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Aliasing
Most familiar setting

f (x) = sin(8x)
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Aliasing
Most familiar setting

f (x) = sin(8x), sampled at xj = j · 2π/7
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Aliasing
Most familiar setting
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aliases to f̃ (x) = sin x .

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 4 / 107



Aliasing
Chebyshev, Laurent and Fourier

Recall that a Lipschitz continuous function f on [−1, 1] has the absolutely and
uniformly convergent Chebyshev expansion f (x) =

∑∞
k=0 ak Tk(x).

Given n ∈ N0, we also recall the Chebyshev projection and Chebyshev inter-
polant

pn(x) =

n∑
k=0

ckTk(x), fn(x) =

n∑
k=0

anTk(x), x ∈ [−1, 1].

In the variables z and ϑ, where x = 1
2 (z + z−1) and z = eiϑ, the corresponding

interpolations and projections are as follows:

Fourier

F(ϑ) = F(−ϑ) = 1
2

∑∞
k=0 ak

(
eikϑ + e−ikϑ)

Fn(ϑ) =
1
2

∑n
k=0 ak

(
eikϑ + e−ikϑ)

P(ϑ) = 1
2

∑n
k=0 ck

(
eikϑ + e−ikϑ)

Laurent

F (z) = F (z−1) = 1
2

∑∞
k=0 ak

(
zk + z−k)

Fn(z) = 1
2

∑n
k=0 ak

(
zk + z−k)

Pn(z) = 1
2

∑n
k=0 ck

(
zk + z−k)
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Aliasing
Joukowsky map

Image of circles around the origin.
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Aliasing
Joukowsky map

Phase plots.
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Barycentric Interpolation Formula
Review

We recall some basic facts about Lagrange interpolation:

• For a set of n + 1 distinct interpolation nodes {xj}nj=0 and n + 1 data values
{fj}nj=0 there exists a unique polynomial p ∈ Pn satisfying the interpolation
conditions

p(xj) = fj , j = 0, . . . , n.

• The interpolant may be represented in terms of the Lagrange fundamental
polynomials {`j}nj=0 ⊂Pn as

p(x) =

n∑
j=0

fj `j(x),

where

`j(x) =

n∏
k=0
k 6=j

x − xk

xj − xk
, j = 0, . . . , n.
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Barycentric Interpolation Formula
Review

• The Newton form of the interpolating polynomial is based on the nodal
polynomials1

ωj(x) =

j−1∏
k=0

(x − xk) ∈Pj , j = 0, . . . , n,

as well as the set of recursively defined divided differences

fi0,i1,...,ik :=
fi1,i2,...,ik − fi0,i1,...,ik−1

xik − xi0
k ≥ 1,

where i0, . . . , in ∈ {0, 1, . . . , n} are distinct indices, and has the form

p(x) = f0 ω0(x) + f0,1 ω1(x) + · · ·+ f0,1,...,n ωn(x).

1(the empty product taken as equal to one)
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Barycentric Interpolation Formula
Review

• The divided differences can be generated from left to right in the triangular
table:

xi k = 0 k = 1 k = 2 k = 3 k = 4

x0 f0
f0,1

x1 f1 f0,1,2
f1,2 f0,1,2,3

x2 f2 f1,2,3 f0,1,2,3,4
f2,3 f1,2,3,4

x3 f3 f2,3,4
f3,4

x4 f4

Adding a data pair entails adding a ‘diagonal’ along the bottom of the triangle.
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Barycentric Interpolation Formula
Naive construction based on a Vandermonde matrix

The representation of the Lagrange interpolating polynomial with respect to the
monomial basis {x j}nj=0, i.e.,

p(x) = a0 + a1x + · · ·+ anxn

is determined by the n + 1 linear equations

p(xj) = fj , j = 0, . . . , n,

or, in matrix form, Va = f, where

V = V(x0, . . . , xn) =


1 x0 x20 . . . xn

0

1 x1 x21 . . . xn
1 ,

...
...

1 xn x2n . . . xn
n

 , a =


a0
a1
...

an

 , f =


f0
f1
...

fn

 .
In view of det V(x0, . . . , xn) =

∏
i>j(xi − xj), this has a unique solution whenever

the nodes are distinct.
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Barycentric Interpolation Formula
Barycentric weights

In terms of the nodal polynomial associated with {xj}nj=0

ωn+1(x) := (x − x0)(x − x1) · · · (x − xn) ∈Pn+1.

we define the barycentric weights {λj}nj=0 by

λj :=
1∏n

k=0
k 6=j

(xj − xk)
=

1
ω′n+1(xj)

, j = 0, . . . , n, (5.1)

in terms of which the Lagrange fundamental polynomials become

`j(x) = ωn+1(x)
λj

x − xj
, j = 0, . . . , n,

by means of which we can represent the interpolating polynomial as . . .
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Barycentric Interpolation Formula
First and second formulas

the first barycentric formula (or modified Lagrange formula)

p(x) = ωn+1(x)

n∑
j=0

fj
λj

x − xj
.

Since the constant function f ≡ 1 is always interpolated exactly, we have

1 ≡ ωn+1(x)

n∑
j=0

λj

x − xj
,

so that, dividing the first barycentric formula by this expression and cancelling
common factors yields the second barycentric formula

p(x) =

n∑
j=0

fj
λj

x − xj

n∑
j=0

λj

x − xj

.
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Barycentric Interpolation Formula
Computational cost

Updating. Addition of new node xn+1:

λnewj :=
λoldj

xj − xn+1
, j = 0, . . . , n, (2n + 2 flops).

λn+1 from old weights, additional n + 1 flops, if xj − xn+1 have been stored.

Cost.
• Computation of {λj}nj=0 requires

∑n
j=1 3j = 3

2n(n + 1) flops.

• For given weights {λj}nj=0 each evaluation of p in additional 5n + 4 = O(n)
flops.

Further advantages.
• λj independent of fj , i.e., once weights computed arbitrary f can be inter-
polated in O(n) flops.

• λj independent of node numbering (cf. divided differences).

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 15 / 107



Barycentric Interpolation Formula
Chebyshev nodes

Theorem 5.1
For the n + 1 Chebyshev nodes the barycentric weights are

λj =

(−1)j 2n−1

n , j = 1, . . . , n − 1,

(−1)j 2n−2

n , j = 0, n.

The associated interpolating polynomial for data {fj}nj=0 in second barycentric
form is then

p(x) =

n∑
j=0

′ (−1)j fj
x − xj

n∑
j=0

′ (−1)j

x − xj

,

with the primed sums indicating that the first and last term are halved.
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Barycentric Interpolation Formula
Remarks

• The exponential growth of the barycentric weights for Chebyshev nodes
raises concern about floating point overflow for high interpolation degrees.

• Moreover, the nodal polynomial occurring as a factor in the first barycent-
ric formula has value on the order of 2−n on [−1, 1], which similarly poses a
danger of underflow.

• In addition, all these numbers scale with n-th powers when the independent
variable is transplanted to a general bounded interval [a, b] ⊂ R.

• The over- and underflow issues can be addressed by reformulating the ex-
pressions in terms of logarithms or mapping the independent variable to an
interval of length 4 (logarithmic capacity 1).

• The nodal polynomial factor and the common factors in the barycentric
weight, however, cancel out in the second barycentric formula, making it
scale invariant and eliminating the risk of over- and underflow.

• Nonetheless, the second barycentric formula has weaker numerical stability
properties than the first, as the analysis in [Higham, 2004] makes explicit.
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Barycentric Interpolation Formula
Stability analysis of [Higham (2004)]

Definition 5.2
The condition number of p = pn at x ∈ [−1, 1] with respect to f is, for p(x) 6=
0,

cond(x , n, f ) := lim
ε→0

sup

{∣∣∣∣pf (x)− pf +∆f (x)

εpf (x)

∣∣∣∣ : |∆f | ≤ ε|f |
}

In cond(x , n, f ), the term ‘n’ indicates the dependence of cond on the points xj .

