
Technische Universität Chemnitz 8. Oktober 2018
Fakultät für Mathematik

Prof. Dr. O. Ernst
J. Blechschmidt

Einführung in Data Science

Übung 1: Einführung in Python

Aufgabe 1: Einführung – Python

In dieser Übungsaufgabe sollst du den grundsätzlichen Umgang mit Python lernen.
Der Workflow zum Initilisieren der Umgebung ist immer derselbe: Öffne dazu eine
Konsole auf deinem Rechner. Anschließend kannst du mit dem Befehl
source /LOCAL/Software/DataScience2018/setup_env

eine Python-Umgebung aktivieren, die speziell für unsere Aufgaben auf den Rechnern
im MRZ-Pool erstellt wurde. Mit dem Befehl python --version kannst du die ak-
tuelle Version überprüfen, diese sollte in unserem Fall Python 3.6.6 sein. Mit dem
Befehl which python solltest du den Installationspfad überprüfen, er sollte

/LOCAL/Software/DataScience2018/miniconda3/envs/DS2018/bin/python

lauten. Wenn dem so ist, kannst du eine interaktive Python-shell mit dem Befehl
ipython

starten. Der Befehl python startet hingegen eine normale Python-shell, ohne Kolorie-
rung und anderen netten Features. In dieser Aufgabe sollst du dich mit den wichtigsten
Funktionalitäten von Python vertraut machen.

(a) Wir starten mit dem Befehl

a = [1, 2, 3]

Mit

type(a)

erfahren wir, dass die Variable a vom Typ “Liste” ist. Mit

a[1]

können wir auf das zweite Element der Liste a zugreifen. Im Gegensatz zu ande-
ren Programmiersprachen wie MATLAB beginnt die Indizierung in Python mit 0.
Mittels

1



len(a)

findest du die Länge der Liste heraus, also die Anzahl der Elemente. Definiere dir
eine zweite Liste, z.B.

b = [4, 5, 6]

und teste, was

a + b

ergibt. Was stellst du fest? Was passiert bei der Multiplikation einer Liste mit einem
Skalar?

(b) Um herauszufinden, was wir mit einer Liste alles machen können, kannst du a.
tippen, und anschließend die Tabulator-Taste drücken. Es erscheint eine Auflistung
von verschiedenen Methoden der Klasse, z.B. kannst du mittels

a.append(1)

eine 1 an deine Liste a anhängen. Wenn du nicht weißt, wofür eine Funktion da
ist, kannst du immer ein Fragezeichen vor die Funktion setzen, z.B. ? a.append
Abhängig davon, wie gut die Funktion/Methode kommentiert ist, ist diese Hilfe
mehr oder weniger hilfreich. Jetzt wollen wir die Liste a absteigend sortieren.
Mit

? a.sort

erfahren wir, dass die Methode zwei optionale Inputs hat, zum einen key mit dem
Standardwert None und zum anderen reverse mit dem Standardwert False. Der
Hilfe-Dialog kann durch Drücken von ’q’ beendet werden.

Da wir die Liste absteigend sortieren wollen, müssen wir also reverse auf True
setzen. Dies können wir mittels

a.sort(reverse = True)

realisieren.

(c) Füge die Zahl 5 an die zweite Stelle von a ein. Suche dazu die richtige Methode
heraus und mache dich mittels ? mit dieser vertraut. Abschließend sollte a gleich
[3, 5, 2, 1, 1] sein.

Es sollte nun klar sein, dass das reine Python ohne Zusatzmodule für mathematische
Berechnungen nur bedingt geeignet ist. Pakete erweitern die Funktionalitäten von Py-
thon extrem, und sollen in den nächsten Aufgaben diskutiert werden. Grundsätzlich
sollte klar sein, dass bei den meisten Problemen die Dokumentationen der Funktionen,
Methoden und Klassen extrem hilfreich sind.

2



Aufgabe 2: Einführung – Numpy

Wie bereits angedeutet, lebt Python von Paketen. Das wichtigste Paket für wissen-
schaftliches Rechnen stellt numpy dar

import numpy as np

Bitte mache dich mit dem Tutorial unter
https://docs.scipy.org/doc/numpy/user/quickstart.html
vertraut. Für alle, die vorher viel mit MATLAB gearbeitet haben, sind hier die wich-
tigsten Unterschiede aufgelistet:
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html.
Hinweis: Es ist nicht üblich, alle Funktionen eines Pakets in den normalen Na-

mespace mittels from numpy import ∗ zu importieren. Stattdessen verwendet man
import numpy bzw. import numpy as np und kann dann auf die Funktionen des
Pakets durch Voranstellen von numpy. bzw. np. zugreifen, z.B. numpy.ndarray bzw.
np.ndarray zugreifen.

