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Linear Regression

Advertising again

Recall advertising data set from Slide 28:
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We will use the simple and well-established statistical learning technique known
as linear regression to answer the following questions:
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Linear Regression

Questions about advertising data set

@ Is there a relationship between advertising budget and sales?
Otherwise, why bother?

® How strong is this relationship between advertising budget and sales?
Prediction possibly better than random guess?

©® Which media contribute to sales?
Separate individual contributions

® How accurately can we estimate the effect of each medium on sales?
Euro by Euro?

©® How accurately can we predict future sales?
Precise prediction for each medium?

@ Is the relationship linear?
If yes, linear regression appropriate (possibly after transforming data)

@ s there synergy among the advertising media?
Called interaction effect in statistics.
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Simple Linear Regression

Definition, terminology, notation

Linear model for quantitative response Y of single predictor X:

Statistician: “We are regressing Y onto X."
E.g., with predictor TV advertising and response sales,
sales ~ 3y + 3 x TV.
The values of coefficients or parameters Bo, B1 obtained from fitting to the
training data are denoted by By, 381, leading to the prediction values
9 = Bo + brx (3.2)

when X = x, where the hat on y denotes the predicted value of the reponse.
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Simple Linear Regression

Estimating the coefficients

Determining intercept B and slope B; in (3.1) amounts to choosing these pa-
rameters such that the residuals or data misfits
=y — 9= vi — (Bo + Bixi), i=1,..., n,

are minimized.

There are many options for defining smallness here, in least squares estimation
this is measured by the residual sum of squares (RSS)

RSS:=rf+ - +rZ=(n—Bo—Bx)’+ -+ n—Bo—Pixa)?. (33)

An easy calculation reveals

Bo =7 — Bi%,
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Simple Linear Regression

Example: LS fit for advertising data

.
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Simple Linear Regression

Example: LS fit for advertising data

LS fit of sales vs. TV budget: RSS as a function of (Go,81)

B1

Left: Level curves. Right: Surface plot.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 76 / 496



Simple Linear Regression

Assessing the accuracy of the coefficient estimates

Linear regression yields a linear model

Y =Bo+BX +e (3.5)

where Bo : intercept
B1 : slope
€ : model error, modeled as centered random variable,

independent of X.

Model (3.5) defines the population regression line, the best linear approximati-
on to the true (generally unknown) relationship between X and Y.

The linear relation (3.2) containing the coefficients ﬁAO,Bl estimated from a
given data set is called the least squares line.
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Simple Linear Regression

Example: population regression line, least squares line

® Left: Simulated data set (n = 100) from model f(X) =2+ 3X.
Red line: population regression line (true model).
Blue line: least squares line from data (black dots).

® Right: Additionally ten (light blue) least squares lines obtained from ten separate
randomly generated data sets from same model; seen to average to the red line.
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Simple Linear Regression

Analogy: estimation of mean

® Standard statistical approach: use information contained in a sample to
estimate characteristics of a large (possibly infinite) population.

® Example: approximate population mean p (expectation, expected value)
of random variable Y from observations ys, ..., y, by sample mean
By =1Y0

® Just like it ~ w but, in general, i # u, the coefficients Bo. B1 defining the
least squares line are estimates of the true values By, 81 of the model.

® Sample mean {1 is an unbiased estimator of w, i.e., it does not systemati-
cally over- or underestimate the true value L.
Same holds for estimators 5’0,61.

® How accurate is 1 ~ u?
Standard error* of 4, denoted SE({1), satisfies

2
Var i = SE(2)* = %, where 02 = Var Y. (3.6)

4Standard deviation of the sample distribution, i.e., average amount { differs from w.
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Simple Linear Regression

Standard error of regression coefficients

For the regression coefficients (assuming uncorrelated observation errors)

R 1 X2
2 _ 2|
SE(By) =0 - + —Zle(xi —x)p

02

2 (i =x)*

(3.7)
0° = Vare.

SE(B1)? =

* SE(B;) smaller when x; more spread out
(provides more leverage to estimate slope).

® SE(Bo) = SE(2) if X =0. (Then o =7.)
® g generally unknown, can be estimated from the data by

residual standard error
RSE . ./ R3S
n—2

When RSE used in place of o, should write §I\E(Bl)
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Simple Linear Regression

Confidence intervals

® 95% confidence interval: range of values containing true unknown value of
parameter with probability 95%.
® For linear regression: 95% Cl for B; approximately

Br+2-SE(By), (3.8)
i.e., with probability 95%,
Br € [Br—2-SE(By). By + 2 SE(By)]. (3.9)

e Similarly, for By, 95% Cl approximately given by
Bo + 2 - SE(Bo). (3.10)

® For advertising example: with 95% probability
Bo € [6.130, 7.935], B1 € [0.042,0.053].
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Simple Linear Regression

Hypothesis tests

Use SE to test null hypothesis

Ho : no relationship between X and Y (3.11)

and alternative hypothesis

H, : some relationship between X and Y (3.12)

or, mathematically,
HO:B;L:O VS. Haiﬁl;éo.

* Reject Hj if B, sufficiently far from O relative to SE(5:).
® t-statistic .
- B1—0
SE(B1)

measures distance of 31 from 0 in # standard deviations.

