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Linear Regression
Advertising again

Recall advertising data set from Slide 29:
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We will use the simple and well-established statistical learning technique known
as linear regression to answer the following questions:
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Linear Regression
Questions about advertising data set

1 Is there a relationship between advertising budget and sales?
Otherwise, why bother?

2 How strong is this relationship between advertising budget and sales?
Prediction possibly better than random guess?

3 Which media contribute to sales?
Separate individual contributions

4 How accurately can we estimate the effect of each medium on sales?
Euro by Euro?

5 How accurately can we predict future sales?
Precise prediction for each medium?

6 Is the relationship linear?
If yes, linear regression appropriate (possibly after transforming data)

7 Is there synergy among the advertising media?
Called interaction effect in statistics.
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Simple Linear Regression
Definition, terminology, notation

Linear model for quantitative response Y of single predictor X :

Y ≈ β0 + β1X . (3.1)

Statistician: “We are regressing Y onto X .”

E.g., with predictor TV advertising and response sales,

sales ≈ β0 + β1 × TV.

The values of coefficients or parameters β0, β1 obtained from fitting to the
training data are denoted by β̂0, β̂1, leading to the prediction values

ŷ = β̂0 + β̂1x (3.2)

when X = x , where the hat on ŷ denotes the predicted value of the reponse.
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Simple Linear Regression
Estimating the coefficients

Determining intercept β̂0 and slope β̂1 in (3.1) amounts to choosing these pa-
rameters such that the residuals or data misfits

ri := yi − ŷi = yi − (β̂0 + β̂1xi ), i = 1, . . . , n,

are minimized.

There are many options for defining smallness here, in least squares estimation
this is measured by the residual sum of squares (RSS)

RSS := r21 + · · ·+ r2n = (y1 − β̂0 − β̂1x1)2 + · · ·+ (yn − β̂0 − β̂1xn)
2. (3.3)

An easy calculation reveals

β̂0 = y − β̂1x , x :=
1
n

n∑
i=1

xi ,

β̂1 =

∑n
i=1(xi − x)(yi − y)∑n

i=1(xi − x)2
, y :=

1
n

n∑
i=1

yi .

(3.4)
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Simple Linear Regression
Example: LS fit for advertising data
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β̂0 = 7.03, β̂1 = 0.0475
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Simple Linear Regression
Example: LS fit for advertising data

LS fit of sales vs. TV budget: RSS as a function of (β0, β1)
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Left: Level curves. Right: Surface plot.
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Simple Linear Regression
Assessing the accuracy of the coefficient estimates

Linear regression yields a linear model

Y = β0 + β1X + ε (3.5)

where β0 : intercept

β1 : slope

ε : model error, modeled as centered random variable,

independent of X .

Model (3.5) defines the population regression line, the best linear approximati-
on to the true (generally unknown) relationship between X and Y .

The linear relation (3.2) containing the coefficients β̂0, β̂1 estimated from a
given data set is called the least squares line.
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Simple Linear Regression
Example: population regression line, least squares line
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• Left: Simulated data set (n = 100) from model f (X ) = 2+ 3X .
Red line: population regression line (true model).
Blue line: least squares line from data (black dots).

• Right: Additionally ten (light blue) least squares lines obtained from ten separate
randomly generated data sets from same model; seen to average to the red line.
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Simple Linear Regression
Analogy: estimation of mean

• Standard statistical approach: use information contained in a sample to
estimate characteristics of a large (possibly infinite) population.

• Example: approximate population mean µ (expectation, expected value)
of random variable Y from observations y1, . . . , yn by sample mean
µ̂ := y := 1

n

∑n
i=1 yi .

• Just like µ̂ ≈ µ but, in general, µ̂ 6= µ, the coefficients β̂0, β̂1 defining the
least squares line are estimates of the true values β0, β1 of the model.

• Sample mean µ̂ is an unbiased estimator of µ, i.e., it does not systemati-
cally over- or underestimate the true value µ.
Same holds for estimators β̂0, β̂1.

• How accurate is µ̂ ≈ µ?
Standard error4 of µ̂, denoted SE(µ̂), satisfies

Var µ̂ = SE(µ̂)2 =
σ2

n
, where σ2 = VarY . (3.6)

4Standard deviation of the sample distribution, i.e., average amount µ̂ differs from µ.
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Simple Linear Regression
Standard error of regression coefficients

For the regression coefficients (assuming uncorrelated observation errors)

SE(β̂0)
2 = σ2

[
1
n
+

x2∑n
i=1(xi − x)2

]
,

SE(β̂1)
2 =

σ2∑n
i=1(xi − x)2

, σ2 = Var ε.

(3.7)

• SE(β̂1) smaller when xi more spread out
(provides more leverage to estimate slope).

• SE(β̂0) = SE(µ̂) if x = 0. (Then β̂0 = y .)
• σ generally unknown, can be estimated from the data by
residual standard error

RSE :=

√
RSS

n − 2
.

When RSE used in place of σ, should write ŜE(β̂1).
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Simple Linear Regression
Confidence intervals

• 95% confidence interval: range of values containing true unknown value of
parameter with probability 95%.

• For linear regression: 95% CI for β1 approximately

β̂1 ± 2 · SE(β̂1), (3.8)

i.e., with probability 95%,

β1 ∈ [β̂1 − 2 · SE(β̂1), β̂1 + 2 · SE(β̂1)]. (3.9)

• Similarly, for β0, 95% CI approximately given by

β̂0 ± 2 · SE(β̂0). (3.10)

• For advertising example: with 95% probability

β0 ∈ [6.130, 7.935], β1 ∈ [0.042, 0.053].
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Simple Linear Regression
Hypothesis tests

Use SE to test null hypothesis

H0 : no relationship between X and Y (3.11)

and alternative hypothesis

Ha : some relationship between X and Y (3.12)

or, mathematically,
H0 : β1 = 0 vs. Ha : β1 6= 0.

