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Learning Theory
Example: Advertising channels

• Given a data set containing the sales numbers for a given product in 200
markets, allocate an advertising budget across the three media channels
TV, radio and newspaper.

• The sales numbers for each medium are available for different advertising
budget values.

• We will try to model the dependence of sales on advertising budgets.
• Terminology:

X1 : TV budget
X2 : radio budget
X3 : newpaper budget


independent variables,
input variables,
predictors,
variables,
features

Y : sales
dependent variable,
target variable,
response
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Learning Theory
Example: Advertising channels
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Y = f (X ) + ε

X = (X1, . . . ,Xp), p = # predictors,

ε : random error term,E [ε] = 0,

f : systematic information X provides about Y .

(2.1)
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Learning Theory
Example: Income

• Data set shows income against years of education for 30 people.
• Objective: determine function f relating income as response to years of
education as predictor.

• f generally unknown, must be estimated from the data.
• Here: data simulated, so f available.
• In another data set, income is given with respect to two input variables:
years of education and seniority.

• Statistical learning is concerned with techniques for estimating f from a
data set.
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Learning Theory
Example: Income
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Learning Theory
Example: Income
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Two main reasons for
estimating f :
prediction
and
inference.
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Learning Theory
Prediction

• Suppose inputs X readily available, but outputs Y difficult to obtain.
• Since errors average out, predict Y using

Ŷ = f̂ (X ),
f̂ : estimate for f ,

Ŷ : prediction for Y = f (X ).

• Often f̂ only available as a black box, i.e.,
a procedure for generating Ŷ given X .

Example:

X1, . . . ,Xp : characteristics of a patient’s blood samples, measured in lab.

Y : patient’s risk for severe adverse reaction to particular drug.

For obvious reasons, having an accurate estimate Ŷ = f̂ (X ) is preferable to
evaluating Y = f (X ).
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Learning Theory
Prediction

Accuracy of Ŷ ≈ Y depends on reducible error and irreducible error.

• reducible error: f − f̂ . Can be made smaller and smaller by employing
increasingly sophisticated statistical learning techniques.

• irreducible error: ε. Present even for f = f̂ , cannot be predicted from X .
Possible sources:
• Additional variables Y may depend on but which are not observed/measured.
• Unmeasurable variation.
(E.g.: Adverse reaction may depend on manufacturing variations in drug or
variations in patient’s sensitivity over time.)

• Quantitative measure: mean squared error (MSE)

E
[
(Y − Ŷ )2

]
= [f (X )− f̂ (X )]2︸ ︷︷ ︸

reducible

+ Var ε︸ ︷︷ ︸
irreducible

• Note: irreducible error always a lower bound on prediction accuracy.
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Accuracy of Ŷ ≈ Y depends on reducible error and irreducible error.
• reducible error: f − f̂ . Can be made smaller and smaller by employing
increasingly sophisticated statistical learning techniques.

• irreducible error: ε. Present even for f = f̂ , cannot be predicted from X .
Possible sources:
• Additional variables Y may depend on but which are not observed/measured.
• Unmeasurable variation.
(E.g.: Adverse reaction may depend on manufacturing variations in drug or
variations in patient’s sensitivity over time.)

• Quantitative measure: mean squared error (MSE)

E
[
(Y − Ŷ )2
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]
= [f (X )− f̂ (X )]2︸ ︷︷ ︸

reducible

+ Var ε︸ ︷︷ ︸
irreducible

• Note: irreducible error always a lower bound on prediction accuracy.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 34 / 462



Learning Theory
Inference

Inference seeks to determine how the individual predictors X1, . . . ,Xp affect the
response Y . In particular, this involves more detailed knowledge about f̂ than
simply considering it a black box.

Things to investigate:

• Identify those predictors with the strongest effect on Y .
Can be a small subset of X1, . . . ,Xp.

• Determine relationship between response and each predictor.
Is it monotone increasing or decreasing with respect to an individual predic-
tor? For more complex dependencies, such monotonicities can be affected
by the values of the remaining predictors.

• Is a linear model sufficient?
Historically, most estimation methods have produced a linear (affine) func-
tion f̂ . If the true dependence of Y on X is more complicated, a linear mo-
del may not be accurate enough.
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Learning Theory
Prediction example: direct-marketing campaign

By Dvortygirl - Own work, CC BY-SA 3.0

• Company plans a direct-marketing campaign, wishes to identify individuals
who would respond positively to a mailing.

