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Reactive pore diffusion is an important process in automotive exhaust‐gas aftertreatment modelling the overall conversion of pollutants. It features
highly nonlinear source terms from chemical reactions coupled with transport processes. This work examines the application of model reduction by
proper orthogonal decomposition. It is shown that this technique can be successfully applied to the system using separate bases for each species.
Using a basis obtained for baseline conditions, predictions can be made for species profiles within a pore system for different conditions, potentially
leading to significantly reduced computational requirements.
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INTRODUCTION

Automotive exhaust‐gas aftertreatment systems are complex
systems with several processes happening simultaneously
at different scales in time and space. A raw exhaust‐gas is

led through the numerous parallel channels of a ceramicmonolith.
Within the channel the gas interacts with the channel walls,
usually made of a highly porous washcoat layer, exchanging heat
and also gaining access to thewashcoat’s pore system. The reactive
precious metal responsible for the conversion of pollutants to less
harmful substances is finely dispersed within this pore system.
Hence, the gases have to be transported to the active metal sites via
diffusion processes and subsequently interact with the surface‐
bound catalyst. The processes within the washcoat and a single
pore are illustrated in Figure 1.

Severalmethodswith varying level of detail can be used tomodel
washcoats. One way is to include all washcoat effects in the
kinetics of the chemical reactions itself. Thus, looking at Figure 2,
chemical reactions on the catalytic active surface can be directly
coupled with the monolith’s channel flow without the need for a
separate washcoat submodel. It allows for fast computations of a
washcoat, which has been characterized sufficiently well to
parameterise this simplified physical description. The range of
application of this kind of model is limited to the conditions at
which the reaction kinetics of the system was determined. These
models are not suitable for extrapolation to other temperature or
pressure ranges, or changes of the washcoat substrate through
aging processes.[1–3]

On the other hand, models with fully three‐dimensional resolved
pore systems and elementary step kinetics can be applied to a wide
range of conditions, albeit at the expense of computational effort.[6–8]

For catalyst simulations involving drive cycle simulations or
other large scale applications with a multitude of pore system
evaluations, a trade‐off between the employed model accuracy
and the simulation speed has to be found. For these cases two
approaches can be distinguished. On the one hand, a detailed
model based on finding the solution of a one‐dimensional reaction‐
diffusion problem with detailed chemistry, on the other hand the

so‐called effectiveness factor model, based on an analytical
solution of the diffusion problem.[9–13]

Although the effectiveness factor model is considered to be one
to two orders of magnitude faster than the detailed model, it is only
applicable under certain circumstances. These requirements, like
first order kinetics or the availability of one representative species
describing the behaviour of the entire system, are quite often not
satisfied, resulting in unrealistic behaviour of themodelled system.
Thus, although it is slower, the model solving a 1D diffusion‐
reaction equation is the most suitable for catalyst simulations.
In the following, it is examined how reduced order models

(ROM) can be applied to this modelling approach to decrease the
computational effort associated with the detailed model, while still
keeping the high levels of accuracy of the original model. It should
be noted that this examination is only a first step towards the
applicability of ROM in reactive pore diffusion systems. As always,
the application of the model reduction technique comes with
certain detriments, for example additional computational steps
during the time integration, which will be discussed in the
following sections. The success of this techniquemust be examined
on a per case basis, as the trade‐off between model reduction and
increased computational effort in other places cannot be predicted
and is highly dependent on the chemical mechanism and the
reaction system of each individual case.