Lemma 5.3

cond(x , n, f ) =

∑n
j=0 |`j (x)fj |
|p(x)| ≥ 1

and for any f with |∆f | ≤ ε|f | we have
|pf (x)− pf +∆f (x)|

|pf (x)| ≤ cond(x , n, f )ε.
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Barycentric Interpolation Formula
Stability analysis of [Higham (2004)]

We introduce the relative error counter (cf. [Higham, 2002, Section 2.2])

〈k〉 :=

k∏
i=1

(1 + δi )
ρi , ρi = ±1, |δ| ≤ u unit roundoff.

Lemma 5.4
The barycentric weights {λ̂j}nj=0 computed in floating point arithmetic satisfy

λ̂j = λj〈2n〉j , j = 0, . . . , n,

while the computed ˆ̀(x) satisfies ˆ̀(x) = `(x)〈2n + 1〉.

Theorem 5.5

The computed interpolation polynomial p̂(x) using the first barycentric formula
satisfies

p̂(x) = `(x)

n∑
j=0

λj

x − xj
fj〈5n + 5〉.
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Barycentric Interpolation Formula
Stability analysis of [Higham (2004)]

• The statement of Theorem 5.5 is that the computed value p̂(x) of the in-
terpolating polynomial at a point x is the exact value of a perturbed inter-
polation problem, where the perturbation is small, i.e., that interpolation
via the first barycentric formula is backward stable.

• The errors are of the same form, and only O(n) times larger than the er-
rors in rounding the fj to a floating point number.

• Applying Lemma 5.3 yields a bound for the forward error:

|p(x)− p̂(x)|
|p(x)| ≤ γ5n+5 cond(x , n, f ).

• If the xj or x are not floating point numbers then there can be large rela-
tive errors in the differences fl [fl(xj) − fl(xk)] and fl [fl(x) − fl(xk)]. Howe-
ver, the computed p̂(x) can nevertheless be interpreted as the exact result
corresponding to slightly perturbed x and points xj (namely, the rounded
values) and slightly perturbed points fj ; so if p(x) has a large relative error,
then the problem itself must be ill-conditioned with respect to variations in
x and the xj and the fj .
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Barycentric Interpolation Formula
Stability analysis of [Higham (2004)]

Theorem 5.6
The value p̂(x) computed with the second barycentric formula satisfies

|p(x)− p̂(x)|
|p(x)| ≤ (3n + 4)u

∑n
j=0

∣∣∣ λj
x−xj

fj
∣∣∣∣∣∣∑n

j=0
λj

x−xj
fj
∣∣∣ + (3n + 2)u

∑n
j=0

∣∣∣ λj
x−xj

∣∣∣∣∣∣∑n
j=0

λj
x−xj

∣∣∣ + O(u2)

= (3n + 4)u cond(x , n, f ) + (3n + 2)u

∑n
j=0

∣∣∣ λj
x−xj

∣∣∣∣∣∣∑n
j=0

λj
x−xj

∣∣∣ + O(u2)

= (3n + 4)u cond(x , n, f ) + (3n + 2)u cond(x , n, 1) + O(u2).
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Barycentric Interpolation Formula
Stability analysis of [Higham (2004)]

• This forward error bound contains a term not present in that for the first
formula. This measures the amount of cancellation in the denominator.
Since the denominator is independent of f it is clear that the bound can be
arbitrarily larger than cond(x , n, f )u for suitable choices of f and xj .

• For example: taking f1 = 1 and fj = 0 for j > 1 gives cond(x , n, f ) = 1,
while for suitable choice of the xj the second term in the bound can beco-
me arbitrarily large.

• However, from (4.3) we see that the error bound is significantly larger than
that for the first barycentric formula only if cond(x , n, 1) � cond(x , n, f ) a
circumstance that intuitively seems unlikely.
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Barycentric Interpolation Formula
Stability analysis of [Higham (2004)]

Numerical experiment: fj = 0, j = 0, . . . , n − 1, fn = 1, n = 29, equispaced
points

554 N. J. HIGHAM
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FIG. 1. Relative errors in computed pn(x) for 30 equally spaced points xi in increasing order.
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FIG. 2. Relative errors in computed pn(x) for 30 equally spaced points xi in decreasing order.

forward stable way for both orderings, but the Newton divided difference formula becomes
very unstable as x approaches one end of the interval in each case.
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Barycentric Interpolation Formula
Stability analysis of [Higham (2004)]

Numerical experiment: Runge function, n = 29, Chebyshev points

STABILITY OF BARYCENTRIC LAGRANGE INTERPOLATION 555
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FIG. 3. Relative errors in computed pn(x) for 30 Chebyshev points xi of the first kind in increasing order and
f (x) = 1/(1+ 25x2).
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FIG. 4. Relative errors in computed pn(x) for 30 Chebyshev points xi of the first kind in decreasing order and
f (x) = 1/(1+ 25x2).

6. Conclusions

The modified Lagrange formula (3.1) for polynomial interpolation is backward stable
with respect to perturbations in the function values. The barycentric formula (4.1) is not
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The Weierstrass Approximation Theorem
Weierstrass 1885 proof

Theorem 6.1
For any continuous function f on [−1, 1] and ε > 0 there exists a polynomial p
such that ‖f − p‖L∞(−1,1) < ε.

The original 1885 proof by Weierstraß derives the result by first extending f to
a continuous function f̃ on R with compact support and then showing

‖f̃ − p‖ ≤ ‖f̃ − f̃ε‖+ ‖f̃ε − p‖

where

• f̃ε is obtained from the convolution of f̃ with a Gaussian which is sufficient-
ly narrow that ‖f̃ − f̃ε‖ < ε

2 and

• p is a truncated Taylor series (i.e., a polynomial) approximating the entire
function f̃ε suffieciently well that ‖f̃ε − p‖ < ε

2 .
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The Weierstrass Approximation Theorem
Convolutions

Let f and g be two locally integrable2 functions on R. The convolution f ∗ g of
f and g is a function defined on R by

(f ∗ g)(x) =

∫
f (x − y)g(y) dy =

∫
f (y)g(x − y) dy = (g ∗ f )(x)

provided these integrals in question exist.

2i.e., integrable on every compact subset of their domains of definition.
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The Weierstrass Approximation Theorem
Convolution

Theorem 6.2 (Generalized Young’s inequality)

Let µ be a σ-finite measure on R as well as 1 ≤ p ≤ ∞ and C > 0. Suppose K
is a measurable function on R2 such that

sup
x∈R

∫
|K (x , y)| dµ(y) ≤ C and sup

y∈R

∫
|K (x , y)| dµ(x) ≤ C .

If f ∈ Lp(R), then the function Tf defined by

(Tf )(x) :=

∫
K (x , y)f (y) dµ(y)

is well-defined almost everywhere, lies in Lp(R) and ‖Tf ‖Lp(R) ≤ C‖f ‖Lp(R).

As a consequence, if f ∈ L1(R) and g ∈ Lp(R), 1 ≤ p ≤ ∞, then f ∗ g ∈ Lp(R)
and ‖f ∗ g‖Lp(R) ≤ ‖f ‖L1(R)‖g‖Lp(R).
Proof. Apply Theorem 6.2 with K (x , y) = f (x − y).
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The Weierstrass Approximation Theorem
Convolution

For a function f defined on R and a ∈ R we define fa(x) := f (a + x).

Lemma 6.3
If 1 ≤ p <∞ and f ∈ Lp(R), then lima→0 ‖fa − f ‖Lp(R) = 0.

Theorem 6.4

Suppose φ ∈ L1(R) and
∫
φ(x) dx = c . For each ε > 0 define the function φε by

φε(x) :=
1
ε
φ
(x
ε

)
.

(a) If f ∈ Lp(R), 1 ≤ p <∞, then f ∗ φε → cf in Lp(R) as ε→ 0.

