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Classification

® (Classification: response variable is qualitative or categorical.

® Involves assigning a predictor observation to a finite number of classes or
categories.

® | ikely more fundamental to human experience than regression.

Examples: military triage, spam classification, fraud detection, tumor dia-
gnostics, friend-foe distinction . ..

e Common formulation: perform a linear regression, view (continuous) re-
sponse result as probability of belonging to each class, choose class with
larges probability.

® This chapter: 3 widely used classifiers:

- logistic regression
- linear discriminant analysis (LDA)
- K-nearest neighbors
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Overview of Classification

Setting

As for regression: use training observations {(x;, y;)7_; }, to construct classifier
able to perform classification also for test data not used in training.

Default data set: 10,000 individuals’

® annual income and

60000

® monthly credit card balance.

40000

® Response: binary default varia-
ble, i.e., whether or not person
defaulted on their credit card
payment in a given month.

e Overall default rate: 3%.
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Overview of Classification

Setting

® Box plots: distributions of - -
balance and income split by g |
binary default variable. 2

® Objective: predict default (Y)
for any pair of balance (Xj)

and income (X5) values. . ; : :
® In this data: pronounced re-

lationship between predictor i

balance and response default. o ‘
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Why Not Linear Regression?

Ordering problem

Simplified model for predicting condition of incoming emergency room patients
with possible diagnoses stroke, drug overdose or epileptic seizure.

Possible coding:
1 if stroke,
Y =42 if drug overdose,

3 if epileptic seizure.

Could perform linear regression based on available predictors Xi, ..., Xj.

Coding implies (unnatural) ordering in outcome: places drug overdose
between stroke and epileptic seizure.

Also assumes distance between stroke and drug overdose is the same as
between drug overdose and epileptic seizure.

Different (equally reasonable) coding would lead to different linear model
(and different predictions) for same data.
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Why Not Linear Regression?

Ordering problem

® Sometimes underlying natural ordering exists (mild, moderate, severe).

® |n general no way to map qualitative variable with > 2 values to quantitati-
ve response variable amenable to linear regression.

® For binary respone, e.g., only stroke and drug overdose, could use dum-
my variable approach and code

v — {O if stroke,

1 if drug overdose.

Following linear regression, could predict drug overdose if Y > 0.5 and
stroke otherwise.

Here flipping coding gives same results.

XB from linear regression yields estimate of probability

P(drug overdose|X).

® For qualitative responses with > 2 values another approach is needed.
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Logistic Regression

Idea

® Default data set, response variable default € {Yes, No}.
® | ogistic regression models probability of Y belonging to a particular class.
® Here: probability of default given balance denoted by

p(balance) := P(default = Yes|balance) € [0, 1].

Predict default = Yes whenever, e.g., p(balance) > 0.5.

® More conservative credit card company might prefer lower threshold, e.g.,
p(balance) > 0.1.
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Logistic Regression

Logistic model

® Predicting default = Yes by
modeling relationship between
p(X) = P(Y = 1|X) and X by

linear regression
p(X)=Fo+BiX  (4.1)
gives fit on the right.
® |[llustrates basic problem of fit-

ting binary response coded with
{0, 1} with straight line: unless
range of X limited, can always
obtain probabilities outside [0, 1].
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Logistic Regression

Logistic model

Compose linear function with a sigmoid (monotone, S-shaped) function with
values in [0, 1], e.g., logistic function
ePotBiX

p(X) = T4 oPothixX” (4.2)

® Fit for Default data on the E =
right. a ©
® Average default rate in both ca- f_; .
ses (linear and logistic) 0.0333, 5 °
close to overall proportion in da- € & -
o
ta set. S
T T T T T T
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Balance

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 172 / 496



Logistic Regression

Logistic model

® Rearranging (4.2) gives

PIX)  _ sotsn
l——p(X)_eﬁ X (43)

® Ratio on left: odds, € [0, o0].
Example: if 1 in 5 people default, odds are 1/4; for 9 in 10, odds are 9.