• Respone is Y ∈ {positive, negative}.
• Predictors Xj are demographic variables.
• Detailed relationship of response to demographic variables not of interest.
• A model which generates accurate predictions is all that is needed.
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Learning Theory
Inference examples: advertising data set, purchase behavior

• In our first example (advertising across media channels TV, radio and newspa-
per), one may also be interested in answers to

- Which media increase sales?
- Of those, which has the strongest positive effect?
- At what rate do sales increase when the TV budget is raised?

• Another example: model brand of a product chosen by a customer as a
function of predictor variables price, store location, discount levels, com-
petitor pricing etc.
Here detailed knowledge of how each variable affects outcome is of inte-
rest, e.g.

- What effect will changing the price of a product have on sales?
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Learning Theory
Example: combination of prediction and infrerence

• There are also mixed situations, involving both prediction and inference:
Consider value of a house depending on prediction values size, crime rate,
zoning, distance from a river/ocean, air quality, schools, income level
of community, . . .

- How much does an ocean view increase the value of a house? (inference)
- Is this house over- or undervalued? (prediction)

• Note: the two objectives may be competing.
Linear models allow for easier inference, but may not be accurate enough
for given prediction goal.
More sophisticated (highly nonlinear) approaches may yield high prediction
accuracy, but the models they produce are often difficult to interpret.
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Learning Theory
Prediction techniques

Denote by

n : number of available data observations. (“training data”)
xij : value of j-th predictor in i-th observation

i = 1, . . . , n; j = 1, . . . , p

yi : value of response variable in i-th observation

Then training data consists of predictor-response pairs

{(x1, y1), (x2, y2), . . . , (xn, yn)}, xi =

xi1
...

xip

 .
Goal is estimating function f̂ such that Y ≈ f̂ (X ) for all observations (X ,Y ).

Two basic approaches: parametric and non-parametric.
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Learning Theory
Parametric methods

Two-step model-based approach

1 Assume specific functional form for f , popular example is the linear model

f (X ) = β0 + β1X1 + β2X2 + · · ·+ βpXp. (2.2)

Estimation of function f now consists only in determining values of the
p + 1 parameters β0, β1, . . . , βp. (huge simplification)

2 Train or fit the chosen model to the data, i.e., choose parameters {βj}pj=0
in order that (here for linear model (2.2))

f (X ) ≈ β0 + β1X1 + β2X2 + · · ·+ βpXp.

Most common fitting technique: (ordinary) least squares, but many other
techniques exist.

Problem of estimating f reduced to estimating a finite number of parameters.
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Learning Theory
Parametric methods

Fundamental difficulty:
• Simplification comes at expense of strong restriction on type of depen-
dence.

• For a bad choice, model cannot match the data well.
• More flexible models can better adapt to given data, but will generally in-
volve more parameters to be estimated.

• Moreover, even if we are willing to fit our data extremely well with a flexi-
ble model, we may be adapting the model only to the fluctuations due to
the random error contained in the data (“fitting the noise”).
In this case, our model will not generalize well, i.e., have a low prediction
value for new data.
This phenomenon is called overfitting.
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Learning Theory
Parametric model example: income data

Linear model: income ≈ β0 + β1 × education+ β2 × seniority.

Years of Education
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Learning Theory
Non-parametric methods

• Non-parametric methods make no a priori assumptions on the functional
form of f .

• Instead, they try to achieve as close an approximation to f as possible wi-
thout being too rough or too oscillatory.

+ Bad a priori assumption can’t limit approximation accuracy.

- Far more observations necessary than for parametric methods.
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Learning Theory
Non-parametric model example: income data

Smooth thin-plate spline model (later):
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Learning Theory
Non-parametric model example: income data

Rough thin-plate spline model:
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Near perfect fit.
Are we overfitting?.
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Learning Theory
Tradeoff: prediction accuracy vs. model interpretability

• Less flexible/more restrictive models can only produce a small range of sha-
pes for f . E.g.: linear regression always provides linear approximation to f .

• More flexible methods (e.g. thin-plate splines) offer larger variety of functi-
on shapes.

• Advantage of restrictive methods:
+ For inference, restrictive models much more interpretable.
• Linear least-squares easy to interpret.
• Lasso: linear model, different way of selecting coefficients, sets some to
zero.
More restrictive than least squares, but also more interpretable..

• Generalized additive models (GAMs): extend model by certain nonlinear
relationships.
More flexible, less easy to interpret.

• Bagging, boosting, support-vector machines: fully nonlinear methods, very
flexible, very difficult to interpret.
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Learning Theory
Tradeoff: prediction accuracy vs. model interpretability
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Learning Theory
Supervised vs. unsupervised learning

Up to now: observation pairs (xi , yi ), i = 1, . . . , n.

