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Nonlinear Regression Models

Chapter overview

® Despite the benefits of simplicity and interpretability of the standard linear
model for regression, it will suffer from large bias if the model generating
the data depends nonlinearly on the predictors.
® |n this chapter we explore methods which make the linear regression model
more flexible by using linear combinations of nonlinear functions, specifi-
cally
@ polynomial and piecewise polynomial functions,
® piecewise constant functions,
©® piecewise piecewise polynomial functions with penalty terms and
@ generalized additive model functions

of the predictors.
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Nonlinear Regression Models

Polynomial Regression

® For univariate models, polynomial regression replaces the simple linear

regression model
Y =00+ X+¢

with a polynomial of degree d > 1 in the predictor variable

Y =Bo+BiX +BoX? 44+ BaX t e

® High degree polynomials are often difficult to handle due to their oscillato-
ry behavior and their unboundedness for large arguments, so that degrees
higher than 4 can become problematic if employed naively.

® Example: Wage data set: income and demographic information for males
who reside in the central Atlantic region of the United States.
Fit response wage [in $ 1000] to predictor age by LS using a polynomial of
degree d = 4.
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Nonlinear Regression Models

Polynomial Regression

Degree-4 Polynomial

o
o 1
=] o '
o — 1
@ 1
|
=3 0 !
wn 1
«Q g T '
&1 < /
(o]
8 - 3 g
g - s
o
o _|
w
o
8 |
T T T e
20 30 40 50 60 70 80 20 30 40 50 60 70 80

Left: Polynomial (d = 4) LS fit of wage against age (solid blue) with 95% confidence
interval (blue dashed). Right: Model of event {wage > 250} using logistic regression
with d = 4, fitted posterior probability (solid blue) with 95% confidence interval (blue

dashed).
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Nonlinear Regression Models

Polynomial Regression

Left panel in previous figure:

® Given fit of particular age value xg
?(XO) = Bo + Bixo +[§2><§ + ,33X§ +ﬁA4xg,

use variance/covariance estimates of (3; to estimate variance of f(xp).
e If € € R%%® is the estimated covariance matrix of the 3, then

Varf(xo) = £ Cly, where £y = (1,x0.53,....xH".

® [Estimated pointwise standard error of ?(Xo) is the square root of this
variance.

® Repeat calculation for all xg, plotting £2x standard error (corresponds to
~ 95% confidence interval for normally distributed errors) yields dashed
lines.
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Nonlinear Regression Models

Polynomial Regression

Right panel in previous figure:

Observations seem to fall into 2 classes: high earners (> $250K) and low
earners; treat wage as binary response variable with these two groups.

Using logistic regression, can predict this binary response using polynomial
functions of predictor age.

This corresponds to fitting

exp(Bo + Bixi + - -+ + Bax?)

P(y; > 250|x;) = .
(J// |X/) 1+eXP(60+61X/‘+"‘+6dX,‘d)

Gray marks in figure denote ages of high and low earners.

Solid blue: fitted probabilities of being high/low earner given age, dashed
blue gives 95% confidence interval (very wide).

Only 79 high earners of n = 3000 observations, results in high variance of
coefficients and therefore wide confidence intervals.
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Nonlinear Regression Models

Step Functions

Idea:
® Polynomials are globally defined on the domain of the predictor(s) X.

® To model more locally varied response behavior, divide domain of X into
subdomains and use different response model on each.

® Simplest case: different constant function on each subinterval.

® Amounts to converting a continuous variable into an unordered categori-
cal variable.
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Nonlinear Regression Models

Step Functions

® |ntroduce “cut points” ¢ < ¢ < --- < ck in range of X, construct K + 1
new (dummy) variables with indicator function 1(-)

G(X) =1(X < ),
GX)=1(c; £ X < @),
(7.1)

Ck-1(X)

=1M(ck—2 < X < ck-1),
Ch(X) =1

(CK < X)

® Since events exhaustive and mutually exclusive we have Zf:o G(X)=1.
e Now fit LS model using Ci(X), ..., Ck(X) as predictors®:

Yi=Bo +B1Cu(X) +B2Ca(X) + - + B Ck(X) + €.

Bj(Jj > 0): average increase in response for X € [cj, ¢j+1) relative to X < .

90mit Gy as this is redundant with the intercept.
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Nonlinear Regression Models

Step Functions

Piecewise Constant
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Left: piecewise constant fit of wage against age (solid) with 95% confidence band
(dashed). Right: modeling event {wage > 250} using logistic regression (solid) with
95% confidence band (dashed).
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Nonlinear Regression Models

Step Functions

Previous figure:
® | eft: capturing response behavior requires choosing the cut points appro-
priately. Increasing trend of wage with age clearly missed in first bin.

® Right: logistic regression fits

‘ N exp(Bo + B1Ci(X) + - + Bk Ck(X)
Plyi > 250x) = 1+ exp(Bo + B1Gi(X) + -+ + Br Cx(X)

to predict probability of being high earner given age.