Modelling the Pore System
Species profiles within the washcoat are modelled under the
assumption that concentration gradients in the pore system exist
only in one spatial dimension, that is the concentration of the
species varies along the pore length but not in the radial direction.
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The time‐evolution of the species’ concentrations can then be
modelled by a set of 1D‐reaction‐diffusion equations of the
form:[14]

@ci
@t

¼ @

@x
Deff;i

@ci
@x

! "
þ g _si: ð1Þ

Here, x is the pore length, and ci and Deff,i denote the
concentration and effective diffusion coefficient of species i.
Deff,i is set to zero for all surface species. _s is the chemical source
term, and g denotes the catalytic active surface area per washcoat
volume. The boundary conditions for the gas‐phase species in this
equation are

ciðx ¼ 0Þ ¼ ci;0; ð2Þ

@ci
@t

####x ¼ xmax ¼ 0: ð3Þ

Equation (2) states that the concentration of the gas‐phase
species at the pore mouth is equal to the gas concentration of the
surrounding atmosphere, which is taken from the flow solution
along the catalyst channel. Since the pore is surrounded by solid
washcoat material, no gas molecules can pass through the end of
the pore. Thus, the diffusive flux at the pore end, and therefore also
all concentration gradients for gas‐phase species must vanish, as is
expressed by Equation (3).

After an appropriate spatial discretization, for example by finite
elements or finite differences, Equation (1) is solved by a suitable
time integrator until steady‐state conditions are reached.[15]

The diffusion coefficient Deff,i is an effective value which
takes into account the washcoat properties tortuosity, t, and
porosity, e. Tortuosity is an empirical quantity that describes the
deviation between ideal cylindrical pores and the actual pore
shape.[16] Porosity is a measure of the number of pores in the
washcoat.[17]

Using the Bosanquet equation,[18] the effective diffusion coeffi-
cient can be determined by

1
Deff;i

¼ t

e
1

Dknud;i
þ 1
Dmol;i

! "
; ð4Þ

with Dkund,i, the Knudsen diffusion coefficient of species, i, and
Dmol,i, its molecular diffusion coefficient at the given temperature.

Modelling Surface Reactions
The state of the catalytic surface is completely described by the
temperature T and species surface coverages Qi.[9,19] Using
elementary step reactions, reaction rates of heterogeneous
reactions at the catalytic surface can be expressed as

_si ¼
XKS

k¼1

ðv00ik % v0ikÞkk
YNGþNS

j¼1
c
~v0 jk
j ; i ¼ 1;…;NG þ NS: ð5Þ

Here, _si is the reaction rate of the i‐th species, Ks is the number of
elementary step surface reactions, v00ik and v0ik are the stoichiometric
coefficients of the i‐th species in the forward or backward reaction,
respectively, NG and NS are the numbers of gas‐phase and surface
species, cj is the molar concentration of species j, and ~v0 jk is the
reaction order of the j‐th species in the k‐th reaction. Surface coverage
fractions Qi must be converted to molar concentrations given the
surface site density G and their number of occupied surface sites si:

Qi ¼
cisi

G
: ð6Þ

The rate coefficients kk, where the index k denotes the current
reaction, are defined by a modified Arrhenius expression as a
function of the temperature:

kk ¼ AkTbkexp %Ea;k

RT

! " Y

i2NS

Q
mik
i exp

eikQi

RT

! "
: ð7Þ

In this equation, A is the pre‐exponential factor, T is the
thermodynamic temperature, Ea is the activation energy, and R is
the universal gas constant. Coverage dependencies like attraction
or repulsion of surface species are considered in the surface
reaction rates with the variables mik and 2ik. Gas‐phase species
adsorbing to the catalytic surface aremodelled using stick reactions
where the rate coefficient is modelled using an initial sticking
coefficient S0i . It represents the probability of a gas‐phase molecule
sticking to the solid surface:

Seffk ¼ S0k
X

i2NS

u
v0 ikþmik
i ; ð8Þ
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Figure 1. Processes in the washcoat of a catalytic converter.

Figure 2. Overview of a three‐way catalytic converter. From left to right: the entire device; monolith channels with washcoat; close‐up of the porous
washcoat; catalytic active surface. Pictures taken from Ref.[4,5]
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kstickk ¼ Seffk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RT

2pWk
:

r
ð9Þ

The mechanism used in this work is a CO‐oxidation mechanism
on platinum with compressed oxygen submodel taken from
Salomons and is shown in Table 1. It consists of four gas‐phase,
four surface species, and seven reactions.[20]

MODEL REDUCTION WITH POD METHODS

These 1D transient equations describe the physical and chemical
processes within the pores. In the simulation of a catalytic
converter or a single catalyst channel, this system of differential
equations must be solved at each discretization position along the
channel. The result of the pore equations influences the species
profiles in the channel. Thus, the equations describing the pore
system and the catalyst are fully coupled. Especially for larger
chemical systems and more complex surface kinetics, this coupled
system, and here especially the description of the pore processes,
can become computationally very expensive.