Seek model f̂ such that Y ≈ f̂ (X ) for all observations. This is called supervised
learning.

In unsupervised learning only predictor variables X are observed, but no asso-
ciated responses Y .
• No fitting is possible (nothing to fit to); we are, in a sense, working blind.
• Less ambitious goal: discover relationships between observations, draw con-
clusions for predictor variables.

• Cluster analysis (clustering): statistical learning tool to ascertain whether
observations {xi}ni=1 fall into (more or less) distinct groups.

• Example: market segment analysis, observe multiple characteristics of
potential customers (zip code, family income, shopping habits). Possible
groups: big spenders, low spenders.
In the absence of spending pattern data, clustering may reveal whether
potential big spenders may be distinguished by the available data.
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Learning Theory
Example: clustering
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n = 150 observations of two variables X1 and X2, each belonging to one of
three groups (colored for better distinction). Left: well-separated clusters, easily
identified. Right: some overlap between groups, more challenging. Some obser-
vations will likely be mis-classified.
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Learning Theory
Supervised vs. unsupervised learning

Note:
• Clustering more challenging in p > 2 dimensions, e.g. there are p(p − 1)/2
possible scatterplots to look at. Automated methods needed.

• Semi-supervised learning: Only m < n observations come with responses.
(Responses could be very expensive to obtain compared to the predictor
observations).
Goal: incorporate both types of observations in an optimal way.
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Learning Theory
Regression vs. classification problems

Another useful distinction is between continuous and discrete prediction and
response variables.
• Continuous or quantitative variables – such as a person’s height, age, in-
come, the price of a house or stock – typically take on values in the real
numbers.

• Discrete or qualitative variables – a person’s gender, whether or not an
event occurs, a cancer diagnosis – take on values in a in one of a finite
number of different classes or categories.

• Problems with a quantitative response variable are typically referred to as
regression problems, those with a qualitative response as classification
problems.

• The distinction is not always sharp, e.g. logistic regression is used for (two-
valued) qualitative responses (it estimates class probabilities).
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Assessing Model Accuracy
Mean squared error

Most common error metric in regression: mean squared error (MSE):

MSE =
1
n

n∑
i=1

(
yi − f̂ (xi )

)2
. (2.3)

• When applied to training data: training MSE.
• More interesting (particularly for prediction): test MSE resulting from data
not used to train (fit) the model f̂ .

• If a test data set is available in addition to the training data, different lear-
ning (fitting) methods can be compared with respect to their test MSE
values.

• In the absence of a test data set, choosing a learning method based solely
on the training MSE can be deceptive.
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Assessing Model Accuracy
Example: smoothing spline models
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Left: Observations from model (2.1), true f in black, estimates in orange, blue, green.
Right: Average MSE for training data (gray), test data (red) vs. flexibiliy parameter.

Horizontal dashed line denotes Var ε.
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Assessing Model Accuracy
Example: smoothing spline models
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Same plots as on previous figure, but with a true model that is nearly linear.
Initial estimate (with few degrees of freedon) already quite accurate.
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Assessing Model Accuracy
Example: smoothing spline models
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Another such plot, now the true model is highly nonlinear. Maximal accuracy for trai-
ning and test data not attained until model contains many degrees of freedom.
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Assessing Model Accuracy
Example: smoothing spline models

Recap:
• Monotone decrease of training MSE as model becomes more flexible (more
degrees of freedeom, DoF) and can more flexibly follow data variation.

• Typically test MSE curve U-shaped, rises again once overfitting sets in.
• This is a fundamental property of statistical learning, regardless of data set
and regardless of statistical technique being used.

• Interpretation: in overfitting, estimate is finding patterns (signal variation)
where there are none.
James et al: “When we overfit the training data, the test MSE will be very
large because the supposed patterns that the method found in the training
data simply don’t exist in the test data.”

• Overfitting: less flexible model would have yielded smaller test MSE.

Note: Many estimation methods based on minimizing MSE with respect to the
DoF in the method, hence training MSE almost always less than test MSE.
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Assessing Model Accuracy
Apophenia

The tendency to misclassify random events as systematic or, more generally, to
see patterns where there are none, is common to human experience and known
as Apophenia.

• It is believed to be an advantage in
the process of natural selection.

• It encourages conspiracy theories.
• It is used to explain the gambler’s
fallacy in probability theory.

• In his bestselling book Thinking
Fast and Slow, the famous beha-
vioral economist Kahneman calls
this phenomenon the “law of small
numbers”. Jesus and Mary in an orange.