• Reject H0 if β̂1 sufficiently far from 0 relative to SE(β̂1).
• t-statistic

t =
β̂1 − 0

SE(β̂1)
(3.13)

measures distance of β̂1 from 0 in # standard deviations.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 83 / 462



Simple Linear Regression
Hypothesis tests

• β1 = 0 implies t follows t-distribution with n − 2 degrees of freedom.
• We compute probability of observing |t| or larger under assumption β1 = 0,
its p-value.

• Small p-value: unlikely to observe substantial relation between X and Y
due to purely random variation, unless the two actually are related.

• In this case we reject H0.
• Typical cutoffs for p-value: 1%, 5%; for n = 30 corresponds to t-statistic
(3.13) values 2 and 2.75. respectively.

For TV sales data in advertising data set:

Estimate SE t-statistic p-value
β0 7.0325 0.4578 15.36 < 0.0001
β1 0.0475 0.0027 17.67 < 0.0001
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• Small p-value: unlikely to observe substantial relation between X and Y
due to purely random variation, unless the two actually are related.

• In this case we reject H0.

• Typical cutoffs for p-value: 1%, 5%; for n = 30 corresponds to t-statistic
(3.13) values 2 and 2.75. respectively.

For TV sales data in advertising data set:
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Simple Linear Regression
Reminder: Student’s t distribution

• Given X1, · · · ,Xn i.i.d. ∼ N(µ, σ2)
• Sample mean:

X =
1
n

n∑
i=1

Xi .

• (Bessel corrected) sample variance:

S2 =
1

n − 1

n∑
i=1

(Xi − X )2

• RV
X − µ
σ/
√
n

distributed according to N(0, 1).
• RV

X − µ
S/
√
n

distributed according to Student’s t-distribution with n − 1 DoF.
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Simple Linear Regression
Student’s t distribution
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Simple Linear Regression
Assessing model accuracy

• Residual standard error: estimate of standard deviation of ε (model error)

RSE =

√
RSS

n − 2
=

√√√√ 1
n − 2

n∑
i=1

(yi − ŷi )2. (3.14)

• For TV data RSS = 3.26, i.e., deviation of sales from true regression line on
average by 3,260 units (even if exact β0, β1 known).
Corresponds to 3, 260/14, 000 = 23% error relative to mean value of all
sales.

• RSE measures lack of model fit.
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Simple Linear Regression
Assessing model accuracy

• R2 statistic: alternative measure of fit: proportion of variance explained.
• ∈ [0, 1], independent of scale of Y .

• Defined in terms of total sum of squares (TSS) as

R2 =
TSS−RSS

TSS
= 1−

RSS

TSS
, TSS =

n∑
i=1

(yi − y)2. (3.15)

• TSS : total variance in response Y ,
RSS : amount of variability left unexplained after regression,
TSS−RSS : response variability explained by regression model,
R2 : proportion of variability in Y explained using X .

• R2 ≈ 0: linear model wrong, high model error variance.
• For TV data R2 = 0.61: 2/3 of sales variability explained by (linear regres-
sion on) TV budget.

• R2 ∈ [0, 1], but sufficient value problem dependent.
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Simple Linear Regression
Correlation

• Measure of linear relationship between X and Y : (sample) correlation:

Cor(X ,Y ) =

∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
. (3.16)

• In simple linear regression: Cor(X ,Y )2 = R2.
• Correlation expresses association between single pair of variables; R2 bet-
ween larger number of variables in multivariate linear regression.
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Multiple Linear Regression
Justification

• p > 1 predictor variables
(as in advertising data set: TV, newspaper, radio)

• Easiest option: simple linear regression for each

For radio sales data in advertising data set:

Estimate SE t-statistic p-value
β0 9.312 0.563 16.54 < 0.0001
β1 0.203 0.020 9.92 < 0.0001

For newspaper sales data in advertising data set:

Estimate SE t-statistic p-value
β0 12.351 0.621 19.88 < 0.0001
β1 0.055 0.017 3.30 < 0.00115
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Multiple Linear Regression
Justification

• How to predict total sales given 3 budgets?
• For given values of the 3 budgets, each simple regression model will give
different sales prediction.

• Each separate regression equation ignores the other 2 media.
• For correlated media budgets this can lead to misleading estimates of indi-
vidual media effects.

Multiple linear regression model for p predictor variables:

Y = β0 + β1X1 + β2X2 + · · ·+ βpXp + ε (3.17)

βj : average effect on Y of 1-unit increase in Xj holding other predictors fixed.

In advertising example:

sales = β0 + β1 × TV+ β2 × radio+ β3 × newspaper (3.18)
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Multiple Linear Regression
Estimating the coefficients

• Given estimates β̂0, β̂1, . . . , β̂p, obtain prediction formula

ŷ = β̂0 + β̂1x1 + · · ·+ β̂pxp. (3.19)

• Same fitting approach: choose {β̂j}pj=0 to minimize

RSS =

n∑
i=1

(yi − ŷi )
2 =

n∑
i=1

(yi − β̂0 − β̂1xi ,1 − · · · − β̂pxi ,p)
2, (3.20)

yielding the multiple least squares regression coefficients
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Multiple Linear Regression
Example: multiple linear regression, 2 predictors, 1 response

X1

X2

Y
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Multiple Linear Regression
Numerical methods for least squares fitting

• Determining the coefficients {β̂j}pj=0 to minimize the RSS in (3.20) is equi-

valent to minimizing ‖y −Xβ̂‖22, where we have introduced the notation

y =

y1...
yn

 , X =

1 x1,1 . . . x1,p
...