(3.13)
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Simple Linear Regression

Hypothesis tests

® (31 = 0 implies t follows t-distribution with n — 2 degrees of freedom.

® \We compute probability of observing |t| or larger under assumption 3; = 0,
its p-value.

® Small p-value: unlikely to observe substantial relation between X and Y
due to purely random variation, unless the two actually are related.

® |n this case we reject Hy.

e Typical cutoffs for p-value: 1%, 5%; for n = 30 corresponds to t-statistic
(3.13) values 2 and 2.75. respectively.

For TV sales data in advertising data set:

Estimate SE t-statistic p-value
Bo 7.0325 0.4578 15.36 < 0.0001
51 0.0475 0.0027 17.67 < 0.0001
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Simple Linear Regression

Reminder: Student's t distribution

® Given Xy, -+, X, i.i.d. ~ N(u, 0?)
® Sample mean:

1 —
2 _ _ )2
S5°= | IZI(X, X)
e RV B
X—u
a/vn
distributed according to N(0, 1).
e RV B
X =
S/vn

distributed according to Student’s t-distribution with n — 1 DoF.
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Simple Linear Regression

Student’s t distribution

PDF of Student's t-distribution, v degrees of freedom

—— Standard normal
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Simple Linear Regression

Assessing model accuracy

® Residual standard error: estimate of standard deviation of € (model error)

n

RSS 1 -
RSE = 5 Wi =) (3.14)

n—2 \ln—24
=1

® For TV data RSS = 3.26, i.e., deviation of sales from true regression line

on average by 3,260 units (even if exact By, B1 known).
Corresponds to 3,260/14,000 = 23% error relative to mean value of all

sales.
® RSE measures lack of model fit.
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Simple Linear Regression

Assessing model accuracy

e RR? statistic: alternative measure of fit: proportion of variance explained.
® ¢ [0, 1], independent of scale of Y.
® Defined in terms of total sum of squares (TSS) as

TSS — RSS RSS &
2 _ _1_ _ )2
R* = Feo — 1 Too TSS ;Zl(y, v)~©. (3.15)

® TSS : total variance in response Y,
RSS : amount of variability left unexplained after regression,
TSS — RSS : response variability explained by regression model,
RZ? : proportion of variability in Y explained using X.

® R? =~ 0: linear model wrong, high model error variance.

e For TV data R? = 0.61: 2/3 of sales variability explained by (linear regres-
sion on) TV budget.

® R? €0, 1], but sufficient value problem dependent.
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Simple Linear Regression

Correlation

® Measure of linear relationship between X and Y (sample) correlation:

COF(X, Y) _ Z?:l(xi — 7)(yl - 7) . (316)

VY= X2 (v - Y)?

® In simple linear regression: Cor(X, Y)? = R2.

e Correlation expresses association between single pair of variables; R? bet-
ween larger number of variables in multivariate linear regression.
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© Linear Regression

3.2 Multiple Linear Regression
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Multiple Linear Regression

Justification

® p > 1 predictor variables
(as in advertising data set: TV, newspaper, radio)

® Easiest option: simple linear regression for each

For radio sales data in advertising data set:

Estimate SE t-statistic p-value
Bo 9.312 0.563 16.54 < 0.0001
0B 0.203 0.020 9.92 < 0.0001

For newspaper sales data in advertising data set:

Estimate SE t-statistic p-value
Bo 12.351 0.621 19.88 < 0.0001
51 0.055 0.017 3.30 < 0.00115
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Multiple Linear Regression

Justification

® How to predict total sales given 3 budgets?
® Each separate regression equation ignores the other 2 media.

® For correlated media budgets this can lead to misleading estimates of indi-
vidual media effects.

Multiple linear regression model for p predictor variables:

Y =080+ B X1+ B2 Xo+ -+ Bp X, + € (3.17)
B; : average effect on Y of 1-unit increase in X; holding other predictors fixed.
In advertising example:

sales = 3y + 31 x TV + B> x radio + B3 x newspaper (3.18)
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Multiple Linear Regression

Estimating the coefficients

® Given estimates BO,Bl ..... [3’,,, obtain prediction formula
9 =00 +Bixs+ -+ Bpxp. (3.19)
® Same fitting approach: choose {Bj}f’:o to minimize
n n
RSS = Z(y/‘ -9 = Z(y,‘ —Bo—Brxia— - —Bpxip)’  (3.20)
i=1 i=1

yielding the multiple least squares regression coefficients
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Multiple Linear Regression

Example: multiple linear regression, 2 predictors, 1 response
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Multiple Linear Regression

Numerical methods for least squares fitting

® Determining the coefficients {['AEJ}J’-’:O to minimize the RSS in (3.20) is equi-
valent to minimizing ||y — XEH% where we have introduced the notation

for the vector y € R” of response observations, the matrix X € R™*(P+1) of
predictor observations and vector B € RP*! of coefficient estimates.

® The problem of finding a vector x € R” such that b =~ Ax for given A €
R™*" and b € R™ is called a linear regression problem.