(b) If f ∈ L∞(R( and uniformly continuous on a set V , then f ∗ φε → cf
uniformly on V as ε→ 0.
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The Weierstrass Approximation Theorem
Fourier transform

Definition 6.5
If f ∈ L1(R), its Fourier transform f̂ is a bounded function on R defined by

f̂ (ξ) =

∫
e−2πiξx f (x) dx , ξ ∈ R.

Theorem 6.6 (Convolution and Fourier transform)

If f , g ∈ L1(R), then (̂f ∗ g) = f̂ · ĝ.

Theorem 6.7

The Fourier transform of the function f (x) = e−πax2 with a > 0 is given by

f̂ (ξ) = a−1/2e−πξ
2/a.
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The Weierstrass Approximation Theorem
Fourier transform of the Schwartz class

Definition 6.8
The Schwartz class S = S (R) is the space of all C∞-functions on R which,
together with all their derivatives, decay faster than any power of x as |x | → ∞:
u ∈ S if u ∈ C∞(R) and

sup
x∈R
|xα∂βu(x)| <∞ for all α, β ∈ N0.

Proposition 6.9
For f ∈ S and β ∈ N0 there holds

(a) f̂ ∈ C∞ and ∂β f̂ = [(−2πix)βf ]̂ .

(b) ∂̂βf = (2πiξ)β f̂ .

Proposition 6.10

If f ∈ S , then f̂ ∈ S .
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The Weierstrass Approximation Theorem
Heat kernel

The Cauchy problem for the heat equation in 1D with initial data f

∂tu − ∂xxu = 0 on R× (0,∞), u(x , 0) = f (x),

where we assume f a function of rapid decay, can be solved by taking the Fouri-
er transform of the heat equation with respect to x :

∂t û(ξ, t) + 4π2ξ2û(ξ, t) = 0, û(ξ, 0) = f̂ (ξ).

This is an ordinary initial value problem which, for each value of the parameter
ξ, has the solution

û(ξ, t) = f̂ (ξ) e−4π
2ξ2t , t > 0.

In other words,

u(x , t) = f ∗ Kt , where K̂t(ξ) = e−4π
2ξ2t .
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The Weierstrass Approximation Theorem
Heat kernel

By Theorem 6.7, this means

Kt(x) =: K (x , t) = (4πt)−1/2e−x2/(4t), t > 0.

The function K defined on R × (0,∞) is called the Gaussian kernel or heat
kernel. Note that

Kt(x) = t−1/2K1(t−1/2x),

∫
Kt(x) dx = K̂t(0) = 1.

By Theorem 6.4, the family {Kt}t>0 is an approximation of the identity.
(Set ε =

√
t.)

Theorem 6.11

Suppose f ∈ Lp(R), 1 ≤ p ≤ ∞. Then u(x , t) = f ∗Kt(x) satisfies ∂tu−∂xxu on
R × (0,∞). If f is bounded and continuous, then u is continuous on R × [0,∞)
and u(x , 0) = f (x). If f ∈ Lp(R) where p < ∞, then u(·, t) converges to f in
the Lp-norm as t →∞.
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The Weierstrass Approximation Theorem
Heat kernel, remarks

• Since Kt decays rapidly as |x | → ∞, f ∗ Kt exists in the interval (0,T ] pro-
vided only that |f (x)| ≤ Cex2/(4T ). Under this condition, one easily verifies
by differentiating under the integral sign that f ∗ Kt satisfies the heat equa-
tion and approaches f uniformly on bounded sets as t → 0 provided f is
continuous.

• Moreover, as all derivatives of K (x , t) decay rapidly as |x | → ∞ we can
differentiate under the integral sign to any order, and conclude that u ∈
C∞. Thus, the heat kernel immediately smooths out arbitrary data.
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The Weierstrass Approximation Theorem
Weierstrass’ proof, revisited

• Given ε > 0, by Theorem 6.11 we can find t > 0 such that

sup
x∈R
|(f̃ ∗ Kt)(x)− f̃ (x)| <

ε

2

• But

(f̃ ∗ Kt)(x) = (4πt)−1/2
∫

supp f̃
f̃ (y) e(x−y)2/(4t) dy

• Since the Taylor series for ex converges uniformly on compact sets, we can
replace e(x−y)/(4t) by a partial sum with error less than (4πt)1/2ε/2‖f̃ ‖1 for
x ∈ [−1, 1] and y ∈ supp f̃ .

• Thus, supx∈[−1,1] |(f̃ ∗ Kt)(x)− p(x)| < ε
2 where

p(x) = (4πt)−1/2
∫

supp f̃
f̃ (y)

K∑
k=0

(−1)k

k!

[
(x − y)2

4t

]k

dy

is a polynomial of degree 2K .

�
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The Weierstrass Approximation Theorem
Bernstein’s proof

For a continuous function f defined on [0, 1] the expression

Bn(x) = Bn,f (x) :=

n∑
k=0

f ( k
n )

(
n
k

)
xk(1− x)n−k

is called the Bernstein polynomial of order n for the function f .
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The Weierstrass Approximation Theorem
Bernstein’s proof

For a continuous function defined on [0, 1] the expression

Bn(x) = Bn,f (x) :=

n∑
k=0

f ( k
n )

(
n
k

)
xk(1− x)n−k

is called the Bernstein polynomial of order n for the function f .

• The highlighted expression has the following interpretation from elemen-
tary probability theory: It represents the probability of observing exactly k
successes in a binomial experiment consisting of n repeated i.i.d. Bernoulli
trials with success probability x .

• In this context, the complete expression Bn(x) is the expectation of a ran-
dom variable whose value (payoff) is f ( k

n ) when the number of successes in
the above experiment is exactly k ∈ {0, 1, . . . , n}.

• Bernstein’s proof of the Weierstrass approximation theorem establishes
that this expected value, as a function of x ∈ [0, 1], converges uniformly to
f .
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The Weierstrass Approximation Theorem
Bernoulli’s theorem of large numbers

• Denote by Xi the random outcome of the i-th Bernoulli trial, i.e., equal to
1 with probability x and zero with probability 1− x .

• The number of successes in n i.i.d. repeated trials is k = X1 + · · ·+ Xn.
• We have

E [Xi ] = x , VarXi = E
[
(Xi − E [Xi ])

2] = x(1− x),

E
[
k
n

]
= x , Var

k
n

=
x(1− x)

n
.

• Intuitively, we expect the relative frequency of success k/n to approach x
as n increases. By Chebyshev’s inequality, for ε > 0,

P
(∣∣∣∣kn − x

∣∣∣∣ < ε

)
≥ 1−

x(1− x)

nε2
→ 1 (n →∞).

• In other words ∑
| kn−x|<ε

(
n
k

)
xk(1− x)n−k → 1 (n →∞).
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The Weierstrass Approximation Theorem
Bernstein basis

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pk(x) =

(
n
k

)
xk(1− x)n−k , k = 0, 1, . . . , n, n = 10.
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The Weierstrass Approximation Theorem
Bernstein’s proof

Theorem 6.12 (Bernstein, 1912)
For a function f bounded on [0, 1], the relation limn→∞ Bn(x) = f (x) holds at
each point of continuity x of f and holds uniformly on [0, 1] for f ∈ C [0, 1].

Proof:
• With pk(x) :=

(n
k

)
xk(1 − x)n−k , we first compute an expression for the

quantity

T :=

n∑
k=0

(k − nx)2pk(x) =

n∑
k=0

[
k(k − 1)− (2nx − 1)k + n2x2

]
pk(x).

Noting thatn∑
k=0

pk(x) = 1,
n∑

k=0

kpk(x) = nx ,
n∑

k=0

k(k − 1)pk(x) = n(n − 1)x2,

we conclude

T = n(n − 1)x2 − (2nx − 1)nx + n2x2 = nx(1− x).
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The Weierstrass Approximation Theorem
Bernstein’s proof

• Since
∣∣ k
n − x

∣∣ ≥ δ implies 1
δ2

( k
n − x

)2 ≥ 1 and since x(1− x) ≤ 1
4 on [0, 1],∑

| kn−x|≥δ
pk(x) ≤

1
δ2

∑
| kn−x|≥δ

(
k
n
− x
)2

pk(x) ≤
1

n2δ2

n∑
k=0

(k − nx)2pk(x)

=
T

n2δ2
=

x(1− x)

nδ2
≤

1
4nδ2

.

