.1	< 0.0001

- Linear fit has $R^2 = 0.606$, quadratic fit has $R^2 = 0.688$.
- *p*-value for quadratic term highly significant.
- Degree 5 fit more oscillatory, doesn't appear to explain data any better than quadratic.

Potential problems

Most common problems when fitting a linear regression model to a data set: (identification and solution as much an art as a science)

- 1 Nonlinear dependence of response on predictors
- 2 Correlated error terms
- 3 Non-constant variance of error terms
- Outliers
- B High-leverage points
- 6 Collinearity

Potential problems: (1) Nonlinear dependence

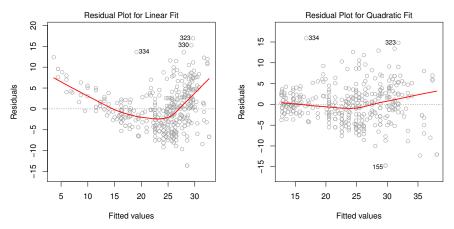
Inference and prediction from linear regression model are suspect when true model nonlinear.

Identifying nonlinearity aided by residual plots

 $r_i = y_i - \hat{y}_i$ against predictors x_i .

- For multiple regression models, plot residuals against predicted (fitted) values \hat{y}_i .
- Ideal picture: no discernible pattern.
- Presence of pattern indicates possible problem with model.
- When nonlinearity is suggested, introduce nonlinear functions of predictors as **regression functions** into the regression model.

Potential problems: (1) Nonlinear dependence



Residuals versus predicted values for Auto data set. Red line is smooth fit to residuals to aid in identifying trends. Left: linear regression of mpg on horsepower (strong pattern). Right: linear regression of mpg on horsepower and horsepower² (little pattern).

Oliver Ernst (NM)

131 / 462

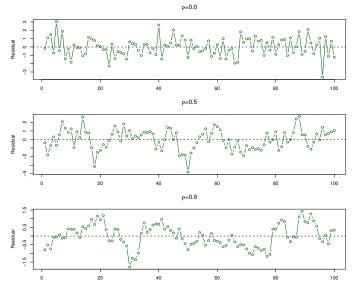
Potential problems: (2) Correlated error terms

- Linear regression assumes uncorrelated errors ε_i .
- Computation of SE for coefficient estimates, fitted values, based on this assumption. Otherwise estimated SE tend to underestimate true SE, confidence and prediction intervals too optimistic (narrow), *p*-values lower than they should be.

Potential problems: (2) Correlated error terms

- Linear regression assumes uncorrelated errors ε_i .
- Computation of SE for coefficient estimates, fitted values, based on this assumption. Otherwise estimated SE tend to underestimate true SE, confidence and prediction intervals too optimistic (narrow), *p*-values lower than they should be.
- Extreme example: double data (observations, error terms identical in pairs). SE calculations use sample size 2n in place of n, hence CI narrower by factor of $\sqrt{2}$.
- Detection for **time series**: plot residuals as function of time. No correlations implies no visible pattern; correlations lead to **tracking** of residuals.
- Example (next slide): time series with error correlation $\rho = 0, 0.5, 0.9$
- Example: study of persons' heights predicted from their weights. Uncorrelatedness assumption violated if, e.g., individuals related, same diet or environmantal factors.

Potential problems: (2) Correlated error terms



Observation

Oliver Ernst (NM)

Potential problems: (3) Non-constant variance of error terms

• SE, CI, hypothesis tests associated with linear model rely on assumption **Var** $\varepsilon_i = \sigma^2$ ($\forall i$).

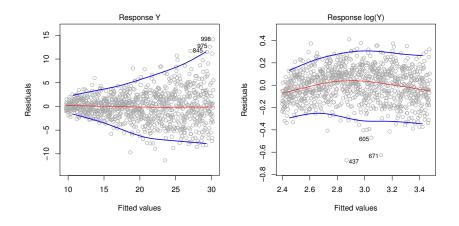
Potential problems: (3) Non-constant variance of error terms

- SE, Cl, hypothesis tests associated with linear model rely on assumption **Var** $\varepsilon_i = \sigma^2 \; (\forall i)$.
- Non-constant error variance (heteroscedasticity), e.g. increase with response value, leads to *funnel-shaped* residual plot.
- Possible solution: transform response Y using concave function such as log Y or \sqrt{Y} , leads to damping of larger responses, reducing heteroscedasticity.