® One (of many) possible approaches for achieving this is choosing x to mini-
mize ||b — Ax||>, which is a linear least squares problem.
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Multiple Linear Regression

Numerical methods for least squares fitting

® A somewhat more general fitting approach using a model

Y= Bo+LBifa(x)+ -+ Bpfp(x)

with fixed regression functions {f;}?

problem, where now [X];; = fi(x;).

__, also leads to a linear regression

® A linear least squares problem ||b — Ax||> — min with m > n has a unique
solution if the columns of A are linearly independent, i.e., when A has full
rank, given by x = (ATA)"1ATb.

In this case the solution can be computed using a Cholesky decomposition.
® In the (nearly) rank-deficient case, more sophisticated techniques of nume-
rical linear algebra like the QR decomposition or the SVD are required to

obtain a (stable) solution.

® \When A is large and sparse or structured, iterative methods such as CGLS
or LSQR can be employed which require only matrix-vector products in
place of manipulations of matrix entries.
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Multiple Linear Regression

Advertising data

Estimate SE t-statistic p-value
Bo 2.939 0.3119 9.42 < 0.0001
B1 (TV) 0.046 0.0014 32.81 < 0.0001
B> (radio) 0.189 0.0086 21.89 < 0.0001
B3 (newspaper) —0.001 0.0059 -0.18 0.8599

® Newspaper slope differs from simple regression.
Small estimate, p-value no longer significant.

® Now no relation between sales and newspaper budget. Contradiction?
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Multiple Linear Regression

Advertising data

Correlation matrix:

‘ TV radio  newapaper  sales
TV 1.0000 0.0548 0.0567 0.7822
radio 1.0000 0.3541 0.5762
newspaper 1.0000 0.2283
sales 1.0000

® Correlation between newspaper and radio: ~ 0.35:
Tend to spend more on radio ads where more is spent on newspaper ads.

® |f correct, i.e., Bnewspaper = 0, Bradic > 0, radio increased sales, and where
radio budget high, newpaper budget tends to also be high.

® Simple linear regression: indicates newspaper associated with higher sales.
Multiple regression reveals no such affect.

® Newspaper receives credit for radio’s affect on sales.
Sales due to newspaper advertising is a surrogate for sales due to radio
advertising.
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Multiple Linear Regression

Absurd example, same effect

e Counterintuitive but not uncommon. Consider following (absurd) example.

® Data on shark attacks versus ice cream sales at beach community would
show similar positive relationship as newpaper and radio ads.

® Should one ban ice cream sales to reduce risk of shark attacks?

® Answer: High temperatures cause both (more people at beach for shark
encounters, more ice cream customers).

® Multiple regression reveals icre cream sales not a predictor for shark at-
tacks after adjusting for temperature.
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Multiple Linear Regression

Questions to consider

@ Is at least one of the predictors Xi, Xo, ..., X, useful in predicting the
response?

® Do all predictors help to explain Y, or is only a subset of the predictors
useful?

©® How well does the model fit the data?

O Given a set of predictor values, what response value should we predict, and
how accurate is our prediction?
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Multiple Linear Regression

(1) Is there a relationship between response and predictors?

® As for simple regression, perform statistical hypothesis test: null hpothesis
Ho: Bi=Bo=--=0p=0
versus alternative

H,: atleastone B;(j=1,..., p) is nonzero.

® Such a test can be based on the F-statistic

(TSS—RSS)/p

F= RSS/(n—p—1)

(3.21)

where, as before,
n n
TSS=)> (i—-¥)?  RSS=> (yi—9)>
i=1 i=1
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Multiple Linear Regression

(1) Is there a relationship between response and predictors?

 (TSS—RSS)/p
 RSS/(n—p-—1)

® Under linear model assumption, can show

E [R—SS} = o2
n—p—1

® |f also Hy is true, can show

e [TSS ; RSS] 2

® Hence F = 1 if no relationship between response and predictors.
Alternatively, if H, true, E[(TSS —RSS)/p] > 02, hence F > 1.
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Multiple Linear Regression

(1) Is there a relationship between response and predictors?

Statistics for multiple regression of sales onto radio, TV and newspaper in the
advertising data set:

Quantity | Value
RSE 1.69
R? 0.897
F 570

F > 1 strong evidence against Hp.

® Proper threshold value for F depends on n, p.
Larger F needed to reject Hy for small n.

Hp true, €; Gaussian, then F follows F-distribution; calculate p-value using
statistical software.

® Here, p-value = 0 for F = 590 in this example, hence we safely reject Hp.
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Multiple Linear Regression

(1) Is there a relationship between response and predictors?

® To test whether subset of last g < p coefficients relevant, use null hypothe-

sis
Ho : Bp—q+l = ﬁp—q+2 == 5;7 =0.
® Fit model using all variables except last g, obtaining residual sum of squa-
res RSSp.

® Appropriate F-statistic now

F_ (RSSp —RSS)/q
~ RSS/(n—p-—1)

® For multiple regression, t-statistic and p values for each variable indicate
whether each predictor related to response after adjusting for the remaining
variables.
Equivalent to F-test omitting single variable (g = 1).
Reports partial effect of adding each variable.
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Multiple Linear Regression

(1) Is there a relationship between response and predictors?