• If |f | is bounded on [0, 1] by M and continuous at x ∈ [0, 1], then for ε > 0
there exists δ > 0 such that |f (x)− f (x ′)| < ε for all x ′ such that |x − x ′| <
δ. Hence

|f (x)− Bn(x)| =

∣∣∣∣∣
n∑

k=0

[
f (x)− f ( k

n )
]
pk(x)

∣∣∣∣∣
=

∑
| kn−x|≥δ

∣∣[f (x)− f ( k
n )
]∣∣ pk(x)

︸ ︷︷ ︸
≤ 2M

4nδ2

+
∑
| kn−x|<δ

∣∣[f (x)− f ( k
n )
]∣∣ pk(x)

︸ ︷︷ ︸
≤ε

∑n
k=0 pk (x)=ε
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The Weierstrass Approximation Theorem
Bernstein’s proof

In summary, we have

|f (x)− Bn(x)| ≤ ε+
M
2nδ2

< 2ε for n sufficiently large. (6.1)

If f is continuous on all of [0, 1], then (6.1) holds for all x with δ independent
of x , i.e.,

Bn(x)→ f (x) uniformly on [0, 1].

�
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Convergence for Differentiable functions

Theorem 7.1 (Chebyshev coefficients for differentiable functions)

For an integer ν ≥ 0, let f and its derivatives through f (ν−1) be absolutely con-
tinuous on [−1, 1] and suppose the ν-th derivative f (ν) is of bounded variation
V . Then for k ≥ ν + 1, the Chebyshev coefficients of f satisfy

|ak | ≤
2V

πk(k − 1) · · · (k − ν)
≤

2V
π(k − ν)ν+1 . (7.1)

Theorem 7.2 (Convergence for differentiable functions)
If f satisfies the conditions of Theorem 7.1, with V again denoting the total
variation of f (ν) for som ν ≥ 1, then for any n > ν, its Chebyshev projections
satisfy

‖f − fn‖ ≤
2V

πν(n − ν)ν
(7.2)

and its Chebyshev interpolants satisfy

‖f − pn‖ ≤
4V

πν(n − ν)ν
(7.3)

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 43 / 107



Contents

4 Aliasing

5 The Barycentric Interpolation Formulas

6 The Weierstrass Approximation Theorem

7 Convergence for Differentiable functions

10 Best Approximation

12 Potential Theory

13 Equispaced Points, the Runge Phenomenon

15 Lebesgue Constants

16 Best and Near-Best

17 Orthogonal Polynomials

18 Polynomial Roots and Colleague Matrices

19 Gauss and Clenshaw-Curtis Quadrature

20 Carathéodory-Fejér Approximation

21 Spectral Methods

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 44 / 107



Best Approximation
Characterization by equioscillation

Definition 10.1
We denote by p∗n the best approximation of f ∈ C [−1, 1] by a polynomial p ∈
Pn by and set

En(f ) := inf
p∈Pn

‖f − p‖,

where ‖ · ‖ denotes the maximum norm on [−1, 1].

Theorem 10.2
A function f on [−1, 1] has a unique best approximation p∗ ∈ Pn. If f is real,
then p∗ is real, too, and in this case a polynomial p ∈ Pn is equal to p∗ if and
only if f − p equioscillates in at least n + 2 extreme points.
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Best Approximation
Modulus of continuity

Definition 10.3 (Modulus of continuity)
Given a function f ∈ C [−1, 1], the function ω : [0,∞)→ [0,∞] defined by

ω(δ) = ω(δ; f ) := sup
|x−y |<δ

|f (x)− f (y)|

is called the modulus of continuity of f .

• Examples: for f (x) ≡ 1, ω(δ; f ) = 0; for f (x) = x , ω(δ; f ) = δ; for
f (x) = x2, ω(δ; f ) = 1− (1− δ)2.

• If 0 < δ1 ≤ δ2, then ω(δ1) ≤ ω(δ2).

• A function f is uniformly continuous on [−1, 1] if and only if

lim
δ→0

ω(δ; f ) = 0.
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Best Approximation
Modulus of continuity

Theorem 10.4 (Jackson)
For f ∈ C [−1, 1] there holds

En(f ) = 6ω
(
1
n

)
.
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Best Approximation
Total variation

Definition 10.5 (Total variation)
The total variation of a function f ∈ C [−1, 1] is defined by

V = V (f ) := sup

n∑
k=1

|f (xk)− f (xk−1)|,

where the supremum is taken over all partitions {x0 < x1 < · · · < xn} of [−1, 1].
A function f is said to be of bounded variation if its total variation is finite.

• If f is differentiable and its derivative is Riemann-integrable, its total varia-
tion is given by

V (f ) =

∫ 1

−1
|f ′(x)| dx ,

(i.e., the vertical component of the arc length of its graph).
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Potential Theory
Counting measures on C and their limits

• A Borel measure on C is any positive (nonnegative) measure defined on the
Borel sets of C.

• The support suppµ of a Borel measure µ on C is the complement of the
largest open set with measure zero.

• The Dirac measure δz , z ∈ C, is the unit measure defined by

δz (B) :=

{
1 if z ∈ B,

0 otherwise,
for all Borel sets B ⊂ C.

• For a continuous function f on C there holds∫
f (z) dδz0(z) = f (z0).
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Potential Theory
Counting measures on C and their limits

Let K ⊂ C be compact in the following.

• We denote by M (K ) the set of all finite positive Borel measures µ with
suppµ = K and µ(K ) = 1.

• The Riesz representation theorem states that for any positive3 linear func-
tional ` on C (K ) there exists a unique Radon measure (a Borel measure
which is finite for all compact subsets of K) such that

`(f ) =

∫
f dµ, for all f ∈ C (K ).

• A sequence (µn)n∈N ⊂ M (K ) is said to converge to µ ∈ M (K ) in the
weak∗-sense if ∫

f dµn →
∫

f dµ ∀f ∈ C (K ).

• M (K ) is weak∗-compact, i.e., every sequence (µn)n∈N has a weak∗-conver-
gent subsequence.

3in the sense that `(f ) ≥ 0 whenever f ≥ 0
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Potential Theory
Counting measures on C and their limits

For a set of points {z1, . . . , zn} ⊂ C we denote the associated normalized coun-
ting measure by

µn =
1
n

n∑
j=1

δzj .

Examples:

(1) The counting measures µn associated with uniformly spaced points on K =
[−1, 1] converge in weak∗ sense to dµ(t) = 1

2dt.
(2) The counting measures µn associated with the sequence of Chebyshev

points on K = [−1, 1] converge in weak∗ sense to

dµ(t) =
dt

π
√
1− t2

.
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Potential Theory
Logarithmic potential

For K ⊂ C compact and µ ∈M (K ), the function uµ : C→ (−∞,∞] defined by

uµ(z) =

∫
log

1
|z − t| dµ(t) = −

∫
log |z − t| dµ(t)

is called the logarithmic potential of µ.

Examples:
(1) For dµ(t) = 1

2dt we obtain

uµ(z) = 1 +
1
2

Re [(z − 1) log(z − 1)− (z + 1) log(z + 1)] , z ∈ C.

(2) For dµ(t) = d
π
√
1−x2

t we obtain

uµ(z) = log 2− log
∣∣∣z +

√
z2 − 1

∣∣∣ , z ∈ C.
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Potential Theory
Limiting measures: equispaced and Chebyshev nodes

equispaced Chebyshev
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Potential Theory
Equilibrium mesure and logarithmic capacity

For K ⊂ C compact and µ ∈M (K ), the energy of the logarithmic potential uµ
is defined as

I (µ) :=

∫
uµ dµ =

∫ ∫
1

log |z − t| dµ(t) dµ(z).

It satisfies
−∞ < I (µ) ≤ ∞.