One way to reduce time‐to‐solution of the given reaction‐
diffusion problem is to reduce the order, that is the number of
degrees of freedom, of the system. In this way the model’s
behaviour can be recreated using fewer state variables than in the
full problem above, which leads to a decrease in required CPU time
and storage requirements. Here, we will investigate the method of
Proper Orthogonal Decomposition (POD), which has been used for
different applications such as the analysis of turbulent flows,[21,22]

the analysis of engine flows,[23,24] and flows in chemical
reactors,[25] as well as reaction‐diffusion problems with simple
source terms.[26]

General Idea of POD with Time as Snapshot Parameter
We describe the POD method using a general system of partial
differential equations:

d
dt

yðx; tÞ þ fðt; yðx; tÞÞ ¼ 0 inV& ð0;TÞ; ð10Þ

jðyðx; tÞÞ ¼ 0 inG& ð0;TÞ; ð11Þ

yðx; 0Þ ¼ y0 inV; ð12Þ

where y is a function of a spatial coordinate x and time t, and f is
assumed to be separable into linear and nonlinear parts. Obviously,
the model equation for the pore system (1) fits this setting.
After spatial discretization, for example by finite elements, the
semi‐discrete problem (13) is obtained.

M
d
dt

yðtÞ þ AyðtÞ þ Fðt; yðtÞÞ ¼ 0 in ð0;TÞ

yð0Þ ¼ y0:
ð13Þ

Here,M andA are constantmatrices of dimensionN&N, and F is
a function with F : R& RN ! RN . This initial value problem is
assumed to have a unique solution.
The state vector y is now replaced by an approximation

V!y ' y 2 RN , where !y 2 Rn with n(N. A reduced order model
(ROM) is obtained by multiplying with VT from the left:

VTMV
d
dt

!yðtÞ þ VTAV!yðtÞ þ VTFðt;V!yðtÞÞ ¼ 0 in ð0;TÞ

!yð0Þ ¼ VTy0:

ð14Þ

The columns of V are a set of orthonormal vectors spanning the
approximation space of the ROM and are obtained from a given set
of solution state vectors associated with different time instants or
parameter values, called snapshots in the POD context, by solving
the following optimization problem:

min
fujgnj¼1

Xi

i¼1

#####

#####yi %
Xn

j¼1
ðyTi ujÞuj

#####

#####

2

2

; ð15Þ

subject to

uT
i uj ¼ dij 8i; j 2 f1;…;ng; ð16Þ

where dij is the Kronecker delta, u are the basis vectors, and l is the
number of snapshots.
Equation (13) is solved by a suitable time integrator, for example

with a step‐size controlled BDF scheme, to obtain a set of solution
snapshots yi, i¼ 1, …, l of Equation (13) at time ti. Note that the
associated time steps need not be equidistant. The solutions are
collected in Y ¼ ½y1;…yl* 2 RN;l.
Finding the solution of Equation (15) is equivalent to finding the

left singular vectors of the snapshot matrix Y. A singular value
decomposition (SVD) yields matrices, such that

Y ¼ USVT; ð17Þ

where U 2 RN;N ¼ ½u1;…;uN * and V 2 Rl;l. The matrices U and V
are orthogonal, that is VTV¼ Il and UTU¼ IN. For the given
problem, only the left singular vectors ui, i¼ 1,…,l are of interest.
The matrix S 2 RN;l contains the singular values si of Y with
s1+ s2+…+ sl. The POD is formed by selecting the first n left