What does F statistic tell us that individual p-values don't?
® Does single small p-value indicate at least one variable relevant? No.

® Example: p =100, Hy : 51 =--- =B, = 0 true.
Then by chance, 5% of p-values below 0.05.
Almost guaranteed that p < 0.05 for at least one variable by chance.

® Thus, for large p, looking only at p-values of individual t-statistics tends to
discover spurious relationships.

® For F-statistic, if Hy true, only 5% chance of p-value < 0.05 independently
of n, p.

Note: F-statistic approach works for p < n.
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Multiple Linear Regression

(2) Deciding on important variables

® Typically, not all predictors related to response
(variable selection problem).

® One approach: try all possible models, select best one. Criteria?
Mallow’s C,, Akaike information criterion (AIC),
Bayesian information criterion (BIC) (later)

® For p large, trying 2P models with subsets of variables impractical.

® Forward selection: Start with null model (only Bg), fit p simple regressi-
ons, add variable leading to lowest RSS, then add variable leading to two-
variable model with lowest RSS, continue until stopping criterion met.

® Backward selection: Start with full model, remove variable with largest p-
value, fit new (p — 1)-variable model, keep removing least significant varia-
ble, until stopping criterion met.

® Mixed selection: Start with null model, adding variables with best fit one-
by-one, remove variables whenever its p-value rises above threshold, until
model contains only variables with low p-values and excludes those with
high p-value.
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Multiple Linear Regression

(3) Model fit

RSE, R? computed and interpreted as in simple linear regression.

R? = Cor(X, Y)? for simple linear regression.
R? = Cor(Y, Y)? for multiple linear regression, maximized by fitted model.
R? ~ 1: model explains large portion of response variance.

Advertising example:

{TV, radio, newspaper} R? = 0.8972
{TV, radio} R? = 0.89719

Small increase on including newspaper (even though newspaper not signi-
ficant)

Note: R? always increases when variables are added.

Tiny increase in R? on including newspaper more evidence this variable
can be dropped.

Including redundant variables promotes overfitting.
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Multiple Linear Regression

(3) Model fit

® Advertising example:

{TV} R?> =0.61
{TV, radio} R? = 0.89719
Substantial improvement on adding radio.

(Could also look at p-value of radio’s coefficient in last model.)
® Advertising example:

{TV, radio, newspaper} RSE = 1.686
{TV, radio} RSE = 1.681
{TV} RSE = 3.26

® Note: for multiple linear regression RSE defined as

RSS

RSE =/ ——.
S n—p—1
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Multiple Linear Regression

(3) Model fit

Previous figure:
® Some observations above, some below least squares regression plane.

® |inear model overestimates sales where most of budget spent either exclu-
sively on TV or radio.

® Underestimation where budget split between two media.

® Such nonlinear pattern not reflected by linear model; suggests synergy ef-
fect between these two media.
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Multiple Linear Regression

(4) Predictions

We note three sources of prediction uncertainty:
© Reducible error: Y = f(X) since §; = G;.
Can construct confidence intervals to ascertain closeness Y to f(X).
® Model bias: linear model can only yield best /inear approximation.

© Irreducible error: Y = f(X) + €.
Assess prediction error with prediction intervals: incorporate both reduci-
ble and irreducible errors.

Example: Prediction using {TV, radio} model.
Xtv = 100000 $, Xiadio = 20000 $.

Confidence interval on sales :  95% confidence interval : [10.985, 11.528].
Prediction interval on sales: 95% prediction interval : [7.930, 14.580].

Increased uncertainty about sales for given city in contrast with average sales
over many locations.
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© Linear Regression

3.3 Other Considerations in the Regression Model
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Other Considerations in the Regression Model

Qualitative predictors

Credit data set:
® Quantitative predictors:

balance: average credit card debt for a number of individuals
age

cards (# credit cards)

education (years of education)

income (in thousands of dollars)

limit (credit limit)

rating (credit rating)

® Qualitative predictors:

® gender

® student (student status)

® status (marital status)

® ethnicity (Caucasian, African American or Asian)
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Other Considerations in the Regression Model

Qualitative predictors
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Other Considerations in the Regression Model

Two-valued predictors

® Goal: investigate differences in credit card balance between males/females.

® Gender (qualitative variable, factor) represented with indicator (dummy
variable)
1 if /-th person female,
Xj = L (3.22)
0 if /-th person male.
® Using x; in regression equation results in model
Bo + 081 +¢€; if i-th person female,
Yi=Bo+Bixi+€ = L (3.23)
Bo + €i if /i-th person male.

Interpretation

Bo : average credit card balance among males,
Bo + B1 : average credit card balance among females,

(31 : average difference in credit card balance male/female.
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Other Considerations in the Regression Model

Two-valued predictors

\ Coefficient  Standard error  t-statistic p-value
Bo 509.80 33.13 15.389 < 0.0001
0B1 19.73 46.05 0.429 0.6690

® Average credit card debt males: $509.80.
Average additional credit card debt females: $19.73.
Total average female credit card debt: $529.53.

High p value for dummy variable. Conclusion?
Gender not a statistically significant factor for credit card debt.