Potential problems: (3) Non-constant variance of error terms

- SE, Cl, hypothesis tests associated with linear model rely on assumption **Var** $\varepsilon_i = \sigma^2 \; (\forall i)$.
- Non-constant error variance (heteroscedasticity), e.g. increase with response value, leads to *funnel-shaped* residual plot.
- Possible solution: transform response Y using concave function such as log Y or \sqrt{Y} , leads to damping of larger responses, reducing heteroscedasticity.
- When variation of response variance known, e.g., *i*-th response average of n_i observations which are uncorrelated with variance σ^2 , then average has variance $\sigma_i^2 = \sigma^2/n_i$. Remedy: weighted least squares with weights proportional to inverse variances.

Potential problems: (3) Non-constant variance of error terms

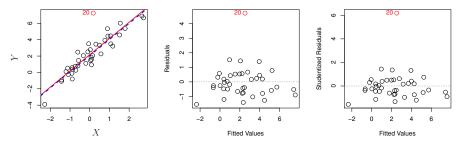


Residual plots. Red: smooth fit of residuals. Blue: track outer quantiles of residuals. Left: funnel shape indicating heteroscedasticity.

Right: After log-transforming respone, heteroscedasticity removed.

Potential problems: (4) Outliers

- **Outlier**: point where *y_i* far from value predicted by model.
- Possible causes: observation errors.



Left: red solid line: least squares line with outlier, blue: without.

Center: Residual plot identifies outlier.

Right: Outlier seen to have studentized residual (divide e_i by its estimated standard error) of 6 (between -3 and 3 expected).

 R^2 declines from 0.892 to 0.805 on including outlier.

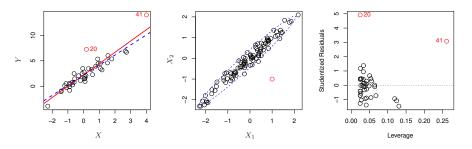
Potential problems: (5) High-leverage points

- Outliers: observations where y_i is unusual given x_i.
- Observations with high leverage have unusual value for x_i.
- If least squares line strongly affected by certain points, problems with these may invalidate entire fit, hence important to identify such observations.
- Simple linear regression: extremal *x*-values; multiple linear regression: in range of all other observation coordinates, but unusual (difficult to detect for more than two predictors).
- Large value of **leverage statistic** indicates high leverage. For simple linear regression:

$$h_{i} = \frac{1}{n} + \frac{(x_{i} - \overline{x})^{2}}{\sum_{j=1}^{n} (x_{j} - \overline{x})^{2}} \in \left(\frac{1}{n}, 1\right).$$
(3.31)

Average value always $\frac{p+1}{n}$, deviation from average indicates high leverage.

Potential problems: (5) High-leverage points



Left: Same data as previous figure, with added observation 41 (red) of high leverage. Red solid line is least squares fit with, blue dashed without observation 41.

Center: two predictor variables, most observations within blue dashed ellipse, red observation distinctly outside.

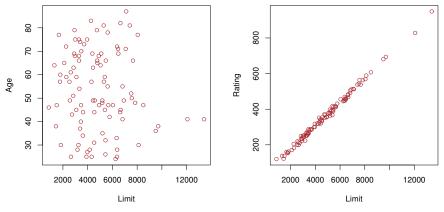
Right: same data as in left panel, studentized residuals vs. leverage statistic. Observation 41 has high leverage and high residual, i.e., outlier *and* high-leverage point. Outlier observation 20 has low leverage.

Oliver Ernst (NM)

Introduction to Data Science

Potential problems: (6) Collinearity

Collinearity: two or more predictor variables closely related.



From Credit data set.

Left: limit vs. age.

Right: limit vs. rating (strongly collinear).

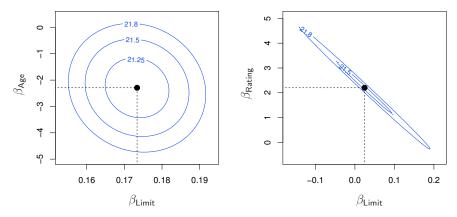
Oliver Ernst (NM)

Introduction to Data Science

Winter Semester 2018/19 139 / 462

Potential problems: (6) Collinearity

Difficult to separate individual effects of collinear variables on response.