Source: anorak.co.uk
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Assessing Model Accuracy
Trade-off: bias vs variance

Can show: expected test MSE for new value x0 of test data has representation

E
[(

y0 − f̂ (x0)
)2]

= Var f̂ (x0) + [Bias f̂ (x0)]2 + Var ε. (2.4)

• E
[(

y0 − f̂ (x0)
)2]

is the expected test MSE with respect to the distributi-

on of the predictor variable X , i.e., the average test MSE we would obtain
by repeatedly estimating f using a large number of training sets, and tes-
ting each at x0.

• (2.4) implies that a good statistical learning method needs to achieve both
low bias and low variance.

• Variance: amount by which f̂ would change if estimated using a different
training data set. A method with high variance is sensitive to small changes
in the data set.

• Bias: error introduced by approximating a real-life problem, which may be
extremely complicated, by a much simpler model (systematic error).
More flexible methods have lower bias.
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Assessing Model Accuracy
Trade-off: bias vs variance
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Bias-variance decomposition for last 3 examples. Horizontal dashed line: Var ε. Flexibi-
lity level achieving minimal test MSE varies due to different rates of change in bias and
variance.
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Assessing Model Accuracy
Bias vs. variance for classification

For qualitative (discrete) response variable Y , replace MSE with training error
rate:

1
n

n∑
i=1

1{yi 6=ŷi} (2.5)

expressing the fraction of incorrect classifications, where

ŷi : predicted class label for i-th observation using f̂ ,

1{yi 6=ŷi} =

{
1 yi 6= ŷi ,

0 yi = ŷi ,
(indicator variable).

As in regression setting, of more interest than training error rate (2.5) is test
error rate, which averages classification errors 1{y0 6=ŷ0} over a test set of obser-
vations (x0, y0) with classification prediction ŷ0 for predictor variable x0.
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Assessing Model Accuracy
Classification: Bayes classifier

One can show (we won’t) that expectation of test rate error is minimized by the
Bayes classifier: assign to test observation with predictor vector x0 the class j
for which conditional probability

P (Y = j |X = x0)

is maximized over all j .

Special case: two-class problem, i.e., Y ∈ {1, 2}; predict

ŷ0 =

{
1 if P{Y = 1|X = x0} > 0.5

2 otherwise.
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Assessing Model Accuracy
Example: Bayes classifier, 2 classes
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Predictors: X1,X2

Response: Y ∈ {orange, blue}
Observations: circles

Orange shading:

P{Y = orange|X} > 0.5

Blue shading

P{Y = orange|X} < 0.5

(simulated data)

Dashed line: Bayes decision
boundary

P{Y = orange|X} = 0.5
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Assessing Model Accuracy
Bayes error rate

• Bayes classifier produces lowest possible test error rate, the Bayes error
rate.

• By definition, error rate at X = x0 is

1−max
j

P{Y = j |X}.

• Overall Bayes error rate:

E
[
1−max

j
P{Y = j |X}

]
= 1− E

[
max

j
P{Y = j |X}

]
,

expectation with respect to distribution of X .
• Previous example: Bayes error rate is 0.1304, positive since some observati-
ons on wrong side of decision boundary, hence maxj P{Y = j |X = x0} < 1
for some x0.

• Bayes error rate analogous to irreducible error.
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Assessing Model Accuracy
K -nearest neighbors

• Bayes classifier not realizable, since based on unknown conditional distribu-
tion, represents unattainable reference value.

• K-nearest neighbors (KNN) classifier: classify based on estimate of con-
ditional distribution.

• Given X = x0, denote by N0 the K ∈ N training set points closest to x0
and estimate

P{Y = j |X = x0} ≈
1
K

∑
i∈N0

1{yi=j},

i.e., by fraction of K nearest neighbors belonging to class j .
• Now proceed as in Bayes estimate with this approximate conditional distri-
bution.
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Assessing Model Accuracy
Example: KNN, K=3
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Left: ×: x0; green circle: N0

Right: KNN applied to all shaded points, resulting decision boundary
Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 66 / 462



Assessing Model Accuracy
Example: KNN, K=10
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KNN: K=10

KNN decision boundary
for K = 10 applied to
data set from Slide 63.

Test error rates:
Bayes: 0.1304
KNN: 0.1363.
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Assessing Model Accuracy
Example: KNN, K=1,100

KNN applied to data set from Slide 63:
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KNN: K=1 KNN: K=100

Left: K = 1, high variance; test error rate 0.1695.
Right: K = 100, high bias; test error rate 01925.
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Assessing Model Accuracy
Example: KNN error rates against K
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Training and test errors of KNN classification for same data plotted against 1/K .
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