Switching male/female coding yields estimates

Bo = $529.53, B, =$-19.73, Bo + B1 = $509.80.
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Other Considerations in the Regression Model

Two-valued predictors

Another alternative coding of two-valued gender predictor:
1 if i-th person female,
Xj =
' —1 if /-th person male.
Results in model

Bo+B1+¢€; if i-th person female,

=B+ Bix +& =
y1=Fo+ P : {ﬁo—ﬁl+€; if i-th person male,

with interpretation

Bo : average credit card balance (ignoring gender),
B1 : amount females are above/males below this average,
giving estimates
[3’0 = $519.665 (half way between male and female averages)
Bi=9% 9865 (half of $19.63, average male/female difference).
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Other Considerations in the Regression Model

Multi-valued qualitative predictors

To encode ethnicity € {Caucasian, African American, Asian}, use
multiple dummy variables (# values — 1)

1 if /-th person Asian,
Xi1 = L , (3.24)
0 if i-th person not Asian,
1 if j-th person Caucasian,
Xjio = L . (325)
0 if i-th person not Caucasian,
resulting in model o )
Bo +B1+¢€; if i-th person Asian
Yi=Bo+B1xi1+0oxio+¢€ =4 Bo+0B+¢€; if i-th person Caucasian
Bo + €; if i-th person African American
(3.26)

Interpretation: Bo : average credit card balance for African Americans (baseline),
B1 : difference between Asian and African Americans,
B> . difference between Caucasian and African Americans
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Other Considerations in the Regression Model

Multi-valued qualitative predictors

Coefficient  Standard error  t-statistic p-value
Bo 531.00 46.32 11.464 < 0.0001
B1 (Asian) —18.69 65.02 —0.287 0.7740
B> (Caucasian) —12.50 56.68 —0.221 0.8260

® Estimated balance for African Americans (baseline): $531.00.
® Asjans estimated to have $18.69 less debt than African Americans.
® Caucasians estimated to have $12.50 less debt than African Americans.

® (31,0 have high p-values, indicating no statistical significance for ethnicity
as factor in credit card balance.

o Coefficients and p-values depend on coding, result does not.
F-test to reject Hy : B1 = B> = 0 has p-value 0.96 (cannot reject).

® Dummy variable approach works for combining qualitative and quantitative
predictors.
(Other coding schemes for qualitative variables possible.)
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Other Considerations in the Regression Model

Extending the linear model

® Restrictive assumptions in linear model: linearity, additivity.
® Additivity: effect on Y of changing X; independent of remaining variables.
® Linearity: rate of change in Y with respect to X; constant in X;.

Recall advertising data set: indication that higher radio budget made effect
of TV spending stronger (interaction effect, synergy).

Add interaction term to two-predictor model:

Y =080+ 081Xy + B Xo + 83X X0+ €
=Bo+ (B1 +B3X2) X1 + B Xo + €
=Bo + B X1 + BaXo + €, B1 = B1 + B3 Xa.

[§1 changes with X5, hence effect of X; on Y changes with X5.
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Other Considerations in the Regression Model

Extending the linear model: factory example

Example: facttory productivity.
® Predict # produced units based on # production lines and # workers.
® Expected: increase in # production lines will depend on # workers.
® |n linear model of units, include interaction term between lines and wor-
kers:
units ~ 1.2 + 3.4 x lines 4+ 0.22 x workers + 1.4 x (lines x workers)
= 1.2+ (3.4 + 1.4 x workers) x lines + 0.22 x workers

® Adding additional line will increase # produced units by 3.4+ 1.4 x workers.
The more workers, the stronger the effect of adding a line.
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Other Considerations in the Regression Model

Extending the linear model: advertising example

Linear model for sales predicted by interacting TV, radio terms:

sales = By + 81 x TV + B, x radio + 83 x (radio x TV) + ¢

3.27
= Bo + (61 + B3 x radio) x TV + (3, x radio + ¢ ( )

Interpretation of B3 : increase in effectiveness of TV advertising for one-unit
increase in radio advertising.

Coefficient  Standard error  t-statistic p-value
Bo 6.7502 0.248 27.23 < 0.0001
B1 0.0191 0.002 12.70 < 0.0001
B> 0.0289 0.009 3.24 0.0014
B 0.0011 0.000 20.73 < 0.0001

® Model with interaction term superior to that including only main effects.

® | ow p-value of interaction term strong evidence for rejecting Hy : B3 = 0.
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Other Considerations in the Regression Model

Extending the linear model: advertising example

® Model (3.27) has R? = 96.8%
(vs. R? =89.7% for model without interaction term).
® |nterpretation: of the variability remaining after fitting the model without

interaction term,
96.8% — 89.7%

100% — 89.7%
is explained by model (3.27) which includes the interaction term.

=69%

® $1000 increase in TV budget associated with sales increase of
(ﬁl + 5 x radio) x 1000 = 19 4 1.1 x radio units.
$1000 increase in radio budget associated with sales increase of
(B2 + B3 x TV) x 1000 = 29 + 1.1 x TV units.