Popular horse-racing terminology, as reflects appropriate betting strategy.
Take logarithms on both sides of (4.3):

p(X

Lhs: log-odds or logit. Logistic regression model (4.2) has logit which is
linear in X.
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Logistic Regression

Logistic model: parameter 3;

® [31:in linear regression, gives average change in Y per unit change in X; in
logistic regression, reflects change in log-odds per unit change in X.

e Unit change in X changes odds by factor e®t.
Due to nonlinearity, 8, does not correspond to change in p(X) due to unit
change in X.

® Amount p(X) changes depends on value of X.
® (3; > 0 implies monotone increase of p(X) with X, decrease for 8; < 0.
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Logistic Regression

Estimating the regression coefficients

ePo+B1X
p(X) = 1 + ePotBrX

® Maximum-likelihood estimation (MLE) to determine estimates ﬁo,ﬁl of
coefficients Bo, B1.

e Likelihood function

2(Bo. B1) : Hp(x, H 1 - p(x). (4.5)

p(x;) determined from the observations (frequency).

e Estimates Bo, 51 determined as (ﬁo,ﬁl) = argmax£(Bo, B1).
This is a problem of numerical optimization methods, plenty of software
available.

® | east squares can be viewed as a special case of MLE.
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Logistic Regression

Estimating the regression coefficients

Coefficient estimates and statistics for logistic regression model on Default
data set for predicting P(default = Yes) with predictor balance:

‘ Coefficient  Standard error  z-statistic p-value
Bo -10.6513 0.3612 -29.5 < 0.0001
61 0.0055 0.0002 249  <0.0001

® Estimation accuracy measured by standard errors.

® z-statistic : analogous role here as t statistic in simple linear regression.
For coefficient By:

PN

-
z= =
SE(61)
® p-values strong evidence against Hp : 81 = 0, implying p(X) = &% /(1+¢%).

Intercept By not of interest.
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Logistic Regression

Making predictions: predictor balance

® Given this logistic regression model for default on balance, what pro-
bability for defaulting on payment can we predict for an individual with a
balance of $10007

eﬁAO"’BlX .
p(X)= ——— ~0. ~ 0.5%.
p(X) B BX 0.00576 =~ 0.5%
® \What about a balance of $20007 Here

p(X) ~ 0.5863 ~ 58%.
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Logistic Regression

Making predictions: predictor student

® For qualitative predictor variables, e.g., student in Default data set, use
dummy variable taking value 1 for students, O for non-students.

® Resulting model: logistic regression of default on student status

\ Coefficient  Standard error  z-statistic p-value
Bo -3.5041 0.0707 -49.55 < 0.0001
51 0.4049 0.1150 3.52 0.0004

® (3, > 0, statistically significant.
® Model predicts higher default probability for students:

N eBoJrﬁAl'l

P(default = Yes|student = Yes) = ————— ~ 0.0431,
1 4 ePotbr-1

N eBo+@1'0

P(default = Yes|student = No) = ————— ~ 0.0292.
1 4 ePo+b1-0
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Logistic Regression

Multiple logistic regression

® For multiple predictor variables X = (X1, ..., Xp), generalize (4.4) to

p(X)

|Og1_—p()<) :ﬁo +ﬁ1X1+"'+6po, (46)

or
eﬁo+ﬁlxl 448 Xp

P(X) = 1 + eBotBiXit 6%, '

(4.7)

® Fit parameters again by MLE.

® | ogistic regression predicting default based on balance, income and
student status:

‘ Coefficient  Standard error  z-statistic p-value
Bo -10.8690 0.4923 -22.08 < 0.0001
01 (balance) 0.0057 0.0002 2474 < 0.0001
B> (income) 0.0030 0.0082 0.37 0.7115
B3 (student) -0.6468 0.2362 -2.74 0.0062
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Logistic Regression

Multiple logistic regression

® Coefficients of balance and student significant.
o Coefficient of student now negative! Explanation?

Orange: student
Blue: non-student

Default Rate

T T T T
500 1000 1500 2000

Credit Card Balance

Introduction to Data Science
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Logistic Regression

Multiple logistic regression

® Negative coefficient of student: for fixed value of balance and income,
student /ess likely to default than non-student.