...
...

1 xn,1 . . . xn,p

 , β̂ =

β̂0...
β̂p


for the vector y ∈ Rn of response observations, the matrix X ∈ Rn×(p+1) of
predictor observations and vector β̂ ∈ Rp+1 of coefficient estimates.

• The problem of finding a vector x ∈ Rn such that b ≈ Ax for given A ∈
Rm×n and b ∈ Rm is called a linear regression problem.

• One (of many) possible approaches for achieving this is choosing x to mini-
mize ‖b − Ax‖2, which is a linear least squares problem.
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Multiple Linear Regression
Numerical methods for least squares fitting

• A somewhat more general fitting approach using a model

y ≈ β0 + β1f1(x) + · · ·+ βpfp(x)

with fixed regression functions {fj}pj=1 also leads to a linear regression
problem, where now [X]i ,j = fj(xi ).

• A linear least squares problem ‖b − Ax‖2 → min with m ≥ n has a unique
solution if the columns of A are linearly independent, i.e., when A has full
rank, given by x = (ATA)−1ATb.
In this case the solution can be computed using a Cholesky decomposition.

• In the (nearly) rank-deficient case, more sophisticated techniques of nume-
rical linear algebra like the QR decomposition or the SVD are required to
obtain a (stable) solution.

• When A is large and sparse or structured, iterative methods such as CGLS
or LSQR can be employed which require only matrix-vector products in
place of manipulations of matrix entries.
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Multiple Linear Regression
Advertising data

Estimate SE t-statistic p-value
β0 2.939 0.3119 9.42 < 0.0001
β1 (TV) 0.046 0.0014 32.81 < 0.0001
β2 (radio) 0.189 0.0086 21.89 < 0.0001
β3 (newspaper) −0.001 0.0059 −0.18 0.8599

• Newspaper slope differs from simple regression.
Small estimate, p-value no longer significant.

• Now no relation between sales and newspaper budget. Contradiction?
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Multiple Linear Regression
Advertising data

Correlation matrix:

TV radio newapaper sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

• Correlation between newspaper and radio: ≈ 0.35:
Tend to spend more on radio ads where more is spent on newspaper ads.

• If correct, i.e., βnewspaper ≈ 0, βradio > 0, radio increased sales, and where
radio budget high, newpaper budget tends to also be high.

• Simple linear regression: indicates newspaper associated with higher sales.
Multiple regression reveals no such affect.

• Newspaper receives credit for radio’s affect on sales.
Sales due to newspaper advertising is a surrogate for sales due to radio
advertising.
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Multiple Linear Regression
Absurd example, same effect

• Counterintuitive but not uncommon. Consider following (absurd) example.

• Data on shark attacks versus ice cream sales at beach community
would show similar positive relationship as newpaper and radio ads.

• Should one ban ice cream sales to reduce risk of shark attacks?
• Answer: High temperatures cause both (more people at beach for shark
encounters, more ice cream customers).

• Multiple regression reveals icre cream sales not a predictor for shark at-
tacks after adjusting for temperature.
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Multiple Linear Regression
Questions to consider

1 Is at least one of the predictors X1, X2, . . . , Xp useful in predicting the
response?

2 Do all predictors help to explain Y , or is only a subset of the predictors
useful?

3 How well does the model fit the data?

4 Given a set of predictor values, what response value should we predict, and
how accurate is our prediction?
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Multiple Linear Regression
(1) Is there a relationship between response and predictors?

• As for simple regression, perform statistical hypothesis test: null hpothesis

H0 : β1 = β2 = · · · = βp = 0

versus alternative

Ha : at least one βj(j = 1, . . . , p) is nonzero.

• Such a test can be based on the F-statistic

F =
(TSS−RSS)/p
RSS /(n − p − 1)

(3.21)

where, as before,

TSS =

n∑
i=1

(yi − y)2, RSS =

n∑
i=1

(yi − ŷi )
2.
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Multiple Linear Regression
(1) Is there a relationship between response and predictors?

F =
(TSS−RSS)/p
RSS /(n − p − 1)

• Under linear model assumption, can show

E
[

RSS

n − p − 1

]
= σ2.

(σ2 again the variance of the sample distribution)

• If also H0 is true, can show

E
[
TSS−RSS

p

]
= σ2.

• Hence F ≈ 1 if no relationship between response and predictors.
Alternatively, if Ha true, E [(TSS−RSS)/p] > σ2, hence F > 1.
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E
[
TSS−RSS

p

]
= σ2.

• Hence F ≈ 1 if no relationship between response and predictors.
Alternatively, if Ha true, E [(TSS−RSS)/p] > σ2, hence F > 1.
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Multiple Linear Regression
(1) Is there a relationship between response and predictors?

Statistics for multiple regression of sales onto radio, TV and newspaper in
the advertising data set:

Quantity Value
RSE 1.69
R2 0.897
F 570

• F � 1 strong evidence against H0.
• Proper threshold value for F depends on n, p.
Larger F needed to reject H0 for small n.

• H0 true, εi Gaussian, then F follows F-distribution; calculate p-value using
statistical software.