® Hierarchical principle: for every interaction term, include all associated
main effects, even if the p values of their coefficients not significant.
Rationale: If X1 X5 related to response, vanishing coefficients for X, X5
unimportant. X3 X5 typically correlated with X;, X5; leaving these out alters
meaning of interaction.
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Other Considerations in the Regression Model

Extending the linear model: credit example

Credit data set: predict balance using income (quantitative) and student
(qualitative). Without interaction term:

if /-th person student
balance; ~ By 4+ (3; X income; + {52 P

0  otherwise

(3.28)
. Bo + B> if i-th person student
= 1 X income,; +

Bo otherwise.

® Results in fitting two parallel lines to data (one each for students and non-
students).

® Parallel implies: average affect on balance of one-unit increase in income
independent of Student status.

® Reflects model shortcoming: change in income may have very different
effect on credit card balance for students and non-students.
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Other Considerations in the Regression Model

Extending the linear model: credit example

—— student
—— non-student
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With interaction term: multiply income with dummy variable for student

. + B3 x income,; if i-th person student
balance; ~ 3y + (81 X income; + {ﬁz Ps ' P

otherwise

(Bo +B2) + (B1 + B3) x income; if i-th person student
Bo + B1 X income, otherwise.
3.29
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Other Considerations in the Regression Model

Extending the linear model: credit example

® Now the two lines have different intercepts and different slopes.

® Slope for students lower, indicates increases in income associated with
smaller increase in credit card balance than for non-students.
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Other Considerations in the Regression Model

Extending the linear model: nonlinear relationships

Polynomial regression vs. linear regression:

o _| .
Ire) === Linear
=== Degree 2
=== Degree 5
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Horsepower

Auto data set showing mpg (miles per gallon) versus horsepower for different cars.
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Other Considerations in the Regression Model

Extending the linear model: nonlinear relationships

Since the data seem to suggest curved relationship, add quadratic term:

mpg = 3 + 51 x horsepower + B, x horsepower’ + ¢. (3.30)
Coefficient  Standard error  t-statistic p-value
Bo 56.9001 1.8004 31.6 < 0.0001
B1 —0.4662 0.0311 —15.0 < 0.0001
B> 0.0012 0.0001 10.1 < 0.0001

e Linear fit has R? = 0.606, quadratic fit has R? = 0.688.
® p-value for quadratic term highly significant.

® Degree 5 fit more oscillatory, doesn’t appear to explain data any better
than quadratic.

Oliver Ernst (NM)

Introduction to Data Science Winter Semester 2018/19 127 / 496



Other Considerations in the Regression Model

Potential problems

Most common problems when fitting a linear regression model to a data set:
(identification and solution as much an art as a science)

® Nonlinear dependence of response on predictors
® Correlated error terms

©® Non-constant variance of error terms

O Outliers

©® High-leverage points

@ Collinearity
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Other Considerations in the Regression Model

Potential problems: (1) Nonlinear dependence

Inference and prediction from linear regression model suspect when true model
nonlinear.

® |dentifying nonlinearity aided by residual plots

e =y — 9 against predictors x;.

For multiple regression models, plot residuals against predicted (fitted) va-
lues ¥;.

Ideal picture: no discernible pattern.

® Pattern indicates possible problem with model.

When nonlinearity is suggested, introduce nonlinear functions of predictors
as regression functions into the regression model.
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Other Considerations in the Regression Model

Potential problems: (1) Nonlinear dependence

Residual Plot for Linear Fit Residual Plot for Quadratic Fit
<
o 53203 ©v 4 334 323
A 334
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Residuals versus predicted values for Auto data set.

Red line is smooth fit to residuals to aid in identifying trends.

Left: linear regression of mpg on horsepower (strong pattern).

Right: linear regression of mpg on horsepower and horsepower? (little pattern).
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Other Considerations in the Regression Model

Potential problems: (2) Correlated error terms

® |inear regression assumes uncorrelated errors g;.

® Computation of SE for coefficient estimates, fitted values, based on this
assumption. Otherwise estimated SE tend to underestimate true SE, confi-
dence and prediction intervals too optimistic (narrow), p-values lower than
they should be.

® Extreme example: double data (observations, error terms identical in pairs).
SE calculations use sample size 2n in place of n, hence Cl narrower by fac-
tor of /2.

® Detection for time series: plot residuals as function of time. No correlati-
ons implies no visible pattern; correlations lead to tracking of residuals.

e Example (next slide): time series with error correlation p = 0,0.5,0.9

® Example: study of persons' heights predicted from their weights.
Uncorrelatedness assumption violated if, e.g., individuals related, same diet
or environmantal factors.
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Other Considerations in the Regression Model

Potential problems: (3) Non-constant variance of error terms

® SE, Cl, hypothesis tests associated with linear model rely on assumption
Vare, = 02 (Vi).

® Non-constant error variance (heteroscedasticity), e.g. increase with re-
sponse value, leads to funnel-shaped residual plot.

® Possible solution: transform response Y using concave function such as
log Y or V'Y, leads to damping of larger responses, reducing heterosceda-
sticity.