(a) Erstelle die Matrix

A =

(
5 6 7 8
1 2 3 4

)
durch direkte Eingabe mittels np.matrix.

(b) Erstelle die Matrix

B =

(
1 2 3 4
5 6 7 8

)
mit den Befehlen np.arange, np.reshape und np.asmatrix. Achte auf den
Unterschied zwischen Matrizen und Arrays.

(c) Berechne
C = AB>

mit A ∗ B.T und mit A.dot(B.T). Was ist der Unterschied zwischen C∗∗2 und
np.power(C,2)?

(d) Erstelle A und B als Arrays anstatt Matrizen. Was stellst du fest, wenn du D =
AB> berechnen willst? Was beobachtest du bei D∗∗2 und np.power(D,2)?

(e) Mit

np.random.randint(5, size=(2, 4))

lässt sich ein 2×4 Array mit zufälligen Ganzzahlen im Bereich 0, . . . , 4 erstellen. Er-
stelle ein 40× 4 Array X mit standard-normalverteilten (Pseudo)-Zufallszahlen mit
dem Befehl np.random.randn. Berechne mit den Befehlen np.mean und np.var
die Mittelwerte und Varianzen der Spalten von X. Da es sich hierbei um (Pseudo)-
Zufallszahlen handelt, wird das Ergebnis bei jedem Durchlauf anders aussehen.

3

http://www.numpy.org/
https://docs.scipy.org/doc/numpy/user/quickstart.html
https://docs.scipy.org/doc/numpy/user/numpy-for-matlab-users.html


Um Algorithmen zu testen ist es vorteilhaft, zu Beginn den Seed des Zufallszahlen-
generators festzusetzen, zum Beispiel mit

np.random.seed(0)

Setze den Seed auf 0, und führe die obige Aufgabe nochmals aus. Vergleiche deine
Werte mit denen deiner Kollegen.

Aufgabe 3: Einführung – Plots

In dieser Aufgabe sollst du dich mit den wichtigsten Plot-Routinen vertraut machen.
Das Paket matplotlib ist das populärste Paket zur grafischen Darstellung in Python.
Vieles funktioniert ähnlich wie in MATLAB. Mit dem Befehl

import matplotlib.pyplot as plt

lässt sich pyplot importieren, mit dem wir uns in diesem Intro beschäftigen wollen.
Für genaue Informationen findest du unter
https://realpython.com/python-matplotlib-guide/
ein gutes Tutorial.

(a) Erstelle mit dem Befehl

x = np.linspace(-5,5,101)

einen Vektor x (hier als Array), der das Interval [−5, 5] äquidistant in 101 Zahlen
unterteilt. Berechne jetzt y = x2 sowie z = x3. Mit den Befehlen

plt.plot(x,y)
plt.show()

kannst du einen einfachen Plot erzeugen. Im Gegensatz zu MATLAB erzeugt Py-
thon nicht für jeden Plot ein neues figure -Object, sondern plottet alles in die
aktuelle figure , bis plt.show() aufgerufen wird.

Versuche nun, sowohl die Funktion y(x)
als auch z(x) in eine Figure zu plotten.
Ändere mit plt.xlabel, plt.ylabel
und plt.title die Bezeichnungen der x-
Achse, der y-Achse sowie den Titel, be-
vor du plt.show() aufrufst. Das Ergebnis
sollte so aussehen:

4 2 0 2 4
x

100

50

0

50

100

f(x
)

Example functions

4

https://realpython.com/python-matplotlib-guide/


(b) Jetzt wollen wir die 2-dimensionale Funktion

f(x, y) = e−(x
2+y2)

darstellen. Führe den folgenden Code aus. Erkläre, was in jeder Zeile passiert.

from mpl_toolkits.mplot3d import Axes3D
from matplotlib import cm
z = np.linspace(-3, 3, 201)
x, y = np.meshgrid(z, z)
f = np.exp(-(np.power(x,2) + np.power(y,2)))
fig = plt.figure()
ax = fig.gca(projection='3d')
ax.plot_surface(x,y,f, cmap=cm.coolwarm)
plt.show()

(c) Erstelle einen Konturplot für die Funktion

g(x, y) = sin(3x) cos(2 y)

mit plt.contour oder plt.contourf.

Bemerkung: Mit plt.ion() bzw. plt.ioff() können Grafiken interaktiv gestal-
tet werden, das heißt man sieht direkt, was man plottet, also vor einem Aufruf von
plt.show().

5


	Einführung – Python
	Einführung – Numpy
	Einführung – Plots