• Here, p-value ≈ 0 for F = 590 in this example, hence we safely reject H0.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 103 / 462



Multiple Linear Regression
(1) Is there a relationship between response and predictors?

• To test whether subset of last q < p coefficients relevant, use null hypothe-
sis

H0 : βp−q+1 = βp−q+2 = · · · = βp = 0.

• Fit model using all variables except last q, obtaining residual sum of squa-
res RSS0.

• Appropriate F -statistic now

F =
(RSS0−RSS)/q
RSS /(n − p − 1)

• For multiple regression, t-statistic and p values for each variable indicate
whether each predictor related to response after adjusting for the remaining
variables.
Equivalent to F -test omitting single variable (q = 1).
Reports partial effect of adding each variable.
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Multiple Linear Regression
(1) Is there a relationship between response and predictors?

What does F statistic tell us that individual p-values don’t?

• Does single small p-value indicate at least one variable relevant? No.
• Example: p = 100, H0 : β1 = · · · = βp = 0 true.
Then by chance, 5% of p-values below 0.05.
Almost guaranteed that p < 0.05 for at least one variable by chance.

• Thus, for large p, looking only at p-values of individual t-statistics tends to
discover spurious relationships.

• For F -statistic, if H0 true, only 5% chance of p-value < 0.05 independently
of n, p.

Note: F -statistic approach works for p < n.
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Multiple Linear Regression
(2) Deciding on important variables

• Typically, not all predictors related to response
(variable selection problem).

• One approach: try all possible models, select best one. Criteria?
Mallow’s Cp, Akaike information criterion (AIC),
Bayesian information criterion (BIC) (later)

• For p large, trying 2p models with subsets of variables impractical.
• Forward selection: Start with null model (only β0), fit p simple regressi-
ons, add variable leading to lowest RSS, then add variable leading to two-
variable model with lowest RSS, continue until stopping criterion met.

• Backward selection: Start with full model, remove variable with largest p-
value, fit new (p − 1)-variable model, keep removing least significant varia-
ble, until stopping criterion met.

• Mixed selection: Start with null model, adding variables with best fit one-
by-one, remove variables whenever their p-value rises above threshold, until
model contains only variables with low p-values and excludes those with
high p-value.
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Multiple Linear Regression
(3) Model fit

RSE, R2 computed and interpreted as in simple linear regression.
• R2 = Cor(X ,Y )2 for simple linear regression.
• R2 = Cor(Ŷ ,Y )2 for multiple linear regression, maximized by fitted model.
• R2 ≈ 1: model explains large portion of response variance.

• Advertising example:

{TV, radio, newspaper} R2 = 0.8972

{TV, radio} R2 = 0.89719

Small increase on including newspaper (even though newspaper not signi-
ficant)

• Note: R2 always increases when variables are added.
• Tiny increase in R2 on including newspaper more evidence this variable can
be dropped.

• Including redundant variables promotes overfitting.
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Multiple Linear Regression
(3) Model fit

• Advertising example:

{TV} R2 = 0.61

{TV, radio} R2 = 0.89719

Substantial improvement on adding radio.
(Could also look at p-value of radio’s coefficient in last model.)

• Advertising example:

{TV, radio, newspaper} RSE = 1.686

{TV, radio} RSE = 1.681

{TV} RSE = 3.26

• Note: for multiple linear regression RSE defined as

RSE =

√
RSS

n − p − 1
.
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Multiple Linear Regression
(3) Model fit

{TV, radio}

Sales

Radio

TV
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Multiple Linear Regression
(3) Model fit

Previous figure:
• Some observations above, some below least squares regression plane.
• Linear model overestimates sales where most of budget spent either exclu-
sively on TV or radio.

• Underestimation where budget split between two media.
• Such nonlinear pattern not reflected by linear model; suggests synergy ef-
fect between these two media.
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Multiple Linear Regression
(4) Predictions

We note three sources of prediction uncertainty:

1 Reducible error: Ŷ ≈ f (X ) since β̂j ≈ βj .
Can construct confidence intervals to ascertain closeness Ŷ to f (X ).

2 Model bias: linear model can only yield best linear approximation.

3 Irreducible error: Y = f (X ) + ε.
Assess prediction error with prediction intervals: incorporate both reduci-
ble and irreducible errors.

Example: Prediction using {TV, radio} model.
XTV = 100 000 $, Xradio = 20 000 $.

Confidence interval on sales : 95% confidence interval : [10.985, 11.528].

Prediction interval on sales: 95% prediction interval : [7.930, 14.580].

Increased uncertainty about sales for given city in contrast with average sales
over many locations.
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Other Considerations in the Regression Model
Qualitative predictors

For a first regression model involving also qualitative predictor variables, con-
sider the Credit data set:
• Quantitative predictors:

• balance: average credit card debt for a number of individuals
• age
• cards (# credit cards)
• education (years of education)
• income (in thousands of dollars)
• limit (credit limit)
• rating (credit rating)

• Qualitative predictors:
• gender
• student (student status)
• status (marital status)
• ethnicity (Caucasian, African American or Asian)
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Other Considerations in the Regression Model
Qualitative predictors

Balance
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Other Considerations in the Regression Model
Two-valued predictors

• Goal: investigate differences in credit card balance between males/females.
• Gender (qualitative variable, factor) represented with indicator (dummy
variable)

xi =

{
1 if i-th person female,

0 if i-th person male.
(3.22)

• Using xi in regression equation results in model

yi = β0 + β1xi + εi =

{
β0 + β1 + εi if i-th person female,

β0 + εi if i-th person male.
(3.23)

• Interpretation

β0 : average credit card balance among males,

β0 + β1 : average credit card balance among females,

β1 : average difference in credit card balance male/female.
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Other Considerations in the Regression Model
Two-valued predictors

Coefficient Standard error t-statistic p-value
β0 509.80 33.13 15.389 < 0.0001
β1 19.73 46.05 0.429 0.6690

• Average credit card debt males: $509.80.
• Average additional credit card debt females: $19.73.
• Total average female credit card debt: $529.53.
• High p value for dummy variable. Conclusion?