® Figure shows: student default rate at or below non-student rate for each
value of balance.

® Horizontal broken lines: overall student default rate higher than non-student.
Explains positive coefficient for student in single variable logistic regressi-
on.
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Logistic Regression

Multiple logistic regression

S . ® Variables student and balance
- E i correlated. |
& 8§ 3 ‘ ® Students tend to hold higher debt
& g 5 | level, hence higher probability of
& é | ! : default.
§ - - ® |ndividual student with given ba-
S 8+ ‘ lance will have lower default proba-
o 3 ‘ bility than non-student with same
‘ ‘ balance.
No Yes
Student Status
® Qverall: student riskier than non-student.
® But: student less risky than non-student with same balance.
L]

lllustrates subtleties of ignoring further relevant predictors.
® Phenomenon: confounding.
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Logistic Regression

Multiple logistic regression: example predictions

® Student with credit card balance of $1 500, income of $40 000 has estima-
ted probability of default

o Bo+B1-1500+5;-40+55-1

BX) = — T~ 0.0549.
1 + eBo+B1-1500+52-40+05-1

® For non-student, same credit card balance and income, estimate is

oPo+B1:1500+3,-40+5-0

p(X) ~ 0.1054.

- 1+ eﬁo+ﬁ1~l500+62'40+ﬁ3'0

Note: model fit was performed with units of $1 000 for variable income.
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Logistic Regression

Logistic regression for several response classes

® Recall emergency room example with 3 response classes stroke, drug
overdose and epileptic seizure.

® \Would like to model

P(Y = stroke|X),
P(Y = drug overdose|X),
P(Y

epileptic seizure|X)
=1—P(Y = stroke|X) — P(Y = drug overdose|X).

® Can extend two-class logistic regression to more than two, software availa-
ble, but LDA more popular for this case.
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Linear Discriminant Analysis

Conditional distribution

Recall (ideal) Bayes classifier: assign to xq class k € {1, ..., K} such that

9o = F(x0) = argmax P(Y = k|X = xp).
1<k<K

® |ogistic regression: model P(Y = k|X = xp) using logistic function (4.7)
when K = 2.

Alternative approach LDA: model distribution of predictors X, then use
Bayes’ rule to turn these into estimates for P(Y = k|X = xo).

® Motivation:

® |ogistic regression often unstable even for well-separated classes.

® For small n, predictors approximately Gaussian across classes, LDA more
stable than logistic regression.

® | DA popular for K > 2.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 186 / 496



Linear Discriminant Analysis

Bayes' rule (events)

Given probability space (2,2, P), A B € A, P(B) > 0, then the conditional
probability of A given B is defined by

P(ANnB)

P(AIB) = —5

Solving for P(AN B), exchanging roles of A and B, assuming P(A) > 0, gives

P(B|A) P(A)

P(AIB) = g

Bayes’ rule [Bayes, 1763]

® A: unobservable state of nature, with prior probability P(A) of occurring;

B: observable event, probability P(B) known as evidence;
P(B|A): probability that A causes B to occur (likelihood);
P(A|B): posterior probability of A knowing that B has occurred.

® Terms: inverse probability, Bayesian inference.
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Linear Discriminant Analysis

Bayes' rule (partitions)

Given partition {A;}jen of Q into exhaustive and exclusive disjoint events, de
Morgan's rule and countable additivity give, assuming all P(A;) > 0,

P(B) =) P(BIA)P(A)  (law of total probability),
JjeN
leading to another variant of Bayes' rule:
P(BIA«) P(Ax)
> jen P(BIA)) P(A))’

giving posterior probability of each Ay after observing B.

P(Ax|B) =
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Linear Discriminant Analysis

Bayes' rule (densities)

Given real-valued random variables X, Y with probability density functions
(pdfs)

® fx(x), fy(y): density of X, Y at value x, y,
® fxv(xly): density of (X]Y) at x having observed Y =y,
® fyix(y|x): analogously.