Table 1. Surface reaction mechanism of the CO oxidation on platinum

# Reaction A (mole, cm, s) Ea (kJ/mol)

Adsorption
(1) COþ PT(s)!CO(s) S0¼8.4&10%1

(2) O2þ2 PT(s)!2 O(s) S0¼7.0&10%2

Surface reactions
(3) CO(s)!COþ PT(s) 1.0&1013 126.4 eCOðsÞ ¼þ33
(4) CO(s)þO(s)!CO2þ2 PT(s) 3.7&1020 108 eCOðsÞ ¼þ33
(5) COþ2 O(s)!CO(s)þOO(s) 3.7&1020 50
(6) CO(s)þOO(s)!CO2þO(s)þ PT(s) 3.7&1023 115
(7) OO(s)þ PT(s)!2 O(s) 3.7&1023 105

The initial sticking coefficient is denoted with S0. Dependencies on surface coverages are stated below the relevant reactions.
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singular vectors with n, l. The approximation error of represent-
ing the snapshots in the reduced basis {ui}i¼1,…,n is given by

en ¼
Xl

i¼1
yi %

Xn

j¼1
ðyTi ujÞuj

2
2 ¼

Xl

i¼nþ1
s2
i : ð18Þ

Obviously, the approximation error depends on the choice of the
snapshots and theweighting of the individual snapshots. However,
with Equation (18), a criterion for choosing n is given. Note that
Equation (15) represents only one possible choice of an optimiza-
tion problem related to POD model reduction. In the FEM context,
the inner product of Equation (16) is usually replaced by the finite‐
dimensional approximation of the L2 inner product by introducing
a weight for the time distances of the snapshots by ai. In this case
we obtain the optimization problem

min
fujgnj¼1

Xi

i¼1

aiyi %
Xn

j¼1

ðyTi MujÞuj
2
2; ð19Þ

subject to

uT
i Muj ¼

\deltaij 8i; j 2 f1;…;ng:
When using a uniform spatial mesh and taking snapshots at

equidistant times this is only a scaling of Equations (15) to (16). For
a more detailed discussion of SVD and POD, we refer to the Golub
and Van Loan text.[27]

Modified POD Basis
In many technical applications, Equation (10) represents a system
of equations. In our case the vector y consists of the concentrations
of the eight involved species. In general, the POD method stays
applicable in this case. However, the components of such systems
often differ significantly in their dynamics, as is the case for the
pore diffusion‐reaction problem. Here, some components could be
underrepresented in the basis obtained by POD. To overcome this
misrepresentation a POD basis is computed for each component
separately. The matrix U is now a block‐diagonal matrix in which
the diagonal blocks contain the individual POD basis for each
component.

Handling of the Non‐Linearity
Using the basisU of left singular vectors obtained by SVD and using
Equation (18) to select a subset V¼ [u1,…,un] to satisfy a suitable
error bound, the following ROM is obtained:

VTMV
d
dt

!yðtÞ þ VTAV!yðtÞ þ VTFðV!yðtÞÞ ¼ 0 in ð0;TÞ

!yð0Þ ¼ VTy0:

ð21Þ

Assuming that V has n basis vectors, the matrices VTMV and
VTAV have dimensions n&n, but are usually non‐sparse. This is
contrary to the sparse matrices resulting from discretizing the
differential operator in Equation (13). The non‐linear source term
FðV!yðtÞÞ is evaluated in the original space, that is the state of the
ROM !y needs to be transformed back into the original space
dimensionN byV!y and evaluated in the larger spaceRN . From the
point of computational efficiency this may be sub‐optimal. Here,
techniques such as the Discrete Empirical Interpolation Method
(DEIM) are available, but the application of DEIM must be

discussed on a per case basis. For a deeper discussion on this topic
see, for example, Buffoni and Willcox[28] and Chaturantabut and
Sorensen.[29] On the other hand, in many cases the effort to
evaluate FðV!yðtÞÞ is negligible compared to the effort to evaluate
the Jacobian DFð!yðtÞÞ. Evaluating the Jacobian several times
becomes necessarywhen solving Equation (21)with implicit time
stepping schemes, which are usually required to achieve efficient
and accurate solutions for such stiff problems. The Jacobian of
the right hand side of the ODE F :=VTAV!yðtÞ þ VTFðV!yðtÞÞ is
given by

