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Resampling Methods

® Resampling methods refers to a set of statistical tools which involve refit-
ting a model on different subsets of a given data set in order to assess the
variability of the resulting models.

® These methods are computationally more demanding, but now feasible due
to increased compute resources.

® Resampling is useful for model assessment, i.e., the process of evaluating
a model’s performance, as well as model selection, i.e., the process of se-
lecting the proper level of model flexibility.

® |n this chapter we introduce the resampling methods cross validation and
the bootstrap.
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Resampling Methods

Validation set approach

Chapter 2: training set error vs. test set error.
® Training set error easily calculated, but usually overoptimisrtically low.

Predictive value of model rests on low test set error.

e Validation set approach: divide available observations into training set and
validation set or hold-out set and use latter as test set data.
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Validation set approach schematic: n observations randomly split into training set (bei-
ge) and validation set (blue).
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Resampling Methods

Validation set approach

Recall Auto data set (Chapter 3): model predicting mpg using horsepower
and horsepower? better than linear model.

Q: would model using higher order polynomial terms yield better (training)
results?

Validation set approach: partition the 392 observations into two sets of 196
each, use as training and validation sets, compute test MSE for various
polynomial regression models. Compare different random partitions.
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Resampling Methods

Validation set approach

® All 10 partitions agree: adding quadratic term leads to lower validation set
MSE, no benefit for higher degree terms.

e Different validation set MSE sequence for each partition.

Two principal shortcomings of validation set approach:
@ High variability of validation set MSE with changing partitions.

® Valuable data not used to fit model, we expect this results in overestima-
ting the test error rate.
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Resampling Methods

Leave-one-out cross-validation (LOOCV)

® Leave-one-out cross-validation (LOOCV): for n observations, use n one-
element validation sets, fit model using n — 1-element training sets.

[123 n]
123 n
123 n
123 n
123 n
e MSE; /i =1,...,n: test MSE when validation set consists of i-th observa-

tion.
® | OOCV estimate:

1 n
CV(n) == = ) MSE;.
i=1
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Resampling Methods

Leave-one-out cross-validation (LOOCV)

Advantages of LOOCV:
@ Less bias, since each fit uses nearly all observations, less overestimation of
test error rate.
® Well-defined approach, no arbitrariness in partitioning the data as in valida-
tion set approach.
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Resampling Methods

Leave-one-out cross-validation (LOOCV)

® | OOCV requires n fits of n — 1 observations rather than one for for n ob-
servations. Potentially expensive for large n.

® Magic formula:

Lo~ (V=9 N s
CViy) =— ( ! l> , /7':—-1-/—_- (5-1)
™= Z 1—h T T 0 - %)
hi € (1/n, 1) is the leverage statistic of observation i as defined in (3.31).

® CV estimate is weighted MSE.
® Makes LOOCV cost same as single fit!

® LOOCV widely applicable (logistic regression, LDA, ...), but (5.1) does
not hold in general.
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Resampling Methods

k-fold cross validation

® Alternative to LOOCV: k-fold CV.
® Randomly partition observations into k groups or folds, =~ equal in size.
® Use first fold as validation set and fit using remaining observations.
® Mean-squared error MSE; computed using first fold.
® Repeat k — 1 more times with remaining folds, to obtain MSE,, ..., MSE,
and set
1K
V(= EZMSE,. (5.2)
=1
123 n
|
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Resampling Methods

k-fold cross validation

® | OOCV special case of k-fold CV with k = n.
® k=5o0r k=10 commonly used.
® Appeal: computationally cheaper when magic formula cannot be used.

10-fold CV

8 —
g & Nine 10-fold CV estimates for
% S - Auto data set, each resulting from
% N a different random partition into
US)— o \ 10 folds.
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Resampling Methods

CV applied to example from Chapter 2
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CV estimates for smoothing splines applied to simulated data sets from Chapter 2:
LOOCV (black dashed), 10-fold CV (orange solid) beside true test MSE (blue). Cros-
ses denote minimum of each curve.
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Resampling Methods

Bias-variance tradeoff

® Besides its computational advantage, k-fold CV often gives more accurate
test MSE estimates than LOOCV.

® Bias reduction: LOOCV gives approximately unbiased estimates, since it
uses n — 1 observations to fit. Validation set approach: most bias, since fe-
west observations used. k-fold CV: intermediate, as (k—1)n/k observations
in each training set.

® Variance: LOOCYV has higher variance than k-fold CV with k < n.

® Reason: LOOCYV gives average of n fitted models, each trained on nearly
identical set of models, hence outputs highly correlated.

® For k-fold CV with k < n, average outputs of k fitted models whose out-
puts are less correlated (since overlap between training sets smaller).

® Mean of many highly correlated quantities has higher variance than mean
of many quantities which are not as highly correlated, test error estimate
resulting from LOOCV tends to have higher variance than test error esti-
mate resulting from k-fold CV.
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Resampling Methods

CV in classification setting

® For classification (Y qualitative) replace MSE by number of misclassificati-
on and set

1
CV(n) = . Z Err; Errj i= Ty, .9, (5.3)

k-fold CV and validation set error rates defined analogously.
® Can use CV e.g. to perform logistic regression.