If the number V (K ) := infµ∈M (K) I (µ), known as the Robin constant of K ,
satisfies V (K ) > −∞, then there exists (note that M (K ) is weak∗-compact) a
measure µ = µK ∈ M (K ) such that I (µK ) = V (K ) known as the equilibrium
distribution or equilibrium measure of K .
The number

cap(K ) :=

{
exp(−V (K )), if V (K ) > −∞,
0, otherwise

is known as the logarithmic capacity of K .
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Potential Theory
Equilibrium mesure and logarithmic capacity

Example: For K = [−1, 1] there holds µK (t) = dt
π
√
1−t2

and cap(K ) = 1
2 .

The following result is known as the fundamental theorem of potential theory.

Theorem 12.1 (Frostman)
For K ⊂ C compact with cap(K ) > 0 the logarithmic potential uµK of the
equilibrium measure µK satisfies

uµK (z) ≤ V (K ) for all z ∈ C
uµK (z) = V (K ) quasi-everywhere in K .

Here quasi-everywhere means everywhare except possibly on a set of zero capa-
city.
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Potential Theory
Transfinite diameter, Chebyshev constant

Let K ⊂ C be compact.

• For

τn(K ) := max
z1,...,zn∈K

 ∏
1≤j<k≤n

|zj − zk |

 2
n(n−1)

,

the transfinite diameter τ(K ) of K is defined as τ(K ) := limn→∞ τn(K ).

• For En(K ) := minp∈Pn−1 ‖zn − pn−1(z)‖K ,∞, the Chebyshev constant c(K )
of K ist defined as

c(K ) := lim
n→∞

En(K )1/n.

Theorem 12.2 (Fekete, 1924; Szegö, 1925)
For any compact K ⊂ C there holds

cap(K ) = c(K ) = τ(K ).
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Potential Theory
Convergence of polynomial interpolation

Theorem 12.3 (V. I. Krylov, 1962)
For a weak∗-limiting node distribution µ and associated logarithmic potential uµ,
let f be analytic inside Γs , the level curve of uµ which passes through a singu-
larity s of f . The polynomial interpolant pn of f associated with the n-th nodal
set then converges to f uniformly inside Γs , diverges outside Γs and

lim
n→∞

|f (z)− pn(z)|1/n = exp(uµ(s)− uµ(z)).
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Equispaced Points, the Runge Phenomenon

• The Runge phenomenon refers to the 1901 paper by Carl Runge in which
he presented the potential theoretic analysis of the convergence of inter-
polation of analytic functions. He presented an example of a meromorphic
function for which interpolation at equidistant nodes on a fixed interval of
analyticity diverges.

• Earlier work by Méray in 1884 and 1886 had made similar observations.

• Faber proved in 1914 that for each node sequence on a compact interval
there exists a continuous function f for which the associated sequence of
polynomial interpolants fail to converge to f .

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 60 / 107



Contents

4 Aliasing

5 The Barycentric Interpolation Formulas

6 The Weierstrass Approximation Theorem

7 Convergence for Differentiable functions

10 Best Approximation

12 Potential Theory

13 Equispaced Points, the Runge Phenomenon

15 Lebesgue Constants

16 Best and Near-Best

17 Orthogonal Polynomials

18 Polynomial Roots and Colleague Matrices

19 Gauss and Clenshaw-Curtis Quadrature

20 Carathéodory-Fejér Approximation

21 Spectral Methods

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 61 / 107



Lebesgue Constants
Definition

Recall the Lagrange representation of the polynomial interpolant pn ∈ Pn at
distinct nodes {xj}nj=0 with data {fj}nj=0

pn(x) =

n∑
j=0

fj `j(x)

in terms of the Lagrange fundamental polynomials {`j}nj=0. For the interpolant
p̃n ∈Pn on the same grid obtained from perturbed data {f̃j}nj=0, we have

|pn(x)− p̃n(x)| ≤ max
j
|fj − f̃j |

n∑
j=0

|`j(x)| ≤ ε λn(x)

if |fj − f̃j | ≤ ε for all j , where we have introduced the Lebesgue function

λn(x) :=

n∑
j=0

|`j(x)|

associated with the interpolation nodes {x0, . . . , xn}.
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Lebesgue Constants
Definition

We also define the Lebesgue constant associated with the same node set as

Λn := ‖λn‖, ‖ · ‖ = ‖ · ‖∞,[−1,1].

Theorem 15.1
For a set {xj}nj=0 ⊂ [−1, 1] of distinct nodes, the norm of the associated polyno-
mial interpolation operator

Ln : C [−1, 1]→Pn, f 7→ pn

is given by ‖Ln‖ = Λn.
If p∗n denotes the best uniform approximation of f from Pn, then

‖f − pn‖ ≤ (1 + Λn)‖f − p∗n‖.

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 63 / 107



Lebesgue Constants
Some Lebesgue Constants

Theorem 15.2
The Lebesgue constants Λn for degree n ≥ 0 polynomial interpolation in any set
of n + 1 distinct nodes in [−1, 1] satisfy

Λn ≥
2
π

log(n + 1) + c , (15.1)

where c = (2/π)(γ + log(4/π)) ≈ 0.52125 with Euler’s constant γ ≈ 0.577.
For Chebyshev points they satisfy

Λn ≤
2
π

log(n + 1) + 1 and Λn ∼
2
π

log n (n →∞).

For equispaced points they satisfy

Λn >
2n−2

n2
(n ∈ N) and Λn ∼

2n+1

e n log n
(n →∞).
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Lebesgue Constants
Lebesgue constants for projection

Theorem 15.3
The Lebesgue constants Λn for degree n ≥ 1 Chebyshev projection in [−1, 1] are
given by

Λn =
1
2π

∫ π

−π

∣∣∣∣ sin((n + 1/2)t)

sin(t/2)

∣∣∣∣ dt

and satisfy

Λn ≤
4
π2

log(n + 1) + 3 and Λn ∼
4
π2

log n (n →∞).
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Best and Near-Best
Chebyshev interpolation and truncation vs. best approximation

Theorem 16.1
Let f ∈ C [−1, 1] have degree n Chebyshev projection fn, Chebyshev interpolant
pn, and best approximant p∗n, n ≥ 1. Then

‖f − fn‖ ≤
(
4 +

4
π2

log(n + 1)

)
‖f − p∗n‖ (16.1)

and

‖f − pn‖ ≤
(
2 +

2
π

log(n + 1)

)
‖f − p∗n‖. (16.2)
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Orthogonal Polynomials
Measures

• Let α : R → R denote a distribution function, i.e., a non-decreasing functi-
on with infinitely many points of increase which is not constant and posses-
ses finite limits for x → ±∞.

• Assume that all monomial moments, i.e., the Lebesgue-Stieltjes integrals

µn :=

∫
xn dα(x), n ∈ N0,

are finite.
• Then a symmetric bilinear form is defined on the vector space of all (real)
polynomials P by

(p, q) :=

∫
p(x)q(x) dα(x), p, q ∈P. (17.1)

• If dα is absolutely continuous with respect to Lebesgue measure on R,
then there exists a weight function w : R→ R+

0 such that dα(x) = w(x)dx
and hence

(p, q) =

∫
p(x)q(x)w(x) dx .
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Orthogonal Polynomials
Common weight functions

The classical weight functions associated with orthogonal polynomials are

suppw w(x) Name

[−1, 1] 1 Legendre

[−1, 1] (1− x2)−1/2 Chebyshev

[−1, 1] (1− x)α(1 + x)β, α, β > −1 Jacobi

[0,∞) exp(−x) Laguerre

(−∞,∞) exp(−x2) Hermite
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Orthogonal Polynomials
Moments

The n-th moment matrix associated with the bilinear form (17.1) is given by
the Hankel matrix

Mn =


µ0 µ1 . . . µn−1
µ1 µ2 . . . µn
...

...

µn−1 µn . . . µ2n−2

 ∈ Rn×n, n ∈ N.