Gender not a statistically significant factor for credit card debt.
• Switching male/female coding yields estimates

β̂0 = $529.53, β̂1 = $− 19.73, β̂0 + β̂1 = $509.80.
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Other Considerations in the Regression Model
Two-valued predictors

Another alternative coding of two-valued gender predictor:

xi =

{
1 if i-th person female,

−1 if i-th person male.

Results in model

yi = β0 + β1x + εi =

{
β0 + β1 + εi if i-th person female,

β0 − β1 + εi if i-th person male,

with interpretation now

β0 : average credit card balance (ignoring gender),

β1 : amount females are above/males below this average,

giving estimates

β̂0 = $519.665 (half way between male and female averages)

β̂1 = $ 9.865 (half of $19.63, average male/female difference).
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Other Considerations in the Regression Model
Multi-valued qualitative predictors

To encode ethnicity ∈ {Caucasian, African American, Asian}, use
multiple dummy variables (# values − 1)

xi ,1 =

{
1 if i-th person Asian,

0 if i-th person not Asian,
(3.24)

xi ,2 =

{
1 if i-th person Caucasian,

0 if i-th person not Caucasian,
(3.25)

resulting in model

yi = β0 + β1xi ,1 + β2xi .2 + εi =


β0 + β1 + εi if i-th person Asian

β0 + β2 + εi if i-th person Caucasian

β0 + εi if i-th person African American
(3.26)

Interpretation: β0 : average credit card balance for African Americans (baseline),
β1 : difference between Asian and African Americans,

β2 : difference between Caucasian and African Americans
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Other Considerations in the Regression Model
Multi-valued qualitative predictors

Coefficient Standard error t-statistic p-value
β0 531.00 46.32 11.464 < 0.0001
β1 (Asian) −18.69 65.02 −0.287 0.7740
β2 (Caucasian) −12.50 56.68 −0.221 0.8260

• Estimated balance for African Americans (baseline): $531.00.

• Asians estimated to have $18.69 less debt than African Americans.
• Caucasians estimated to have $12.50 less debt than African Americans.
• β̂1, β̂2 have high p-values, indicating no statistical significance for ethnicity
as factor in credit card balance.

• Coefficients and p-values depend on coding, result does not.
F -test to reject H0 : β1 = β2 = 0 has p-value 0.96 (cannot reject).

• Dummy variable approach works for combining qualitative and quantitative
predictors.
(Other coding schemes for qualitative variables possible.)
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Other Considerations in the Regression Model
Extending the linear model

• Restrictive assumptions in linear model: linearity, additivity.
• Additivity: effect on Y of changing Xj independent of remaining variables.
• Linearity: rate of change in Y with respect to Xj constant in Xj .

• Recall advertising data set: indication that higher radio budget made ef-
fect of TV spending stronger (interaction effect, synergy).

• Add interaction term to two-predictor model:

Y = β0 + β1X1 + β2X2 + β3X1X2 + ε

= β0 + (β1 + β3X2)X1 + β2X2 + ε

= β0 + β̃1X1 + β2X2 + ε, β̃1 := β1 + β3X2

.

β̃1 changes with X2, hence effect of X1 on Y changes with X2.
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Other Considerations in the Regression Model
Extending the linear model: factory example

Example: factory productivity.
• Predict # produced units based on # production lines and # workers.

• Expected: increase in # production lines will depend on # workers.
• In linear model of units, include interaction term between lines and
workers. A regression fit may yield, e.g.,

units ≈ 1.2+ 3.4× lines+ 0.22× workers+ 1.4× (lines× workers)

= 1.2+ (3.4+ 1.4× workers)× lines+ 0.22× workers

• Adding additional line will increase # produced units by 3.4+1.4×workers.
The more workers, the stronger the effect of adding a line.
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Other Considerations in the Regression Model
Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

sales = β0 + β1 × TV+ β2 × radio+ β3 × (radio× TV) + ε

= β0 + (β1 + β3 × radio)× TV+ β2 × radio+ ε
(3.27)

Interpretation of β3 : increase in effectiveness of TV advertising for one-unit
increase in radio advertising.

Coefficient Standard error t-statistic p-value
β0 6.7502 0.248 27.23 < 0.0001
β1 0.0191 0.002 12.70 < 0.0001
β2 0.0289 0.009 3.24 0.0014
β3 0.0011 0.000 20.73 < 0.0001

• Model with interaction term superior to that including only main effects.
• Low p-value of interaction term strong evidence for rejecting H0 : β3 = 0.
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Other Considerations in the Regression Model
Extending the linear model: advertising example

• Model (3.27) has R2 = 96.8%
(vs. R2 = 89.7% for model without interaction term).

• Interpretation: of the variability remaining after fitting the model without
interaction term,

96.8%− 89.7%
100%− 89.7%

= 69%

is explained by model (3.27) which includes the interaction term.
• $1000 increase in TV budget associated with sales increase of

(β̂1 + β̂3 × radio)× 1000 = 19+ 1.1× radio units.
$1000 increase in radio budget associated with sales increase of
(β̂2 + β̂3 × TV)× 1000 = 29+ 1.1× TV units.