Contour plots of RSS for different coefficient estimates for Credit data set. Axes scaled to include 4 SE on either side of optimum. Regression of balance

Left: on limit and age. Right: on limit and rating.
Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19

140 / 462

Potential problems: (6) Collinearity

• Collinearity increases SE, hence reduces *t*-statistic, and we will more likely fail to reject H_0 : $\beta_j = 0$. This reduces the **power** of the hypothesis test, i.e., the probability of correctly detecting a nonzero coefficient.

Coefficient	Standard error	<i>t</i> -statistic	<i>p</i> -value	
Model 1				
-173.411	43.828	-3.957	< 0.0001	
-2.292	0.672	-3.407	0.0007	
0.173	0.005	34.496	< 0.0001	
Model 2				
-377.537	45.254	-8.343	< 0.0001	
2.202	0.952	2.312	0.0213	
0.025	0.064	0.384	0.7012	
	-2.292 0.173 -377.537 2.202	Model 1 -173.411 43.828 -2.292 0.672 0.173 0.005 Model 2 -377.537 -372 0.952	Model 1 -173.411 43.828 -3.957 -2.292 0.672 -3.407 0.173 0.005 34.496 Model 2 -377.537 45.254 -8.343 2.202 0.952 2.312	

Model 1: age, limit both highly significant.
 Model 2: collinearity between rating and limit increases SE for limit coefficient by factor 12, *p*-value increases to 0.701. Collinearity masks importance of limit variable.

Oliver Ernst (NM)

Introduction to Data Science

Potential problems: (6) Collinearity

- Important to detect collinearity when fitting a model.
- Correlation matrix may give indication.
- **Multicollinearity**: collinearity between 3 or more variables which each have low pairwise correlation.
- Variance inflation factor (VIF): ratio of variance of $\hat{\beta}_j$ when fitting the full model and variance of $\hat{\beta}_j$ when fitted separately.
- VIF ≥ 1, minimum at complete absence of collinearity. Problematic if VIF exceeds 5 or 10.

$$\mathsf{VIF}(\hat{\beta}_j) = \frac{1}{1 - R_{X_j|X_{-j}}^2}$$

 $R_{X_i|X_{-i}}^2$: R^2 from regression of X_j onto all other predictors.

- In Credit data example: predictors have VIF values of 1.01, 160.67, 160.59.
- Remedies: drop problematic variables, combine collinear variables into single predictor.

Contents

3 Linear Regression

- 3.1 Simple Linear Regression
- 3.2 Multiple Linear Regression
- 3.3 Other Considerations in the Regression Model

3.4 Revisiting the Marketing Data Questions

3.5 Linear Regression vs. K-Nearest Neighbors

Recall the seven questions relating to the Advertising data set we set out to answer on Slide 72:

- **1** Is there a relationship between advertising budget and sales?
- 2 How strong is this relationship between advertising budget and sales?
- 3 Which media contribute to sales?
- 4 How accurately can we estimate the effect of each medium on sales?
- **5** How accurately can we predict future sales?
- 6 Is the relationship linear?
- Is there synergy among the advertising media?

We revisit each in turn.

1 Is there a relationship between advertising budget and sales?

- **1** Is there a relationship between advertising budget and sales?
- Fit multiple regression model of sales onto TV, radio and newspaper.
- Test hypothesis $H_0: \beta_{TV} = \beta_{radio} = \beta_{newspaper} = 0.$
- Rejection/non-rejection based on *F*-statistic (Slide 101).
- For advertising data: low *p*-value of *F*-statistic (table on Slide 103) strong evidence for rejecting H_0 .

2 How strong is this relationship between advertising budget and sales?

- **2** How strong is this relationship between advertising budget and sales?
- Measure of model error: RSE (see Slide 81), estimates standard deviation of response from (true) population regression line.

• Advertising data:

For multiple regression model of sales on TV and radio, RSE = 1,681 units (Slide 108).

Relative to response sample mean of 14,022 units, this is an error of 12%.

- **2** How strong is this relationship between advertising budget and sales?
- Measure of model error: RSE (see Slide 81), estimates standard deviation of response from (true) population regression line.
- Advertising data:

For multiple regression model of sales on TV and radio, RSE = 1,681 units (Slide 108).

Relative to response sample mean of 14,022 units, this is an error of 12%.