Then Bayes' theorem states that

frix(VIx) () fyx(vIx) fx(x)

v (xly) = A () A (v[x) A (x) dx

® fyix(y|x) is now called the likelihood function.

* [ fyix(y|x) fx(x) dx is calles the normalizing factor or marginal.
® Short form:

fx|y X fy|X fx.
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Linear Discriminant Analysis

Using Bayes' rule for classification

® Goal: classify observation into one of K > 2 classes.
= P(Y(X) = k), 1 < k <K, for randomly chosen X: prior probability.

fi(x) :=P(X =x|Y = k), 1 < k < K, density function® of X in class k.
In other words: fi(x) large if probability that X = x is large in class k.

® Bayes’ rule:

kak(X)

(4.8)

Idea: instead of computing px(X) directly, estimate f(X) and 7k, k =
1,..., K and insert into (4.8).

If all estimates accurate, should come close to Bayes classifier.

5Modify accordingly for non-discrete predictor variable.
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Linear Discriminant Analysis

LDA, p=1

® Assumption: assume single predictor X has Gaussian distribution in each

class, i.e.,
1 —(x — )
fir(x) = ex , k=1,..., K.
k( ) ok /_271' p 20’%
® Assume further that o1 = --- = ok = 0.

® |nsert into (4.8):

2
—
Tk eXp ( Qazk)
K —(x=p)?
Zj:l Tjexp —552

pi(x) = (4.9)

e (Classification: assign x to class k for which (4.9) is largest.
® Equivalent: class k for which

2
Xk L
Ok(x) == -2 27’_‘2 + log i

is largest.
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Linear Discriminant Analysis

LDA, p=1

Example:

® K =2, m = Ty, assign x to
class 1 if 01(x) > d2(x) or

i
I
2 2 !
2x(p1 — p2) > py — pa- !
I
® Bayes decision boundary at :

o Pith
.

® |n this case we can compute the
Bayes classifier.

Two univariate normal densities with
o1 =0x=1and pu1 = —ur = 1.25,
Bayes decision boundary (dashed black line).
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Linear Discriminant Analysis

LDA, p = 1, estimating mean and variances

® | DA uses estimates for (ususally unknown) mean and variance:

N: total # observations, ny: # observations in class k.

® Prior probabilities estimated as

~ Nk
= —. 4.11
Tk n ( )

e (Classifier now assigns new observation to class k such that

~ A2
~ a ,U,k /Jzk ~
k= 0 , 0 =X — — I : 4.12
alrgkn;z/a{x «(x) «(x) Xo_2 252 + log 7rg ( )

e LDA: discriminant functions §4(x) are linear in x.
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Linear Discriminant Analysis
LDA, p =1, example

Example: (right)

® K =2, n=20random observa-
tions from each class, estimate
O, Wk, T. <

® Bayes decision boundary given
by solid black line; observations ©
to the left assigned to green,
otherwise purple.

L4 n1:n2=20:>'fr1:'fr2and
decision boundary at (fi1+{i2)/2,
slightly to left of Bayes decision o -
boundary at (w1 + u2)/2 = 0.

® Bayes error rate: 10.6%,

LDA test error rate: 11.1 %, Simulated data from 2 classes, LDA / Bayes
i.e., only 0.5% over optimal! decision boundaries.
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Linear Discriminant Analysis

LDA, p=1

Recap: LDA classifier
® assumes observations within each class follow normal distribution,
® class-specific mean, common variance o2,

® estimates lead to classifier (4.12).
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Linear Discriminant Analysis

LDA, p>1

® For multiple predictor variables X = (Xi,..., X;), assume observations
follow multivariate normal distributions with class-specific mean, common
covariance matrix.

Probability density functions (pdf) of two bivariate (p = 2) Gaussian distributions.
Left: uncorrelated, right: correlation 0.7.
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Linear Discriminant Analysis

LDA, p>1

® Multivariate Gaussian:
X ~N(p X), pw=E[X]€eRP, X =Cov(X)ecR*".

* Pdf:

Fx) =t exp 2 (x— ) E (x u)) (4.13)

JenpdeE) " ( 2

® For p > 1 assume within each class k: X ~ N(p, X).