DF ¼ VTAVþ d
d!y

VTFðV!yðtÞÞ: ð22Þ

Computing DF numerically requires the evaluation of n2 partial
derivatives, for example by finite differences, since DF is, in
general, a full matrix. Fortunately, the sparsity pattern of
DFðV!yðtÞÞ can often be determined in advance. Since

d
d!y

VTFðV!yðtÞÞ ¼ VTDFðV!yðtÞÞV; ð23Þ

it is possible to take advantage of the sparse structure of the
Jacobian DFðV!yðtÞÞ.

In the given application of pore reaction‐diffusion systems, DF is
very sparse so that the effort to compute the Jacobian of the
unreduced system is much smaller than the effort required to
calculate the full Jacobian of the ROM. Specifically, the computa-
tion of the right‐hand side of Equation (23) needs two additional
matrix multiplications with VT and V. Thus, the calculation of DF
requires, in addition to the evaluation of the sparse Jacobian, the
expansion of the full state vector from the columns of V as well as
two matrix‐matrix products.

Application to the Pore Problem
The above discussed model reduction strategy was applied to a
typical pore diffusion problem defined in Table 2.[11,13] A sample
pore was spatially discretized with 200 nodes on an equidistant
grid. The reaction considered was an 8‐species mechanism for the
CO‐oxidation on platinum, one of the major processes in exhaust‐
gas aftertreatment systems. One challenge is to choose the right
parameters for the simulation to obtain a good POD basis that
sufficiently covers the system dynamics. Very important is the
choice of the spatial discretization since the mesh must be fine
enough to resolve all modes. In general, the structure of the modes
is unknown, such that we chose a rather fine spatial mesh. On the
other hand, a fine mesh leads to a more expensive transformation,
cf. Equation (21).

Table 2. Properties of the pore system

Property Unit Value

Length mm 100
Diameter nm 10
Porosity e 0.4
Tortuosity t 3
Nodes 200
g 1.5&105

G Mole/cm2 2.72&10%5

l 0.8…1.2
d 0…1
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Due to interactions of surface species as they are typical for three‐
way catalysts (see for example reaction of Equations (3) and (4))
the system becomes stiff, meaning that the time scales of the
problem can span multiple orders of magnitude, and this must be
treated accordingly when integrating in time.

The inlet concentrationwasvariedbasedona carrier gas of nitrogen
with a baseline concentration of C0

CO ¼ 8000 ppm. To account for
various inlet concentrations of the gas‐phase species, the amount of
oxygen was varied with the equivalence ratio l according to

CO2 ¼ 0:5 - l - CCO: ð24Þ

The conversion along a channel in a three‐way catalyst was
considered by introducing a conversion factor d:

CCO2 ¼ d - C0
CO: ð25Þ

CCO ¼ ð1% dÞ - C0
CO: ð26Þ

Since the surface was assumed to be completely catalytic
active platinum at the beginning of each calculation, the
composition of the system could be described by using only
the two parameters, l and d. Note that depending on l, there can
be excess amounts of oxygen or carbon monoxide present that
will not be converted, since there is no further reaction partner
present in the gas‐phase.
Using the model reduction approach for a baseline case with

l¼ 1, d¼ 0, and at a temperature of 600K yields singular values as
shown in Figures 3 and 4. It can be seen that the largest singular
values for each species vary several orders of magnitude, ranging
from 3.3& 103 for N2 to 3.9& 10%11 for the compressed oxygen
surface species OO(s). This can be explained by the large difference
in the molecular concentration of each species. The shown
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Figure 3. Singular values of the gas‐phase species.
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Figure 4. Singular values of the solid species.
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behaviour also confirms that an approach treating all species by the
same POD basis would lead to a significant under‐representation of
the minor surface species.