• Hierarchical principle: for every interaction term, include all associated
main effects, even if the p values of their coefficients not significant.
Rationale: If X1X2 related to response, vanishing coefficients for X1, X2

unimportant. X1X2 typically correlated with X1, X2; leaving these out alters
meaning of interaction.
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Other Considerations in the Regression Model
Extending the linear model: credit example

Credit data set: predict balance using income (quantitative) and student
(qualitative). Without interaction term:

balancei ≈ β0 + β1 × incomei +

{
β2 if i-th person student

0 otherwise

= β1 × incomei +

{
β0 + β2 if i-th person student

β0 otherwise.

(3.28)

• Results in fitting two parallel lines to data (one each for students and non-
students).

• Parallel implies: average affect on balance of one-unit increase in income
independent of Student status.

• Reflects model shortcoming: change in income may have very different
effect on credit card balance for students and non-students.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 124 / 462



Other Considerations in the Regression Model
Extending the linear model: credit example

Credit data set: predict balance using income (quantitative) and student
(qualitative). Without interaction term:

balancei ≈ β0 + β1 × incomei +

{
β2 if i-th person student

0 otherwise

= β1 × incomei +

{
β0 + β2 if i-th person student

β0 otherwise.

(3.28)

• Results in fitting two parallel lines to data (one each for students and non-
students).

• Parallel implies: average affect on balance of one-unit increase in income
independent of Student status.

• Reflects model shortcoming: change in income may have very different
effect on credit card balance for students and non-students.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 124 / 462



Other Considerations in the Regression Model
Extending the linear model: credit example
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With interaction term: multiply income with dummy variable for student

balancei ≈ β0 + β1 × incomei +

{
β2 + β3 × incomei if i-th person student

0 otherwise

=

{
(β0 + β2) + (β1 + β3)× incomei if i-th person student

β0 + β1 × incomei otherwise.
(3.29)
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Other Considerations in the Regression Model
Extending the linear model: credit example

• Now the two lines have different intercepts and different slopes.
• Slope for students lower, indicates increases in income associated with
smaller increase in credit card balance than for non-students.
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Other Considerations in the Regression Model
Extending the linear model: nonlinear relationships

Polynomial regression vs. linear regression:

50 100 150 200

1
0

2
0

3
0

4
0

5
0

Horsepower

M
ile

s
 p

e
r 

g
a

llo
n

Linear

Degree 2

Degree 5

Auto data set showing mpg (miles per gallon) versus horsepower for different cars.
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Other Considerations in the Regression Model
Extending the linear model: nonlinear relationships

Since the data seem to suggest curved relationship, add quadratic term:

mpg = β0 + β1 × horsepower+ β2 × horsepower2 + ε. (3.30)

Coefficient Standard error t-statistic p-value
β0 56.9001 1.8004 31.6 < 0.0001
β1 −0.4662 0.0311 −15.0 < 0.0001
β2 0.0012 0.0001 10.1 < 0.0001

• Linear fit has R2 = 0.606, quadratic fit has R2 = 0.688.
• p-value for quadratic term highly significant.
• Degree 5 fit more oscillatory, doesn’t appear to explain data any better
than quadratic.
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Other Considerations in the Regression Model
Potential problems

Most common problems when fitting a linear regression model to a data set:
(identification and solution as much an art as a science)

1 Nonlinear dependence of response on predictors

2 Correlated error terms

3 Non-constant variance of error terms

4 Outliers

5 High-leverage points

6 Collinearity
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Other Considerations in the Regression Model
Potential problems: (1) Nonlinear dependence

Inference and prediction from linear regression model are suspect when true mo-
del nonlinear.
• Identifying nonlinearity aided by residual plots

ri = yi − ŷi against predictors xi .

• For multiple regression models, plot residuals against predicted (fitted) va-
lues ŷi .

• Ideal picture: no discernible pattern.
• Presence of pattern indicates possible problem with model.
• When nonlinearity is suggested, introduce nonlinear functions of predictors
as regression functions into the regression model.
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Other Considerations in the Regression Model
Potential problems: (1) Nonlinear dependence
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Residuals versus predicted values for Auto data set.
Red line is smooth fit to residuals to aid in identifying trends.
Left: linear regression of mpg on horsepower (strong pattern).
Right: linear regression of mpg on horsepower and horsepower2 (little pattern).
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Other Considerations in the Regression Model
Potential problems: (2) Correlated error terms

• Linear regression assumes uncorrelated errors εi .
• Computation of SE for coefficient estimates, fitted values, based on this
assumption. Otherwise estimated SE tend to underestimate true SE, confi-
dence and prediction intervals too optimistic (narrow), p-values lower than
they should be.

• Extreme example: double data (observations, error terms identical in pairs).
SE calculations use sample size 2n in place of n, hence CI narrower by fac-
tor of

√
2.

• Detection for time series: plot residuals as function of time. No correlati-
ons implies no visible pattern; correlations lead to tracking of residuals.

• Example (next slide): time series with error correlation ρ = 0, 0.5, 0.9
• Example: study of persons’ heights predicted from their weights.
Uncorrelatedness assumption violated if, e.g., individuals related, same diet
or environmantal factors.
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Other Considerations in the Regression Model
Potential problems: (2) Correlated error terms
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Other Considerations in the Regression Model
Potential problems: (3) Non-constant variance of error terms

• SE, CI, hypothesis tests associated with linear model rely on assumption
Var εi = σ2 (∀i).