® Inserting pdf f into (4.8), we obtain Bayes classifier assigning observation
X to class

1
k = argmax d,(x), Sk(x) = x" T y — i Ty + log i, (4.14)

1<k<K 2

This is the vector version of (4.12).
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Linear Discriminant Analysis
LDA, p > 1, example

p = 2, K = 3, samples from three Gaussian distributions with means @, @, i3,
common covariance matrix.

Left: 95%-ellipses, Bayes decision boundaries dashed.

Right: n = 20 random samples drawn from each class, their LDA classifications, Bayes
decision boundary dashed, LDA decision boundary solid.
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Linear Discriminant Analysis

LDA, p > 1, example

® Bayes decision boundaries: §;(x) = d0x(x), J, k=1,2,3,j<k.
e LDA decision boundaries: §;(x) = 6x(x), J k=1,2,3, ) <k.

® Unknown parameters

{m(}ff:l, {”'k}kK:L z

estimated using formulas analogous to p = 1 case.

® Test error rates:
Bayes: 0.0746
LDA: 0.0770

® Again, conditional probability dx(x) in (4.14) linear in x.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 199 / 496



Linear Discriminant Analysis

LDA applied to Default data set

® Predict probability of defaulting on credit card payments given balance
and student status.

® | DA model fit to n = 10, 000 training samples results in training error rate
of 2.75%. Low?
® Caveats:

® Training error rates generally lower than test error rates.

® High ratio of free parameters p to n poses overfitting danger, but here p =
2, n =10, 1000.

® Qverall, true default rate in Default training data only 3.33%.
Implies (useless) constant classifier Y = 0 has this low error rate.
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Linear Discriminant Analysis

LDA applied to Default data set

Confusion matrix for LDA applied to Default:

No Yes

True default status

Total

Predicted
default status

No 9,644 252
Yes 23 81

9,896
104

Total | 9,667 333

10,000

® Two types of misclassification errors.

® | DA: predicts 104 of 10,000 will default; of those, only 81 really defaulted.
Hence, only 23 of 9,667 incorrectly labelled.

® However: of 333 who really defaulted, 252 (75.7%) missed by LDA.

® For credit card company trying to identify high-risk individuals: this false
negative error rate probably unacceptable.

Oliver Ernst (NM)
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Linear Discriminant Analysis

Binary misclassification errors

® (Class-specific classification errors can be crucial.

® |n screening procedures (medical, airport):
sensitivity: ratio of true positives identified;
specificity: ratio of true negatives identified.
® |n Default example:
sensitivity = 81/333 ~ 24.3%;
specificity = 9644/9 667 ~ 99.8%.
® |n hypothesis testing:
type-I error: rejection of true null hypothesis (false positive finding);
type-Il error: failing to reject false null hypothesis (false negative finding).
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Linear Discriminant Analysis

Example: mammography screening

What is the probability that a woman has breast cancer given (only) a positive
result after undergoing a mammography screening?

Data on breast cancer screening test: [Kerlikowske & al., 1996]
Prevalence 1% (proportion of women who have breast cancer)
Sensitivity 90%

Specificity 91%

Bayes' rule: Y € {0,1} (cancer?), X € {0, 1} (test positive?)

o P(X=1Y = 1)-P(Y = 1)
PO =X =1) = BX =1y =1)-P(y = ) + P(X = 1|Y = 0) - P(Y = 0)
0.9-0.01 ~0.2%,

T 0.9-0.01+ (1—0.91)(1—0.01)

Do medical professionals know this? Don't count on it!
[Hoffrage & Gigerenzer, 1998]
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Linear Discriminant Analysis

Modified LDA

® | DA approximates Bayes classifier, which has lowest overall error rate.

® However, sometimes important to achieve low error within a particular class
of interest (credit card company, interested in defaulting customers).