- Measure of model error: R^2 (Slide 88), measures proportion of response variability explained by model.
- Advertising data:

For multiple regression model of sales on TV, radio and newspaper, $R^2 = 0.897$, i.e., $\approx 90\%$ of sales variability explained by multiple linear regression model (Slide 103).

3 Which media contribute to sales?

- 3 Which media contribute to sales?
- *p*-values of *t*-statistic in multiple regression model of sales on TV, radio and newspaper: small for TV and radio, large for newspaper.
- Suggest only TV and radio budgets related to sales.

4 How accurately can we estimate the effect of each medium on sales?

- 4 How accurately can we estimate the effect of each medium on sales?
- Confidence intervals for β_j constructed from SE of $\hat{\beta}_j$.
- Advertising data: 95%-confidence intervals for multiple regression coefficients are

TV	(0.043, 0.049)
radio	(0.172, 0.206)
newspaper	(-0.013, 0.011)

- 4 How accurately can we estimate the effect of each medium on sales?
- Confidence intervals for β_j constructed from SE of $\hat{\beta}_j$.
- Advertising data: 95%-confidence intervals for multiple regression coefficients are

TV	(0.043, 0.049)
radio	(0.172, 0.206)
newspaper	(-0.013, 0.011)

Wide SE due to collinearity? (Slide 139).
 VIF scores for TV, radio and newspaper are 1.005, 1.145, 1.145, so not likely.

- O How accurately can we estimate the effect of each medium on sales?
- Confidence intervals for β_j constructed from SE of $\hat{\beta}_j$.
- Advertising data: 95%-confidence intervals for multiple regression coefficients are

TV	(0.043, 0.049)
radio	(0.172, 0.206)
newspaper	(-0.013, 0.011)

- Wide SE due to collinearity? (Slide 139).
 VIF scores for TV, radio and newspaper are 1.005, 1.145, 1.145, so not likely.
- Separate simple regressions of sales on TV, radio and newspaper show strong association of TV and radio with sales, mild association of newspape with sales, when remaining two predictors ignored.

6 How accurately can we predict future sales?

- **6** How accurately can we predict future sales?
- Can use (3.19) for prediction.
- Precition intervals assess accuracy of predicting individual responses $Y = f(X) + \varepsilon$.
- Confidence intervals assess accuracy of predicting average responses Y = f(X).
- Former always wider due to accounting for additional variability due to irreducible error ε .

6 Is the relationship linear?

- 6 Is the relationship linear?
- Identify nonlinearity using residual plots of linear model (Slide 130).
- Advertising data: Nonlinear effects visible in figure on Slide 109.
- Discussed regression functions which are nonlinear in the predictor variables.

Is there synergy among the advertising media?

- ⑦ Is there synergy among the advertising media?
- Non-additive relationships modeled by interaction term in model (Slide 120).
- Presence of interaction (synergy) confirmed by small *p*-value of interaction term.
- Advertising data: Including interaction term increased R² from ≈ 90% to ≈ 97%.

Contents

3 Linear Regression

- 3.1 Simple Linear Regression
- 3.2 Multiple Linear Regression
- 3.3 Other Considerations in the Regression Model
- 3.4 Revisiting the Marketing Data Questions
- 3.5 Linear Regression vs. K-Nearest Neighbors

Non-parametric approach

- Linear regression is a parametric method.
- Non-parametric methods make no strong a priori assumptions on functional form of model $Y \approx f(X)$, more flexibility in adapting to data.

Non-parametric approach

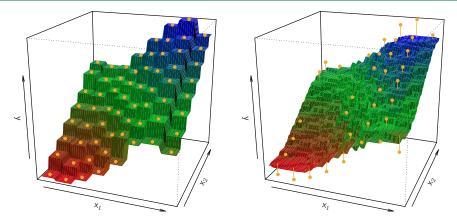
- Linear regression is a parametric method.
- Non-parametric methods make no strong a priori assumptions on functional form of model $Y \approx f(X)$, more flexibility in adapting to data.
- Here: *K*-nearest neighbors (KNN) regression (Cf. KNN classifier in Chapter 2).