Piecewise constant approximation popular in biostatistics and epidemiology,
where bins often correspond to 5-year age groups.
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Nonlinear Regression Models

General regression functions

® Polynomial, piecewise constant regression examples of basis function ap-
proach, where linear combination of transformations {bx(X)}r_, of predic-
tor variables used for fitting:

Yi = Bo + B1b1(x;) 4+ Bab2(xi) + - - - + B br (x;) + €
® Basis functions by chosen a priori. Examples:
be(x) xk polynomial regression,
X)) =
A T(ck < xi < ckp1) Ppiecewise constant regression.

® Model still linear in the coefficients, hence all inferential methods of linear
LS still applicable (standard errors for coefficient estimates, F-statistics for
model significance etc. ).

® Many possible choices: wavelets, Fourier modes, splines, etc.
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Nonlinear Regression Models

Piecewise polynomials

® As in piecewise constant modes, introduce partition of X domain into sub-
intervals.

® Fit a different low-degree polynomial in each subinterval.
® E.g. cubic:
Yi = Bo + B1xi + Box7 + Bax] + €, (7.2)
with separate coefficients By, 81, B>, 83 in each subinterval.
® Spline termionology: cut points called knots.

® Piecewise cubic with single knot at X = c:

| Box +Braxi +Boax? + B e, ifx<c,
I .
Bo2 + BioXi + Boox? + Bapx? + &, ifx>c.
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Nonlinear Regression Models

Piecewise polynomials

Piecewise Cubic

Wage
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| |
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Age
A piecewise cubic fit of wage against age for the Wage data set. Note the discontinuity

at the (single) knot ¢ = 50. Model has 8 = 2 x 4 degrees of freedom.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 349 / 496



Nonlinear Regression Models

Piecewise polynomials with constraints

Continuous Piecewise Cubic
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A piecewise cubic fit of the same data, now with the added constraint that the two

polynomials should agree at the knot. This still leaves a ‘kink’ at the knot, i.e., a dis-

continuity of the first derivative.
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Nonlinear Regression Models

Piecewise polynomials with constraints

Cubic Spline
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A piecewise cubic fit of the same data, now with the added constraint that the two
polynomials as well as their first derivatives should agree at the knot.
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Nonlinear Regression Models

Piecewise polynomials with constraints

Linear Spline
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A piecewise linear fit of the same data with continuity constraint.
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Nonlinear Regression Models

SIGES

® Cubic spline with K knots: 4 + K degrees of freedom.

® General definition of (univariate) spline: piecewise polynomial of degree d
with continuity of derivatives of orders 0,1,2...,d — 1.

® Cubic spline model with K knots can be modeled as
Yi = Bo + B1b1(xi) + Babo(xi) + - - - + Brabr4a(xi) + €

using appropriate basis functions.

® One possible basis (cubic case): start off with monomials x, x2, x3, then
add for each knot £ one truncated monomial

h(x,€) == (x — )3 = {(X_£)3 if x> ¢,

R ) otherwise.

® Adding single basis function h(x, £) to model (7.2) will introduce disconti-
nuity only in third derivative at x = .
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Nonlinear Regression Models

LS regression with splines

To fit LS regression model with cubic splines using K knots {gk}ff:l, use K +3
predictor variables X, X2, X3, h(X, 1), ..., h(X, €k).

—_— Nafural Cubic Spline
—— Cubic Spline

250
|

Wage
100 150 200
| | |

50
|

Age
Cubic and natural (linear beyond boundary knots) spline fit using 3 knots to fit a sub-
set of the Wage data. Note the large variance near the endpoints.
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Nonlinear Regression Models

Choice of spline knots

® Spline most flexible near knots, place these where most variability expected.

e Common practice: space knots uniformly, choose # degrees of freedom,
have software place knots at uniform quantiles.

Natural Cubic Spline
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Nonlinear Regression Models

Choice of spline knots

Previous figure:

® Fit natural cubic spline to Wage data. Three knots, chosen automatically at
25th, 50th and 75th percentiles of age.

® Requested 4 DOF, leading to 3 interior knots. Actually: 5 knots including
2 boundary knots. Corresponds to 9 = 5 + 4 DOF for cubic spline. Two
natural constraints at boundary knots to enforce linearity, leaving 5 =9 — 4
DOF. One DOF absorbed in intercept, leaves 4 DOF.

® Right panel: Logistic regression modeling binary event {wage > 250}.
Shown: fitted posterior probability.

® Choosing # knots: trial and error or cross-validation.
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Nonlinear Regression Models

Choice of spline knots

(=3 (=3
@ _| @ _|
© ©
— L] — L)
- o 5 9
° g ° g
[T IR
o o
e g | e g |
g © g o
= g 2
o jo
§ ¢ 5 &
[ [
E (=3 E (=3
3 * o 3 ®
- '*"'—.‘.‘.’./. - e 4 e —* " —0o
T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10
Degrees of Freedom of Natural Spline Degrees of Freedom of Cubic Spline

Ten-fold CV MSE for selecting DOF when fitting splines to Wage data.
Clear result: 1-DOF not adequate.
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Nonlinear Regression Models

Comparison with polynomials

® Spline regression often superior to polynomial.