Proposition 17.1
The bilinear form (17.1) is an inner product on P if and only if det Mn > 0 for
all n ∈ N.
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Orthogonal Polynomials
Definition, normalizations

Definition 17.2
A sequence of polynomials (pk)k∈N0 ⊂ P is called a system of orthogonal poly-
nomials with respect to an inner product (·, ·) on P if

(a) deg pk = k for all k ∈ N0 and

(b) (pj , pk) = 0 for all j 6= k , j , k ∈ N0.

A system of orthogonal polynomials is unique up to normalization. Common
normalizations are

• monic orthogonal polynomials characterized by a leading coefficient of one,

• orthonormal polynomials characterized by (pn, pn) = 1 for all n ∈ N0,
• polynomials taking the value one at a specific point in the support of the
measure, typically the right endpoint of a bounded interval.

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 72 / 107



Orthogonal Polynomials
Monic coefficients

Lemma 17.3

The coefficient vector a(n) = [a(n)
0 , . . . , a(n)

n−1]> of the n-th monic orthogonal
polynomial

pn(x) = xn + a(n)
n−1x

n−1 + · · ·+ a(n)
1 x + a(n)

0

with respect to an inner product (·, ·) is given by the unique solution of the line-
ar system of equations

Mna(n) = −mn

with the moment matrix Mn and right hand side

mn =


µn

µn+1
...

µ2n−1

 .
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Orthogonal Polynomials
Three-term recurrence

Theorem 17.4
A system of orthogonal polynomials satisfies a three-term recurrence relation

γnpn(x) = (x − αn)pn−1(x)− βnpn−2(x), n = 1, 2, . . . , (17.2a)

with p−1 := 0, p0(x) ≡ const. (17.2b)

The coefficients are given by

αn =
(xpn−1, pn−1)

(pn−1, pn−1)
, n = 1, 2, . . .

γn =
(xpn−1, pn)

(pn, pn)
, n = 1, 2, . . .

βn =
(xpn−2, pn−1)

(pn−2, pn−2)
= γn−1

(pn−1, pn−1)

(pn−2, pn−2)
, n = 2, 3, . . . , β1 arbitrary.
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Orthogonal Polynomials
Three-term recurrence

Remark 17.5
(a) Rescaling a system of orthogonal polynomials {pk}k≥0 to p̂k = δkpk , δk 6=

0, yields a system of orthogonal polynomials with associated recurrence
coefficients

α̂k = αk , γ̂k =
δk−1
δk

γk , k = 1, 2, . . . ,

β̂k =
δk−1
δk−2

βk , k = 2, 3, . . . .

(b) For monic orthogonal polynomials there holds γk = 1 ∀k , i.e.

p−1 = 0, p0(x) = 1, pk(x) = (x − αk)pk−1(x)− βkpk−2(x).

Moreover

βk =
(pk−1, pk−1)

(pk−2, pk−2)
> 0, k ≥ 2.

(c) For orthonormal polynomials there holds βk = γk−1, k ≥ 2.
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Orthogonal Polynomials
Three-term recurrence

We can obtain a matrix expression of the three-term recurrence (17.2a) by col-
lecting its first n equations in a vector of polynomials

pn(x) := [p0(x), p1(x), . . . , pn−1(x)]>,

resulting in the relation

xpn(x) = Jnpn(x)+γnpn(x)en, Jn =


α1 γ1
β2 α2 γ2

. . .
. . .

. . .

γn−1
βn αn

 , en =


0
...

0
1

 .

Rescaling the orthogonal polynomial system is reflected in the matrix relation as
a diagonal scaling p̂n(x) = Dnpn(x), Dn = diag(δ0, . . . , δn−1), of the polynomial
vector, resulting in a diagonal similarity transformation of the tridiagonal matrix
as

Ĵn = DnJnD−1n .
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Orthogonal Polynomials
Zeros

Theorem 17.6
The zeros of the orthogonal polynomials associated with the inner product
(17.1) are real, simple and lie in the support interval (a, b) of dα(x) = w(x)dx .

• For each zero of pn, the matrix form of the three-term recurrence becomes
an eigenvector-eigenvalue relation for the tridiagonal matrix Jn, hence each
zero of pn is an eigenvalue of Jn.

• The simplicity of the eigenvalues are also a consequence of the (unredu-
ced) tridiagonal structure of Jn.

• The diagonal scaling to obtain orthonormal polynomials results in a symme-
tric matrix Jn, known as the Jacobi matrix.
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Polynomial Roots and Colleague Matrices
Colleague matrix

Theorem 18.1
The roots of the polynomial

p(x) =

n∑
k=0

akTx (x), an 6= 0,

are the eigenvalues of the matrix

C =



0 1
1
2 0 1

2
1
2 0 1

2
. . .

. . .
. . .

1
2

1
2 0


−

1
2an


a0 a1 a2 . . . an−1


.

Multiple roots correspond to eigenvalues withe the same multiplicities.
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Gauss and Clenshaw-Curtis Quadrature
Interpolatory quadrature rules

The goal of numerical quadrature is to approximate integrals

I (f ) =

∫
f (x) dα(x).

Here dα(x) is a measure associated with distribution function α with support on
a subset of the real axis as described in the chapter on orthogonal polynomials.
The most common approach for constructing quadrature formulas proceeds by
approximating the integrand f by a polynomial pn ∈ Pn and then integrating
the pn exactly:

pn ≈ f , I (f ) ≈ Q(f ) :=

∫
pn(x) dα(x).

In terms of the Lagrange representation pn(x) =
∑n

j=0 f (xj)`j(x) we obtain

Q(f ) =

n∑
j=0

wj f (xj) with quadrature weights wj :=

∫
`j(x) dα(x). (19.1)
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Gauss and Clenshaw-Curtis Quadrature
Interpolatory quadrature rules

By construction, interpolatory quadrature formulas with n + 1 nodes are exact
for all p ∈Pn, i.e.,

Qn(p) = I (p) ∀p ∈Pn.

Conversely, every (n + 1)-point quadrature formula with exactness degree n is
interpolatory.
Well-known families of interpolatory quadrature formulas are the

• Newton-Cotes formulas, characterized by equispaced nodes. These include
the midpoint rule (n = 0), the trapezoidal rule (n = 1), Simpson’s rule
(n = 2), the 3/8-rule (n = 3), Milne’s rule (n = 4) and Weddle’s rule
(n = 6). The degree of exactness of is actually n + 1 for n even4

For n ≥ 7 these rules have negative weights (which also grow exponential-
ly with n), leading to numerical instability (cancellation) and, as shown in
[Polya, 1933], a non-convergent sequence of rules even for analytic functi-
ons.

• The Clenshaw-Curtis formulas result from choosing Chebyshev nodes.
4i.e., for an odd number of nodes
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Gauss and Clenshaw-Curtis Quadrature
Interpolatory quadrature rules

For a given node set {xj}nj=0, interpolatory quadrature formulas determine the
weights to achieve a degree of exactness n. Gauss quadrature rules additionally
choose the nodes in a clever way to achieve a higher degree of exactness.

Theorem 19.1 (Jacobi, 1826)

The quadrature rule (19.1) possesses degree of exactness d = n+m for m ∈ N0
if and only if

(a) (19.1) is interpolatory and

(b) the nodal polynomial ωn+1(x) =
∏n

j=0(x − xj ) is orthogonal to Pm−1 with
respect to the inner product

(p, q) =

∫
p(x)q(x) dα(x), p, q ∈P. (19.2)

Remark 19.2
Maximal achievable exactness degree is d = 2n + 1 corresponding to m = n + 1.
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Gauss and Clenshaw-Curtis Quadrature
Gauss quadrature rules

• From Theorem 19.1 we immediately conclude that an optimal choice of
quadrature (interpolation) nodes results when the associated nodal polyno-
mial ωn+1 is orthogonal to Pn.