® As in linear regression setting, can use polynomial functions in predictor

variables:
= Bo + L1 X1 + BaXo + B X7 + BaX3. (5.4)

I
Ogl—p

® Consider classification problem from Chapter 2 (Slide 62)
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Resampling Methods

CV in classification setting

Degree=1 Degree=2

Logistic regression fit of 2D classification problem from Slide 62: Bayes decision boun-
dary (purple dashed) and estimated decision boundary (solid black). Left: linear fit.
right: quadratic fit. Bayes error rate: 0.133. (True) test error rates: 0.201 and 0.197.
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Resampling Methods

CV in classification setting

Degree=3 Degree=4

Same problem, same legend. Logistic regression now using cubic and quartic fits.
Bayes error rate: 0.133. (True) test error rates now : 0.160 and 0.162.
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Resampling Methods

CV in classification setting

® |n practice neither Bayes decision boundary, Bayes error rate nor true test
error rate available, but CV offers way to choose among previous 4 models.
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Same problem, same models. Black: 10-fold CV error rates from fitting 10 logi-
stic regression models using polynomial functions of the predictor variables up to
degree 10. Brown: true test errors, blue: training set errors. Right: KNN classifier
with varying K (now denoting # nearest neighbors).
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Resampling Methods

CV in classification setting

Observations:
® Training error decreases (roughly) with model flexibility.

® Test set error displays typical U-shape.

10-fold CV estimate provides good approximation of test error rates.

Minimal for degree 4, matches true minimum well.

Similar observations for KNN.

Obvious: training set error not useful for model selection.
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Resampling Methods

The bootstrap

® The bootstrap is a widely applicable and powerful statistical tool for quan-
tifying the uncertainty associated with an estimate or statistical learning
method.

® Example: linear regression coefficients (although simpler alternatives here).

e Nice introduction: [Efron, 2013s]®

6A 250-Year Argument: Belief, Behavior and the Bootstrap. Bull. AMS 50(1) 2013 pp.
129-146.
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Resampling Methods

The bootstrap: investment problem

® Goal: invest fixed sum of money in 2 financial assets with random returns
X and Y.

® |nvest fraction o in X, remaining 1 —a in Y.
® Choose a to minimize total risk (variance) of investment, i.e., minimize
Var(aX + (1 —a)Y).
® Can show: risk-minimizing value given by
O'%/ — OxXYy

= , 55
“ o% +0% —20xy (55)

where 0% = Var X, 03 = Var Y, oxy = Cov(X, Y).
* Latter quantities unknown in practice, use estimates 6% 63 &xy and esti-
mate risk minimizing ratio as

I\2 ~
Oy —Oxy
0-)2(+6'%/_26-XY.

&= (5.6)
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Resampling Methods

The bootstrap: investment problem

. o ;. .'.. :.'.- N -'.- .. .‘-. <
-] .2.: SERURIEESEE Y :"."' .. ’
i v et t 1S wlet, e
ol D 1 o B2 e
' e R Each panel: 100 simulated re-
oy ot turns X and Y.
Lexicographically, estimates for
. _ oare 0.576, 0.532, 0.657 and
o1 Woes o . gec, 0.651.
-1 ohe ot 1 eey =t wes
ol el A~ e,
N j ‘e ‘E-;%:. . . i:s.::.‘:{ 4 .
R S AR
mi. [ . . o .... .
N ’ ‘X ’ ‘ : N ) ’ X ‘ : ’

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 241 / 496



Resampling Methods

The bootstrap: investment problem
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Quantification of estimate for a: repeated process of simulating 100 (X, Y)-observations
and estimating a using (5.6) 1000 times. Left: histogram of {&;}}2°. (0% = 1,03 =
1.25,0xy = 0.5,= a = 0.6, solid vertical line). Center: bootstrap histogram. Right:
boxplots of original data and bootstrap data sets.
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Resampling Methods

The bootstrap: investment problem
Mean over all estimates:

a= 100OZlOOOa,_05996~06—a

Standard deviation:

1 1000
———— 3" (& —@)? = 0.083,
1000 — 1 &

hence SE(&) ~ 0.083.
We thus expect & to deviate from o by 0.08 on average.

Bootstrap estimate: SE(&) = 0.087.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 243 / 496



Resampling Methods

The bootstrap

Bootstrap approach:

In general, can’t generate multiple instances of given data.

Bootstrap: use computer to emulate generation of new sample data sets.
Use these to assess variability of associated estimates.

Sampling proceeds from original data set.

Sampling proceeds with replacement, all components of an observation
treated as a unit.

For i =1,..., B, generate i-th bootstrap data set Z* each with estima-
te &*'.

Can estimate standard error of these estimates by

2
B

B
A 1 N .
SEB(Q) = m E a* — E E at (57)
J=1

i=1

Example for data set Z containing n = 3 elements:
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Resampling Methods

The bootstrap

Obs | X Y
3 53 |28 ]
o
43 |24
53 |28
X Y
Obs | X |Y
1 43 |24 21 |1 A~
. . a
2 2.1 | 1.1 53 |28 X
3 53 |28 .4'3 24
t
Original Data (Z)
X |Y A5
2.1 | 1.1
2 21 |11
1 43 |24
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