® Bayes classifier: assign observation x to class k for which pi(x) largest.
In two-class case of Default data set: assign to default class if

P(default = Yes|X = x) > 0.5.
® To increase sensitivity to default, instead use lower threshold of
P(default = Yes|X = x) > 0.2.
Modifies confusion table as follows: (cf. Slide 201)

True default status
No Yes | Total
Predicted No 9,432 138 | 9,570

default status  Yes 235 195 430
Total | 9,667 333 | 10,000
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Linear Discriminant Analysis

Modified LDA

® | DA default prediction increases from 104 to 430. Default prediction error
rate improves from 252/333 ~ 75.7% to 138/333 ~ 41.4%.

® However, now 235 individuals who did not default are misclassified, raising
the classification error in this class from 23/9, 667 ~ 0.24% to 235/9, 667 ~
2.4%, with an overall classification error of (138 + 235)/10, 000 = 3.73%.

-
-
- -
© | -
3 -
o -~
g < | -
~ o
o
|3
w o
g
9] o TV
e T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5
Threshold

Default data set: error rates versus threshold for LDA-assignment into defaulting
class: black: overall, blue: fraction of defaulting customers misclassified; red: misclassi-

fied non-defaulting customers.
Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 205 / 496



Linear Discriminant Analysis

ROC curve

ROC Curve
® Traces out false positive/true positive
2 rate for all threshold values of LDA
. classifier in Default data set.
N ° ® True positive: sensitivity (ratio defaul-
g e | ters correctly classified)
g - ® False positive: 1—specificity (ratio of
E S non-defaulters incorrectly classified).
84 ® Optimal ROC curve: follows left/top
: boundaries.
S T T T T T T ® Dotted line: “no-information classi-
00 02 04 06 08 1.0 fier”, i.e., if student status and credit
False positive rate card balance unrelated to default.

® Receiver Operating Characteristics (ROC): simultaneous plot of both
error types for all possible thresholds.

® Area under the ROC curve (AUC): overall performance of classifier sum-
marized over all threshold values. Here AUC= 0.95 close to optimum 1.
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Linear Discriminant Analysis

Summary of terminology

Possible results when applying a classifier (diagnostic test) to a population:

Predicted class

— or Null + or Non-null | Total
True — or Null True Neg. (TN) | False Pos. (FP) N
class + or Non-null | False Neg. (FN) | True Pos. (TP) P
Total N* p*

® Epidemiology context:
+: disease, —: non-disease.

® Hypothesis testing context:
—: null hypothesis, +: alternative (non-null) hypothesis.

® Default data set context:
+: defaulting customer, —: non-defaulting customer.
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Linear Discriminant Analysis

Performance measures for binary classification

Name Definition | Synonyms

False Pos. rate FP/N Type-| error, 1— specificity

True. Pos. rate TP/P 1— Type-Il error, power, sensitivity, recall
Pos. Pred. value | TP/P* Precision, 1— false discovery proportion
Neg. Pred. value | TN/N*

N: population negative
P: population positive
N*: predicted negative
P*: predicted positive
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Linear Discriminant Analysis

Quadratic discriminant analysis

® Quadratic discriminant analysis (QDA): assume observations within each
class follow Gaussian distribution, but each class has distinct covariance
matrix, i.e., observation in k-th class given by random variable

X~ N(pg, Z).
® Assign observation X = x to class k which maximizes discriminant
1 Te_1 1
Ok(x) = _E(X — ) X (X = py) — 5 log det Xy 4 log Ty

1 1 1
= —§XTZ;1X + XTZ;lp,k — EuZZ,:lu,k —3 log det X 4 log k.
(4.15)

® Now discriminants depend quadratically on observation x.
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Linear Discriminant Analysis

Quadratic discriminant analysis

® Requires estimation of my, py, k.
® Possible advantage of QDA over LDA: bias-variance trade-off.

® | DA estimates single covariance matrix: p(p + 1)/2 parameters.
QDA estimates K covariance matrices: Kp(p + 1)/2 parameters.

® For 50 predictors this amounts to K - 1275 parameters.