® When variation of response variance known, e.g., i-th response average
of nj observations which are uncorrelated with variance o2, then average
has variance 0,2 = 02/n;. Remedy: weighted least squares with weights
proportional to inverse variances.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 133 /496



Other Considerations in the Regression Model

Potential problems: (3) Non-constant variance of error terms

Response Y Response log(Y)
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Residual plots. Red: smooth fit of residuals. Blue: track outer quantiles of residuals.
Left: funnel shape indicating heteroscedasticity.
Right: After log-transforming respone, heteroscedasticity removed.
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Other Considerations in the Regression Model

Potential problems: (4) Outliers

Outlier: point where y; far from value predicted by model.
Possible causes: observation errors.
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Left: red solid line: least squares line with outlier, blue: without.

Center: Residual plot identifies outlier.

Right: Outlier seen to have studentized residual (divide ¢; by its estimated standard
error) of 6 (between —3 and 3 expected).

R? declines from 0.892 to 0.805 on including outlier.
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Other Considerations in the Regression Model

Potential problems: (5) High-leverage points

® Qutliers: observations where y; is unusual given x;.
® Observations with high leverage have unusual value for x;.

® |f least squares line strongly affected by certain points, problems with these
may invalidate entire fit, hence important to identify such observations.

® Simple linear regression: extremal x-values; multiple linear regression: in
range of all other observation coordinates, but unusual (difficult to detect
for more than two predictors).

® | arge value of leverage statistic indicates high leverage.
For simple linear regression:

B 1 (X[—7)2 1
=t e < (o) .

Average value always ﬂnl, deviation from average indicates high leverage.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 136 / 496



Other Considerations in the Regression Model

Potential problems: (5) High-leverage points
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Left: Same data as previous figure, with added observation 41 (red) of high leverage.
Red solid line is least squares fit with, blue dashed without observation 41.

Center: two predictor variables, most observations within blue dashed ellipse, red ob-
servation distinctly outside.

Right: same data as in left panel, studentized redisulas vs. leverage statistic. Observa-
tion 41 has high leverage and high residual, i.e., outlier and high-leverage point.
Outlier observation 20 has low leverage.
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Other Considerations in the Regression Model

Potential problems: (6) Collinearity

Collinearity: two or more predictor variables closely related.
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From Credit data set. Left: limit vs. age. Right: limit vs. rating (strongly collinear).
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Other Considerations in the Regression Model

Potential problems: (6) Collinearity

Difficult to separate individual effects of collinear variables on response.
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Contour plot of RSS associated with different coefficient estimates for Credit data set.
Axes scaled to include 4 SE on either side of optimum.

Left: for regression of balance on limit and age.

Right: for regression of balance on limit and rating.
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Other Considerations in the Regression Model

Potential problems: (6) Collinearity

® (Collinearity increases SE, hence reduces t-statistic, and we will more likely
fail to reject Hy : B; = 0. This reduces the power of the hypothesis test,
i.e., the probability of correctly detecting a nonzero coefficient.

‘ Coefficient  Standard error  t-statistic p-value
Model 1
Bo —173.411 43.828 —3.957 < 0.0001
31 (age) —2.292 0.672 —3.407 0.0007
B (limit) 0.173 0.005 34.496 < 0.0001
Model 2
Bo —377.537 45.254 —8.343 < 0.0001
(1 (rating) 2.202 0.952 2.312 0.0213
B (limit) 0.025 0.064 0.384 0.7012

® Model 1: age, limit both highly significant.
Model 2: collinearity between rating and limit increases SE for limit coeffi-
cient by factor 12, p-value increases to 0.701. Collinearity masks importan-
ce of limit variable.
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Other Considerations in the Regression Model

Potential problems: (6) Collinearity

® |mportant to detect collinearity when fitting a model.

® Correlation matrix may give indication.

® Multicollinearity: collinearity between 3 or more variables which each have
low pairwise correlation.

® Variance inflation factor (AVIF): ratio of variance of §; when fitting the
full model and variance of (3; when fitted separately.

® VIF > 1, minimum at complete absence of collinearity.
Problematic if VIF exceeds 5 or 10.

A 1
VIFB) = =2 —
L= Ry,
R%‘X_j: R? from regression of X; onto all other predictors.

® |n Credit data example: predictors have VIF values of 1.01, 160.67, 160.59.

® Remedies: drop problematic variables, combine collinear variables into single
predictor.
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Revisiting the Marketing Data Questions

Recall the seven questions relating to the Advertising data set we set out to
answer on Slide 71:

@ |Is there a relationship between advertising budget and sales?

® How strong is this relationship between advertising budget and sales?
©® Which media contribute to sales?

® How accurately can we estimate the effect of each medium on sales?
©® How accurately can we predict future sales?

@ Is the relationship linear?

@ |Is there synergy among the advertising media?

We revisit each in turn.
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Revisiting the Marketing Data Questions

@ Is there a relationship between advertising budget and sales?

Fit multiple regression model of sales onto TV, radio and newspaper.

Test hypothesis Ho : B1v = Bradio = 5newspaper =0.
Rejection/non-rejection based on F-statistic (Slide 100).

® For advertising data: low p-value of F-statistic (table on Slide 102) strong
evidence for rejecting Hjy.
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Revisiting the Marketing Data Questions

® How strong is this relationship between advertising budget and sales?