• Non-constant error variance (heteroscedasticity), e.g. increase with re-
sponse value, leads to funnel-shaped residual plot.

• Possible solution: transform response Y using concave function such as
logY or

√
Y , leads to damping of larger responses, reducing heterosceda-

sticity.
• When variation of response variance known, e.g., i-th response average
of ni observations which are uncorrelated with variance σ2, then average
has variance σ2i = σ2/ni . Remedy: weighted least squares with weights
proportional to inverse variances.
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Other Considerations in the Regression Model
Potential problems: (3) Non-constant variance of error terms
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Residual plots. Red: smooth fit of residuals. Blue: track outer quantiles of residuals.
Left: funnel shape indicating heteroscedasticity.
Right: After log-transforming respone, heteroscedasticity removed.
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Other Considerations in the Regression Model
Potential problems: (4) Outliers

• Outlier: point where yi far from value predicted by model.
• Possible causes: observation errors.
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Left: red solid line: least squares line with outlier, blue: without.
Center: Residual plot identifies outlier.
Right: Outlier seen to have studentized residual (divide ei by its estimated standard
error) of 6 (between −3 and 3 expected).
R2 declines from 0.892 to 0.805 on including outlier.
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Other Considerations in the Regression Model
Potential problems: (5) High-leverage points

• Outliers: observations where yi is unusual given xi .
• Observations with high leverage have unusual value for xi .
• If least squares line strongly affected by certain points, problems with these
may invalidate entire fit, hence important to identify such observations.

• Simple linear regression: extremal x-values;
multiple linear regression: in range of all other observation coordinates, but
unusual (difficult to detect for more than two predictors).

• Large value of leverage statistic indicates high leverage.
For simple linear regression:

hi =
1
n
+

(xi − x)2∑n
j=1(xj − x)2

∈
(
1
n
, 1
)
. (3.31)

Average value always p+1
n , deviation from average indicates high leverage.
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Other Considerations in the Regression Model
Potential problems: (5) High-leverage points
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Left: Same data as previous figure, with added observation 41 (red) of high leverage.
Red solid line is least squares fit with, blue dashed without observation 41.

Center: two predictor variables, most observations within blue dashed ellipse, red ob-
servation distinctly outside.

Right: same data as in left panel, studentized residuals vs. leverage statistic. Observa-
tion 41 has high leverage and high residual, i.e., outlier and high-leverage point.
Outlier observation 20 has low leverage.
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Other Considerations in the Regression Model
Potential problems: (6) Collinearity

Collinearity: two or more predictor variables closely related.
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From Credit data set.
Left: limit vs. age. Right: limit vs. rating (strongly collinear).
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Other Considerations in the Regression Model
Potential problems: (6) Collinearity

Difficult to separate individual effects of collinear variables on response.
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Other Considerations in the Regression Model
Potential problems: (6) Collinearity

• Collinearity increases SE, hence reduces t-statistic, and we will more likely
fail to reject H0 : βj = 0. This reduces the power of the hypothesis test,
i.e., the probability of correctly detecting a nonzero coefficient.

Coefficient Standard error t-statistic p-value
Model 1

β0 −173.411 43.828 −3.957 < 0.0001
β1 (age) −2.292 0.672 −3.407 0.0007
β2 (limit) 0.173 0.005 34.496 < 0.0001

Model 2
β0 −377.537 45.254 −8.343 < 0.0001
β1 (rating) 2.202 0.952 2.312 0.0213
β2 (limit) 0.025 0.064 0.384 0.7012

• Model 1: age, limit both highly significant.
Model 2: collinearity between rating and limit increases SE for limit
coefficient by factor 12, p-value increases to 0.701. Collinearity masks im-
portance of limit variable.
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Other Considerations in the Regression Model
Potential problems: (6) Collinearity

• Important to detect collinearity when fitting a model.
• Correlation matrix may give indication.
• Multicollinearity: collinearity between 3 or more variables which each have
low pairwise correlation.

• Variance inflation factor (VIF): ratio of variance of β̂j when fitting the
full model and variance of β̂j when fitted separately.

• VIF ≥ 1, minimum at complete absence of collinearity.
Problematic if VIF exceeds 5 or 10.

•
VIF(β̂j ) =

1
1− R2

Xj |X−j

R2
Xj |X−j

: R2 from regression of Xj onto all other predictors.
• In Credit data example: predictors have VIF values of 1.01, 160.67, 160.59.
• Remedies: drop problematic variables, combine collinear variables into single
predictor.
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Revisiting the Marketing Data Questions

Recall the seven questions relating to the Advertising data set we set out to
answer on Slide 72:

1 Is there a relationship between advertising budget and sales?

2 How strong is this relationship between advertising budget and sales?

3 Which media contribute to sales?

4 How accurately can we estimate the effect of each medium on sales?

5 How accurately can we predict future sales?

6 Is the relationship linear?

7 Is there synergy among the advertising media?

We revisit each in turn.
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Revisiting the Marketing Data Questions

1 Is there a relationship between advertising budget and sales?

• Fit multiple regression model of sales onto TV, radio and newspaper.
• Test hypothesis H0 : βTV = βradio = βnewspaper = 0.
• Rejection/non-rejection based on F -statistic (Slide 101).
• For advertising data: low p-value of F -statistic (table on Slide 103) strong
evidence for rejecting H0.
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Revisiting the Marketing Data Questions

2 How strong is this relationship between advertising budget and sales?

• Measure of model error: RSE (see Slide 81), estimates standard deviation
of response from (true) population regression line.