Non-parametric approach

- Linear regression is a parametric method.
- Non-parametric methods make no strong a priori assumptions on functional form of model $Y \approx f(X)$, more flexibility in adapting to data.
- Here: *K*-nearest neighbors (KNN) regression (Cf. KNN classifier in Chapter 2).
- Given prediction point x_0 , first determine the set \mathcal{N}_0 consisting of the K $(K \in \mathbb{N})$ training observations closest to x_0 .
- Predict \hat{y}_0 to be average training response in \mathcal{N}_0 , i.e.,

$$\hat{f}(x_0) = \frac{1}{K} \sum_{x_i \in \mathscr{N}_0} y_i.$$

Non-parametric approach



Two KNN fits on a data set with 64 observations using p = 2 predictors. Left: K = 1. Interpolation, rough step-like function. Right: K = 9. Not interpolatory, smoother.

Linear Regression vs. *K*-Nearest Neighbors Tuning κ

- Flexibility of model controlled by K: less flexible. smoother fit, for large K.
- Bias-variance tradeoff.
- Flexible model: low bias, high variance (prediction depends on only one nearby observation).
 Unflexible model: high bias, low variance (changing one observation has smaller effect, averaging introduces bias).
- Optimal value of K? (later)

Parametric vs. non-parametric

Q: In what setting will a parametric approach outperform a non-parametric approach?

Parametric vs. non-parametric

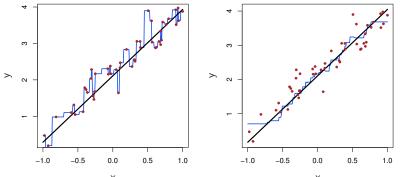
Q: In what setting will a parametric approach outperform a non-parametric approach?

A: Depends on how closely assumed form of f matches true form.

Parametric vs. non-parametric

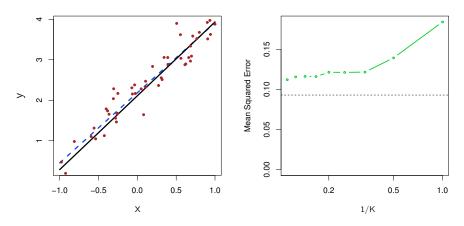
Q: In what setting will a parametric approach outperform a non-parametric approach?

A: Depends on how closely assumed form of f matches true form.



1D data, 100 observations (red), linear true model (black), KNN regression (blue). Left: K = 1, right: K = 9.

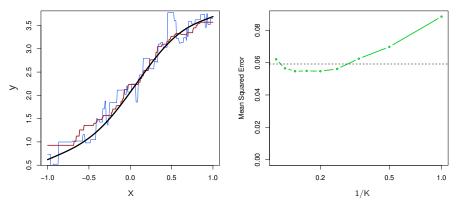
Parametric vs. non-parametric



Left: same data, linear regression fit.

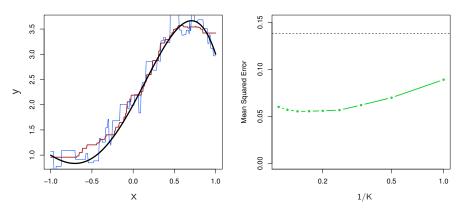
Right: test set MSE for linear regression (dotted line) and KNN for different values of K (plotted against 1/K).

Parametric vs. non-parametric



Left: slightly nonlinear data, true model (black), KNN regression with K = 1 (blue) and K = 9 (red). Right: test set MSE for linear regression (dotted line) and KNN (against 1/K). KNN wins for $K \ge 4$.

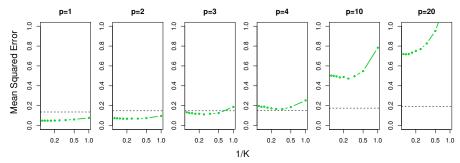
Parametric vs. non-parametric



Left: stronly nonlinear data, true model (black), KNN regression with K = 1 (blue) and K = 9 (red).

Right: test set MSE for linear regression (dotted line) and KNN (against 1/K). KNN wins for all K displayed.

Parametric vs. non-parametric



Strongly nonlinear case, added noise predictors not associated with response. Linear regression MSE deteriorates only slightly as p rises, KNN regression MSE much more sensitive.

- For p = 1 KNN seems at most slightly worse than linear regression. For p > 1 this is no longer true.
- Curse of dimensionality: for p = 20, many of the 100 observations have no nearby observations.

Oliver Ernst (NM)

Parametric vs. non-parametric

- General rule: parametric methods tend to outperform non-parametric methods when there is a small number of observations per predictor.
- Even for small *p*, parametric methods offer the added advantage of better interpretability.