• With the zeros of the Legendre polynomial Pn+1 as nodes we obtain

Qn(p) =

∫ 1

−1
p(x)

1
2

dx ∀p ∈P2n+1. (Gauss-Legendre quadrature)

Similarly, with the zeros of the Jacobi polynomials P(α,β)
n+1 ,

Qn(p) =

∫ 1

−1
p(x)(1− x)α(1 + x)β dx ∀p ∈P2n+1.

(Gauss-Jacobi quadrature)

• In the same way, Gauss-Laguerre and Gauss-Hermite quadrature formulas
are obtained for the intervals (0,∞) and (−∞,∞), respectively.
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Gauss and Clenshaw-Curtis Quadrature
The Golub-Welch algorithm

Theorem 19.3
For the recurrence coefficients αk , βk , k ≥ 1 of the monic orthogonal polynomi-
als with respect to (19.2), define the sequence of Jacobi-matrices

Jn =


α1

√
β2

√
β2 α2

. . .

. . .
. . .

√
βn√

βn αn

 ∈ Rn×n, (n ∈ N), then

(a) the nodes of the Gauss quadrature rule of order n − 1 associated with
(19.2) are the n (distinct) eigenvalues of Jn and

(b) if uj denote normalized eigenvectors of Jn associated with eigenvalues λj ,
i.e. Jnuj = λjuj , ‖uj‖2 = 1 (j = 1, . . . , n) then the associated weights wj

are given by

wj = β0[uj ]
2
1 (j = 1, . . . , n), β0 :=

∫
dα(x).
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Gauss and Clenshaw-Curtis Quadrature
The Golub-Welch algorithm and successors

• This observation leads to an elegant algorithm proposed by [Golub & Welsch,
1969] for generating the nodes and weights of classical Gauss quadrature
rules as well as those for any measure dα for which one can generate the
recurrence coefficients.

• Simple modifications of Jacobi measures lead to quadrature rules with one
or both endpoints ar nodes known as Gauss-Radau or Gauss-Lobatto rules,
respectively, which can also be constructed this way by a low-rank modifi-
cation of the Jacobi matrix.

• Since it involves computing the eigenvalues of a symmetric tridiagonal n×n
matrix, this algorithm has complexity O(n2).

• More recently, [Glaser, Liu & Rokhlin, 2007] introduced an algorithm with su-
perior complexity O(n), which was subsequently improved in [Hale & Town-
send, 2012]. This allows the stable and fast computation of Gauss quadra-
ture rules of essentially any order.
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Gauss and Clenshaw-Curtis Quadrature
Clenshaw-Curtis and Gauss quadrature

Proposition 19.4
The Gauss-Chebyshev quadrature nodes and weights for weight function w(x) =
(1− x2)−1/2 are given by

xj = cos
(2j + 1)π

2(n + 1)
, wj =

π

n
, j = 0, 1, . . . , n.

The integral over [−1, 1] of a Chebyshev polynomial of odd degree is zero, and
for even degree it is ∫ 1

−1
Tk(x) dx =

2
1− k2

. (19.3)

Proposition 19.5
The integral of a polynomial pn ∈Pn in Chebyshev representation is given by∫ 1

−1
pn(x) dx =

n∑
k=0

k even

2ak

1− k2
, pn(x) =

n∑
k=0

akTk(x).
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Gauss and Clenshaw-Curtis Quadrature
Clenshaw-Curtis and Gauss quadrature

Theorem 19.6 (Quadrature for analytic integrands)
Let a function f be analytic in [−1, 1] and analytically continuable to the open
Bernstein ellipse Eρ (ρ > 1) where it satisfies |f (z)| ≤ M for some M. Then
(n + 1)-point Clenshaw–Curtis quadrature with n ≥ 2 applied to f satisfies

|I (f )−Qn(f )| ≤
64
15

Mρ1−n

ρ2 − 1
(19.4)

and (n + 1)-point Gauss quadrature with n ≥ 1 satisfies

|I (f )−Qn(f )| ≤
64
15

Mρ−2n

ρ2 − 1
. (19.5)

The factor ρ1−n in (19.4) can be improved to ρ−n if n is even, and the factor
64/15 can be improved to 144/35 if n ≥ 4 in (19.4) or n ≥ 2 in (19.5).
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Gauss and Clenshaw-Curtis Quadrature
Clenshaw-Curtis and Gauss quadrature

Theorem 19.7 (Quadrature for differentiable integrands)

(a) For any f ∈ C [−1, 1], both Clenshaw–Curtis and Gauss quadratures Qn(f )
converge to the integral I (f ) as n →∞.

(b) For an integer ν ≥ 1, let f and its derivatives through f (ν−1) be absolutely
continuous on [−1, 1] and suppose the ν-th derivative f (ν) is of bounded
variation V . Then (n + 1)-point Clenshaw–Curtis quadrature applied to f
satisfies

|I (f )−Qn(f )| ≤
32
15

V
πν(n − ν)ν

for n > ν (19.6)

and (n + 1)-point Gauss quadrature satisfies

|I (f )−Qn(f )| ≤
32
15

V
πν(n − 2ν − 1)2ν+1 for n > 2ν + 1. (19.7)

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 89 / 107



Gauss and Clenshaw-Curtis Quadrature
Refined Clenshaw-Curtis bound

Theorem 19.8
Under the hypotheses of Theorem 19.7, the same conclusion (19.7) also holds
for (n + 1)-point Clenshaw–Curtis quadrature:

|I (f )−Qn(f )| ≤
32
15

V
πν(n − 2ν − 1)2ν+1 . (19.8)

The only difference is that this bound applies for all sufficiently large n (depen-
ding on ν but not f ) rather than for n > 2ν + 1.
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Gauss and Clenshaw-Curtis Quadrature
Barycentric weights for Legendre nodes

Proposition 19.9
The barycentric weights λj for polynomial interpolation at Legendre points can
be written as

λj = (−1)j
√

(1− x2j )wj ,

where {xj} and {wj} are the nodes and weights for (n+1)-point Gauss-Legendre
quadrature.
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Gauss and Clenshaw-Curtis Quadrature
ATAP Exercise 19.8

• Approximating I (f ) =
∫ 1
0 f (x) dx by Qn(f ) =

∫ 1
0 Bn,f (x) dx , where Bn,f

denotes the Bernstein polynomial of degree n associated with f , results in
the equal-weight quadrature formula

Qn(f ) =
1

n + 1

n∑
j=0

f
( j

n

)
,

as can be verified by a simple induction.

• The degree of exactness is 1 for n ≥ 1, hence Qn is not interpolatory.

• For integrands of bounded variation, it follows from Koksma’s inequality
that the error of this quadrature formula is O(n−1).
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Gauss and Clenshaw-Curtis Quadrature
Koksma’s inequality

Theorem 19.10 (Koksma’s inequality)
Given a function of bounded variation V (f ) on [0, 1] and a point set {xj}nj=1 ⊂
[0, 1] with star discrepancy D∗n , then∣∣∣∣∣∣1n

n∑
j=1

f (xj)−
∫ 1

0
f (x) dx

∣∣∣∣∣∣ ≤ V (f )D∗n .

The star-discrepancy of a point set {xj}nj=1 ⊂ [0, 1] is defined at

D∗n(x1, . . . , xn) := sup
α∈(0,1]

∣∣∣∣A((0, α]; {xj})
n

− α
∣∣∣∣ .

Here A((0, α]) denotes the number of points of the set {xj}nj=1 contained in
(0, α].
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Gauss and Clenshaw-Curtis Quadrature
A discrepancy bound

The following result of Niederreiter allows us to calculate the star-discrepancy
of an equispaced point set:

Theorem 19.11 (Niederreiter)
Let x1,≤ x2 ≤ · · · ≤ xn be n numbers in [0, 1]. Then their star-discrepancy D∗n is
given by

D∗n = max
j=1,...,n

max

{∣∣∣∣xj −
j
n

∣∣∣∣ , ∣∣∣∣xj −
j − 1
n

∣∣∣∣} =
1
2n

+ max
j=1,...,n

∣∣∣∣xj −
2j − 1
2n

∣∣∣∣ .