® More stable as flexibility comes from variation of coefficients of low-degree
polynomials and knot placement.
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For Wage data: comparison of natural cubic spline with 15 DOF to polynomial of de-

gree 15. Latter shows spurious variation near endpoints.
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Nonlinear Regression Models

Smoothing splines

e Fitting data with smooth function g: want small RSS = >~ (vi — 9(x;))?.

® With no constraints on g, can always attain RSS = 0 by interpolating the
data, leading to overfitting.

® Ensure smoothness by adding penalty term: minimize

n

St g0a) 1 [ o' ae (7.3)
i=1
with tuning parameter A controlling weight assigned to smoothness.

® | imiting values: A = 0 corresponds to no smoothing, leading to interpolati-
on for sufficiently many DOF; X — oo tends to linear LS fit.

® )\ controls bias-variance tradeoff of smoothing spline.

® Can show: minimizer of (7.3) is natural cubic spline with knots at xi, ..., Xp-
Not the natural cubic spline of the basis function approach, but a shrunken
version, degree of shrinkage controlled by A.
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Nonlinear Regression Models

Smoothing splines: effective DOF

® Smoothing spline: natural cubic spline with knots at xq, ..., X, i.e., n DOF.

® Can show: as A — oo, effective degrees of freedom df, decrease from n
to 2.

® Smoothing spline has nominally n DOF, these are heavily constrained, i.e.,
they are “shrunk” by higher weighting of the penalty term.

® Measure of flexibility of smoothing splines: df;,.

® Mapping from observation vector y € R” to vector gy of n coefficients
defining the smoothing spline with penalty parameter X is linear, i.e.,

SAQ)\ =Yy, S, € R™",

Effective DOF defined by

n

dfy == tr S>\ = Z[S)\],‘,,‘.

i=1
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Nonlinear Regression Models

Smoothing splines: choosing A

® For smoothing splines no need to choose knot number and locations, each
predictor observation x; is a knot.

® Remaining problem is choice of smoothing parameter A.
® Obvious option: choose A to minimize CV estimates of RSS.

® For smoothing splines LOOCV error can be computed at nearly the cost of
single fit:

n n . 5
RSSy (M) = D2 yi — () ,
cv(X) ;(% 9 "(x) ; A

3077 (x) : value of smoothing spline fitted with all but i-th observation,

9 (x;) : value of smoothing spline using all observations.

® Similar “magic formula” in (5.1) for LS regression.
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Nonlinear Regression Models

Smoothing splines: choosing A

Smoothing Spline

—— 16 Degrees of Freedom
—— 6.8 Degrees of Freedom (LOOCV)
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Smoothing spline fit to Wage data. Red: specified 16 effective DOF.
Blue: X determined by LOOCV, resulting in dfy, = 6.8.
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7.5 Generalized Additive Models
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Nonlinear Regression Models

Generalized additive models

® Up to now: single predictor X, extensions of simple linear regression.

® Here: consider extensions of multiple linear regression of response Y on
predictors Xy, ..., Xp.

® Framework: generalized additive models (GAMs).

Allow nonlinear functions of X; while maintaining additivity.
® Can be applied with quantitative and qualitative responses.
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Nonlinear Regression Models

GAMs for regression

® Extend standard multiple linear regression model

Yi =080+ B1Xi1+Boxio+ -+ BpXip+ €

to
p
+Z XIJ + €.
Jj=1

® Additive: separate f; for each X;, then add.

® Example: Consider natural splines and task of fitting model
wage = (o + fi(year) + f2(age) + f3(education) + € (7.4)

from Wage data set, with quantitative variables year, age and qualitati-
ve variable education € {<HS,HS, <Coll, Coll,>Coll}. Fit f1, /> using
natural splines, f3 using separate constant for each value (dummy variable
approach).
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Nonlinear Regression Models

GAMs for regression

® Fit entire model (7.4) using LS, expand each function in natural spline ba-
sis or dummy variables, resulting in single large regression matrix.
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Nonlinear Regression Models

GAMs for regression
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Relationship of each feature and response (wage). fi and f> are natural splines in year
and age with 4 and 5 DOF, respectively. f3 is a step function fit to qualitative predic-
tor education.
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Nonlinear Regression Models

GAMs for regression
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Same as before except f; and > smoothing splines with 4 and 5 DOF, respectively. Fit
of smoothinmg splines more difficult than for natural splines, standard software solves
an optimization problem via an algorithm known as backfitting.
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Nonlinear Regression Models

GAMs: benefits and shortcomings

+ GAMs allow fitting nonlinear f; to each X; in order to capture
nonlinear dependencies.

+ Potentially more accurate predictions of response Y.

+ Model still additive, effect of each X; can be examoned separate-
ly, useful for inference.

+ Smoothness of each f; can be summarized via (effective) DOF.

- Additivity is a restriction, interactions can be missed. Can add
interaction terms manually by adding predictors X; x Xy or low
degree interaction functions fj (X, Xg).

GAMs are a useful compromise between linear and fully nonparametric methods
such as random forests and boosting (later).
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