® Measure of model error: RSE (see Slide 80), estimates standard deviation
of response from (true) population regression line.
® Advertising data:
For multiple regression model of sales on TV and radio, RSE = 1,681
units (Slide 107).
Relative to response sample mean of 14, 022 units, this is an error of 12%.
® Measure of model error: R? (Slide 87), measures proportion of response
variability explained by model.
® Advertising data:
For multiple regression model of sales on TV, radio and newspaper,
R? = 0.897, i.e., = 90% of sales variability explained by multiple linear
regression model (Slide 102).
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Revisiting the Marketing Data Questions

©® Which media contribute to sales?

® p-values of t-statistic in multiple regression model of sales on TV, radio
and newspaper: small for TV and radio, large for newspaper.

® Suggest only TV and radio budgets related to sales.
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Revisiting the Marketing Data Questions

® How accurately can we estimate the effect of each medium on sales?

* Confidence intervals for §; constructed from SE of 3;.
® Advertising data: 95%-confidence intervals for multiple regression coeffi-

cients are
TV (0.043,0.049)
radio (0.172,0.206)
newspaper (—0.013,0.011)

® Wide SE due to collinearity? (Slide 138).
VIF scores for TV, radio and newspaper are 1.005, 1.145, 1.145, so not
likely.

® Separate simple regressions of sales on TV, radio and newspaper show
strong association of TV and radio with sales, mild association of newspa-
per with sales, when remaining two predictors ignored.

Oliver Ernst (NM) Introduction to Data Science Winter Semester 2018/19 147 / 496



Revisiting the Marketing Data Questions

©® How accurately can we predict future sales?

Can use (3.19) for prediction.
® Precition intervals assess accuracy of predicting individual responses

Y = f(X) +e.
® Confidence intervals assess accuracy of predicting average responses
Y = f(X).

® Former always wider due to accounting for additional variability due to irre-
ducible error €.
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Revisiting the Marketing Data Questions

0 Is the relationship linear?

e |dentify nonlinearity using residual plots of linear model (Slide 129).

® Advertising data:
Nonlinear effects visible in figure on Slide 108.

® Discussed regression functions which are nonlinear in the predictor varia-
bles.
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Revisiting the Marketing Data Questions

@ s there synergy among the advertising media?

® Non-additive relationships modeled by interaction term in model (Slide 119).
® Presence of interaction (synergy) confirmed by small p-value of interaction
term.

® Advertising data:
Including interaction term increased R? from =~ 90% to ~ 97%.
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Linear Regression vs. K-Nearest Neighbors

Non-parametric approach

® |inear regression is a parametric method.

® Non-parametric methods make no strong a priori assumptions on functional
form of model Y = f(X), more flexibility in adapting to data.

® Here: K-nearest neighbors (KNN) regression (Cf. KNN classifier in
Chapter 2).

® Given prediction point xp, first determine the set .45 consisting of the K
(K € N) training observations closest to xg.

® Predict § to be average training response in 45, i.e.,

?(Xo) = % Z Yi.

X[ €N
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Linear Regression vs. K-Nearest Neighbors

Non-parametric approach

—_—

Two KNN fits on a data set with 64 observations using p = 2 predictors.
Left: K = 1. Interpolation, rough step-like function.
Right: K = 9. Not interpolatory, smoother.
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Linear Regression vs. K-Nearest Neighbors

Tuning K

® Flexibility of model controlled by K: less flexible. smoother fit, for large K.
® Bias-variance tradeoff.

® Flexible model: low bias, high variance
(prediction depends on only one nearby observation).
Unflexible model: high bias, low variance (changing one observation has
smaller effect, averaging introduces bias).

® Optimal value of K7 (later)
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Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

Q: In what setting will a parametric approach outperform a non-parametric ap-
proach?
A: Depends on how closely assumed form of f matches true form.

T T T T T T T T T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0

X X
1D data, 100 observations (red), linear true model (black), KNN regression (blue).

Left: K =1, right: K =09.
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Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

Mean Squared Error

0.2 0.5 1.0

X 1/K

Left: same data, linear regression fit.
Right: test set MSE for linear regression (dotted line) and KNN for different values of
K (plotted against 1/K).
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Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric
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Left: slightly nonlinear data, true model (black), KNN regression with K = 1 (blue)
and K =9 (red).

Right: test set MSE for linear regression (dotted line) and KNN (against 1/K). KNN
wins for K > 4.
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Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

0.15
1

Mean Squared Error

0.05
1

0.2 0.5 1.0
X 1/K

Left: stronly nonlinear data, true model (black), KNN regression with K = 1 (blue)
and K =9 (red).

Right: test set MSE for linear regression (dotted line) and KNN (against 1/K). KNN
wins for all K displayed.
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Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric
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Strongly nonlinear case, added noise predictors not associated with response. Linear
regression MSE deteriorates only slightly as p rises, KNN regression MSE much more
sensitive.

® For p = 1 KNN seems at most slightly worse than linear regression. For
p > 1 this is no longer true.

® Curse of dimensionality: for p = 20, many of the 100 observations have
no nearby observations.
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Linear Regression vs. K-Nearest Neighbors

Parametric vs. non-parametric

® General rule: parametric methods tend to outperform non-parametric me-
thods when there is a small number of observations per predictor.

® Even for small p, parametric methods offer the added advantage of better
interpretability.
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