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 94 / 107



Contents

4 Aliasing

5 The Barycentric Interpolation Formulas

6 The Weierstrass Approximation Theorem

7 Convergence for Differentiable functions

10 Best Approximation

12 Potential Theory

13 Equispaced Points, the Runge Phenomenon

15 Lebesgue Constants

16 Best and Near-Best

17 Orthogonal Polynomials

18 Polynomial Roots and Colleague Matrices

19 Gauss and Clenshaw-Curtis Quadrature

20 Carathéodory-Fejér Approximation

21 Spectral Methods

Oliver Ernst (NM) ATAP Notes Sommersemester 2018 95 / 107



Carathéodory-Fejér Approximation
Setting

• To approximate a real-valued function f on [−1, 1] by a polynomial of de-
gree n ≥ 0, suppose f has an absolutely convergent Chebyshev expansion

f (x) =

∞∑
k=0

akTk(x).

• For now, suppose an+1 is the first nonzero coefficient and that the expansi-
on is finite, terminating at k = N ≥ n + 1:

f (x) =

N∑
k=n+1

akTk(x).

• Now make the familiar substitution x = 1
2 (z + z−1) = Re z , |z | = 1,

and define F on |z | = 1 by F (z) = F (z−1) = f (x), leading to a Laurent
expansion of F as

F (z) =
1
2

N∑
k=n+1

ak(zk + z−k).
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Carathéodory-Fejér Approximation
Setting

• Separating F (z) = G (z) + G (z−1) into its analytic part

G (z) =
1
2

N∑
k=n+1

akzk

and co-analytic part G (z−1), we note that the former can be analytically
continued to |z | ≤ 1 and the latter to |z | ≥ 1.

• Consider the problem of approximating G on |z | = 1 by a function defined
by a series

P̃(z) =
1
2

n∑
k=−∞

bkzk

converging in |z | ≥ 1.
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Carathéodory-Fejér Approximation
Result of Carathéodory, Fejér and Schur

Theorem 20.1 (Carathéorory & Fejér (1911); Schur (1918))

The approximation problem described on the previous slide has a unique solution P̃ given
by the error formula

(G − P̃)(z) = λzn+1 u(z)

u(z)
, (20.1)

where λ is the eigenvalue of largest magnitude of the Hankel matrix

H =



an+1 an+2 an+3 . . . aN

an+2 an+3

an+3 . .
.

...

aN

 with associated real eigenvector


u0
u1
...

uN−n−1



and u(z) = u0 + u1z + · · · + uN−n−1zN−n−1. The function G − P̃ maps the unit circle to
a circle of radius |λ| and winding number ≥ n + 1 with equality holding if |λ| > |µ| for all
other µ ∈ Λ(H).
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Carathéodory-Fejér Approximation
The CF approximation

• To construct a polynomial approximant from P̃, note that, since G − P̃
maps |z | = 1 to a circle of winding number ≥ n + 1, its real part (times 2)

(G − P̃)(z) + (G − P̃)(z−1)

maps [−1, 1] to an error curve which equioscillates ≥ n + 2 times.
• This suggests p̃(x) := P̃(z) + P̃(z−1) as an approximation with the correct
error equioscillation behavior. However, p̃ is not a polynomial of degree n.

• By truncating the Laurent expansion of P̃ to PCF(z) := 1
2

∑n
k=−n bkzk with

real part

pCF(x) := PCF(z) + PCF(z−1) =
1
2

n∑
k=−n

(bk + b−k)zk ,

we obtain a polynomial approximation pCF ∈Pn whose error curve
f − pCF will nearly match the equioscillation behavior of f − p̃ on [−1, 1] if
the truncated terms are small.
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Carathéodory-Fejér Approximation
The CF approximation

• To understand why this approximation can be expected to be good, sup-
pose f is analytic on [−1, 1] with geometrically decaying Chebyshev coeffi-
cients ak = O(ρk).

• Then the dominant degree n + 1 term of f is of order ρ−n−1 and the terms
bn, bn−1, . . . , b−n are of orders ρ−n−2, ρ−n−3, . . . , ρ−3n−2, which suggests an
error of order ρ−3n−3 is committed by the truncation from p̃ to pCF.

• This is generally small compared to, e.g., the error of best approximation
‖f − p∗‖, which is of order ρ−n−1.
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Carathéodory-Fejér Approximation
The CF and best approximation

Theorem 20.2 (Gutknecht & Trefethen (1982))
For any fixed m ≥ 0, let f have a Lipschitz continuous derivative of order 3m+3
on [−1, 1] with a nonzero (m + 1)st derivative at x = 0, and for each s ∈
(0, 1], let p∗ and pCF be the best and CF approximations of degree m to f (sx)
in [−1, 1], respectively. Then as s → 0,

‖f − p∗‖ = O(sm+1), (20.2)

‖f − p∗‖ 6= O(sm+2), (20.3)

‖pCF − p∗‖ = O(s3m+4). (20.4)
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Carathéodory-Fejér Approximation
Remarks

• Theorem 20.1 still applies if f is not a polynomial of degree N but has an
absolutely convergent Chebyshev series. In this case H is the matrix re-
presentation of a compact operator on `2 or `1 and u(z) is defined by an
infinite series of eigenvector entries.
[Hayashi, Trefethen & Gutknecht, 1990].

• The theory of CF approximation also extends to rational in place of po-
lynomial approximation. Seminal work here is attributed to the Ukranian
mathematicians [Adamayan, Arov & Krein, 1971].
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Spectral Methods

• Spectral methods refers to a class of methods for approximating the soluti-
on of differential equations.

• Like finite element methods, they construct solution approximations in fi-
nite dimensional function spaces. Approximations are selected by apply-
ing sufficiently many constraints, either by imposing a variational equality
or requiring the equation to hold exactly at a finite number of collocation
points.

• Unlike finite element methods, based on piecewise polynomials as trial func-
tions, spectral methods use global algebraic or trigonometric polynomials.

• Spectral methods converge exponentially when the solutions are analytic,
and approximate derivatives of the solution to the same order.

• They are difficult to apply to non-separable geometries and are therefo-
re commonly used in turbulence simulation and atmospheric simlulations,
where domains are simple and the solutions smooth.

• Fundamental techniques for solving random differential equations as arise
in uncertainty quantification, sometimes known as polynomial chaos ex-
pansions going back to Norbert Wiener in the 1930s, are spectral methods
based originally on Hermite expansions.
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Spectral Methods
Convergence of derivatives

Theorem 21.1
Let a function f be analytic in [−1, 1] and analytically continuable to the closed
Bernstein ellipse Eρ for some ρ > 1. Then for each integer ν ≥ 0, the νth
derivatives of the Chebyshev projections fn and interpolants pn satisfy as n →∞

‖f (ν) − f (ν)
n ‖ = O(ρ−n), ‖f (ν) − p(ν)

n ‖ = O(ρ−n) (21.1)

cf. [Tadmor, 1986].
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Spectral Methods
Differentiation matrices

• In spectral collocation methods, the approximate solution of a differential
equation (DE) is sought in a finite-dimensional space of trial functions and
determined uniquely by requiring the approximation to solve the DE exactly
at an appropriate number of collocation points.

• If the approximate solution is represented as the interpolant

un(x) =

n∑
j=1

αj `j(x)

of its function values un(xj) = αj at the collocation points {xj}nj=1, then
applying the differential operator d/dx to un and evaluating at a collocation
point xk yields

d
dx

un(xk) =

n∑
j=1

αj `
′
j(xk).

• Thus, the linear mapping that takes the vector of function values un(xk)
to the derivatives u′n(xk) is represented by the differentiation matrix D =
[`′j(xk)]nk,j=1.
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Spectral Methods
Differentiation matrices

• Closed form representation of differentiation matrices can be derived. E.g.
for the first derivative we have

`′j(xk) =

{ λj
λk (xk−xj )

j 6= k ,
xj

1−x2j
j = k ,

where the λj denote the barycentric weights associated with the collocation
points.
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