® | DA: larger bias, use for few training observations;
QDA: larger variance, use for many training observations or when common
covariance matrix known to be false.
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Linear Discriminant Analysis
Example: LDA vs. QDA

Two-class problem, decision boundaries: Bayes (purple dashed), LDA (black dotted)
and QDA (green solid). Shading: QDA classification. Left:¥; = X,. Right:X; # X,
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A Comparison of Classification Methods

Logistic Regression, LDA, QDA, KNN

LDA vs. logistic regression: consider p =1, K = 2.
® pi(x), pa(x) =1 — p1(x): probability x belongs to class 1, 2, respectively.
® |og-odds for LDA:

pi(x) p1(x)
log ———— = lo = ¢y + C1x,
g 1— pl(X) g pQ(X) 0 1
o, ¢1 functions of w1, o, 02.
® |og-odds for logistic regression:
pi(x)
log ———— = .
og 1— pl(X) ﬁo +ﬁ1X

® Both linear in x, hence produce linear decision boundaries.
Bo. B1 via MLE, ¢y, ¢; from estimation of mean, variance of Gaussians.
® Same relation between LDA and logistic regression holds for p > 1.

LDA and logistic regression can give differing results if assumptions on
Gaussian distribution not met, in this case logistic regression superior.
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A Comparison of Classification Methods

Logistic Regression, LDA, QDA, KNN

KNN
® Prediction for observation X = x based on K training observations closest
to x. Class selected based on majority of neighbors.
® Non-parametric, no assumptions on shape of decision boundary, hence ex-
pected to be superior to LDA and logistic regression when decision bounda-
ry highly nonlinear.
® KNN, however, gives no information on relative importance of predictor
variables.
QDA
e Compromise between non-parametric KNN and linear LDA/logistic regressi-
on.
® | ess flexible than KNN.
® Makes some assumptions on decision boundary shape, can perform better
for limited observation numbers.
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A Comparison of Classification Methods

Comparison scenarios

Six scenarios for comparison: 3 linear, 3 nonlinear decision boundaries.
100 random training data sets each.
For KNN used K = 1 and value chosen by cross validation (later).

Scenario 1 20 training observations in each of 2 classes; in each class: uncor-
related Gaussian with separate means. LDA performs well, KNN
high variance not offset by reduction in bias. QDA worse than
LDA since classifier more flexible than necessary. Logistic regres-
sion: only slightly worse than LDA (linear decision boundary).

Scenario 2 Same as Scenario 1 except that within each class the 2 predictors
had correlation —0.5. Little change.

Scenario 3 Xj, X5 from t-distribution (heavier tails than Gaussian), 50 ob-
servations per class. Decision boundary still linear, so assumptions
of logistic regression satisfied, but those of LDA violated. Logi-
stic regression outperforms LDA. QDA deteriorates considerably
due to non-normality.
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A Comparison of Classification Methods

Comparison scenarios

SCENARIO 1 SCENARIO 2 SCENARIO 3
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A Comparison of Classification Methods

Comparison scenarios

Scenario 4

Scenario 5

Scenario 6

Normal distribution, correlation 0.5 in the first, —0.5 in second
class. Corresponds to QDA assumptions, quadratic decision boun-
daries. QDA outperforms all other methods.

In each class observations generated by normals with uncorrelated
predictors, responses sampled from logistic function using XZ, X3
and X; X5 as predictors. Quadratic decision boundary. QDA best
followed closely by KNN-CV. Linear methods perform poorly.

Same as in 5, except now responses sampled from a more non-
linear expression. Now even QDA can no longer correctly mo-
del complex decision boundary. QDA better than the linear me-
thods, but more flexible KNN-CV gave best results. But: KNN
with K = 1 gives worst results.
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A Comparison of Classification Methods

Comparison scenarios
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A Comparison of Classification Methods

Comparison scenarios

Summary:

No method superior in all situations.
Linear decision boundaries: LDA/logistic regression will perform well.
Moderately nonlinear decision boundaries: QDA can be better.

More highly nonlinear decision boundaries: high-variance method such as
KNN may have advantages, but correct choice of smoothness (flexibility)
parameter can be crucial.

Next chapter: methods for finding the right amount of smoothing.
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