• Advertising data:
For multiple regression model of sales on TV and radio, RSE = 1, 681
units (Slide 108).
Relative to response sample mean of 14, 022 units, this is an error of 12%.

• Measure of model error: R2 (Slide 88), measures proportion of response
variability explained by model.

• Advertising data:
For multiple regression model of sales on TV, radio and newspaper,
R2 = 0.897, i.e., ≈ 90% of sales variability explained by multiple linear
regression model (Slide 103).
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Revisiting the Marketing Data Questions

3 Which media contribute to sales?

• p-values of t-statistic in multiple regression model of sales on TV, radio
and newspaper: small for TV and radio, large for newspaper.

• Suggest only TV and radio budgets related to sales.
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Revisiting the Marketing Data Questions

4 How accurately can we estimate the effect of each medium on sales?

• Confidence intervals for βj constructed from SE of β̂j .
• Advertising data: 95%-confidence intervals for multiple regression coeffi-
cients are

TV (0.043, 0.049)

radio (0.172, 0.206)

newspaper (−0.013, 0.011)

• Wide SE due to collinearity? (Slide 139).
VIF scores for TV, radio and newspaper are 1.005, 1.145, 1.145, so not
likely.

• Separate simple regressions of sales on TV, radio and newspaper show
strong association of TV and radio with sales, mild association of newspaper
with sales, when remaining two predictors ignored.
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Revisiting the Marketing Data Questions

5 How accurately can we predict future sales?

• Can use (3.19) for prediction.
• Precition intervals assess accuracy of predicting individual responses
Y = f (X ) + ε.

• Confidence intervals assess accuracy of predicting average responses
Y = f (X ).

• Former always wider due to accounting for additional variability due to irre-
ducible error ε.
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Revisiting the Marketing Data Questions

6 Is the relationship linear?

• Identify nonlinearity using residual plots of linear model (Slide 130).
• Advertising data:
Nonlinear effects visible in figure on Slide 109.

• Discussed regression functions which are nonlinear in the predictor varia-
bles.
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Revisiting the Marketing Data Questions

7 Is there synergy among the advertising media?

• Non-additive relationships modeled by interaction term in model (Slide 120).
• Presence of interaction (synergy) confirmed by small p-value of interaction
term.

• Advertising data:
Including interaction term increased R2 from ≈ 90% to ≈ 97%.
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Linear Regression vs. K -Nearest Neighbors
Non-parametric approach

• Linear regression is a parametric method.
• Non-parametric methods make no strong a priori assumptions on functional
form of model Y ≈ f (X ), more flexibility in adapting to data.

• Here: K -nearest neighbors (KNN) regression (Cf. KNN classifier in
Chapter 2).

• Given prediction point x0, first determine the set N0 consisting of the K
(K ∈ N) training observations closest to x0.

• Predict ŷ0 to be average training response in N0, i.e.,

f̂ (x0) =
1
K

∑
xi∈N0

yi .
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Linear Regression vs. K -Nearest Neighbors
Non-parametric approach

yy

x1x1

x 2x 2

Two KNN fits on a data set with 64 observations using p = 2 predictors.
Left: K = 1. Interpolation, rough step-like function.
Right: K = 9. Not interpolatory, smoother.
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Linear Regression vs. K -Nearest Neighbors
Tuning K

• Flexibility of model controlled by K : less flexible. smoother fit, for large K .
• Bias-variance tradeoff.
• Flexible model: low bias, high variance
(prediction depends on only one nearby observation).
Unflexible model: high bias, low variance (changing one observation has
smaller effect, averaging introduces bias).

• Optimal value of K? (later)
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Linear Regression vs. K -Nearest Neighbors
Parametric vs. non-parametric

Q: In what setting will a parametric approach outperform a non-parametric ap-
proach?

A: Depends on how closely assumed form of f matches true form.

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

−1.0 −0.5 0.0 0.5 1.0

1
2

3
4

yy

xx
1D data, 100 observations (red), linear true model (black), KNN regression (blue).
Left: K = 1, right: K = 9.
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Linear Regression vs. K -Nearest Neighbors
Parametric vs. non-parametric
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Left: same data, linear regression fit.
Right: test set MSE for linear regression (dotted line) and KNN for different values of
K (plotted against 1/K).
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Linear Regression vs. K -Nearest Neighbors
Parametric vs. non-parametric
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Left: slightly nonlinear data, true model (black), KNN regression with K = 1 (blue)
and K = 9 (red).
Right: test set MSE for linear regression (dotted line) and KNN (against 1/K). KNN
wins for K ≥ 4.
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Linear Regression vs. K -Nearest Neighbors
Parametric vs. non-parametric
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Left: stronly nonlinear data, true model (black), KNN regression with K = 1 (blue)
and K = 9 (red).
Right: test set MSE for linear regression (dotted line) and KNN (against 1/K). KNN
wins for all K displayed.
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Linear Regression vs. K -Nearest Neighbors
Parametric vs. non-parametric
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Strongly nonlinear case, added noise predictors not associated with response. Linear
regression MSE deteriorates only slightly as p rises, KNN regression MSE much more
sensitive.

• For p = 1 KNN seems at most slightly worse than linear regression. For
p > 1 this is no longer true.

• Curse of dimensionality: for p = 20, many of the 100 observations have
no nearby observations.
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Linear Regression vs. K -Nearest Neighbors
Parametric vs. non-parametric

• General rule: parametric methods tend to outperform non-parametric me-
thods when there is a small number of observations per predictor.

• Even for small p, parametric methods offer the added advantage of better
interpretability.
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