The obtained singular values si decrease slowly for each reactive
species. Only N2 features one distinct value with all others being
several orders ofmagnitude lower. This is due to the fact that N2 acts
as carrier gas and does not take part in the chemical reactions in this
case, so that the amount of N2 in the system stays constant. For all
other species, the decrease of the singular values is much slower,
which can be especially seen for the surface species. This suggests
that the description of the system’s behaviour requires a larger
number of basis vectors to achieve sufficient accuracy. Using the
error criterion given in Equation (18), a suitable number of basis
vectors can be obtained for each species. Table 3 shows the number
ofn basis vectors chosen for each species individually using the error
criterion, such that the chosen value is the smallest n that satisfies

en ¼
Xl

i¼nþ1

s2
i < 10%10 -

Xl

i¼1

s2
i : ð27Þ

As described earlier, for the source term evaluation the
reduced basis needs to be transformed back into the physical
space. This transformation introduces a computational overhead
that decreases the speed of the POD evaluation. Computation can
be accelerated by determining the sparsity pattern of the
Jacobian of the system. In the worst case in which, at each
grid point, each species influences all others in the chemical
source term, the Jacobian would be a sparse matrix consisting of
diagonal blocks. The number of blocks in this case would be
equal to the number of species in the system and the size of each
block equal to the number of spatial grid points, that is in our
example 8& 8 diagonal blocks of size 200& 200. Compared to a
full Jacobian, this worst‐case sparsity pattern can be computed
with only 0.5 % of the function evaluations necessary for the full
matrix.

Comparison of the Simulation Results
Using a POD basis created for 600K, l¼ 1 and d¼ 0 simulations
were conducted at different conditions and compared to results
obtained by solving the system with the standard time integration
approach for each condition individually until steady‐state
conditions were reached. At the given baseline conditions, an
absolute cumulated error of 2.50& 10%7 and relative error of
1.26& 10%4 could be observed using the ROM. Table 4 shows the
errors when using this POD basis for different conditions. The idea
is to use one PODbasis to cover a large area in the parametric space.
Thus, using a small number of tabulated POD bases, the relevant

conditions could be simulated. Note that the error shown here is an
integral error over the entire system, which means that individual
species profiles can deviate significantly from the full model. The
errors were determined with the concentration profile from the
steady‐state solution of the full model cfull and the profile from the
POD solution CPOD to be

eabs ¼ jjCfull % CPODjj2; ð28Þ

erel ¼
jjCfull % CPODjj2

jjCfulljj2
: ð29Þ

Deviating further than 10 % from the baseline conditions led to
more severe errors. It can be seen that it will not be sufficient to
calculate only one POD basis to cover all relevant operating
conditions occurring in the system. Instead, several bases spanning
multiple baseline conditions will be necessary to have sufficiently
accurate results.

Figure 5 and Figure 6 show some obtained steady‐state species
profiles. While the POD can also predict the transient behaviour,
for the problem at hand, only the steady‐state solution is of interest.
It can be seen that especially surface species are predictedworse for
conditions other than the baseline. These species tend to change
rapidly depending on the inlet concentrations, for example oxygen
surface species become available when l is larger than 1, as shown
above. Since surface species concentrations have large influence on
the non‐linear source term it is important to predict them within a
narrow error margin.

The timing comparison shown in Table 5 suggests that the ROM
in average takes slightly less time than the full model.

DISCUSSION OF POD PERFORMANCE

As can be seen in the previous section, the performance of POD
ROM is somewhat disappointing. This is mainly caused by the
increased computational cost of the evaluation of the Jacobian of
the ROM. The number of POD basis vectors needed to meet the
error tolerance is 293, resulting in a reduction in degrees of freedom
by a factor of ((1600/293)' 5.5). The timing results displayed in
Table 5, however, reveal only modest gains in overall execution
time. We attribute this to the dense matrix computations required

Table 3. Number of basis vectors used per species

Species No. of basis vectors

CO 52
O2 27
CO2 32
N2 1
PT(s) 56
O(s) 42
CO(s) 55
OO(s) 28
S 293

Table 4. Error of the POD solution at different conditions for baseline
values T¼600K, l¼1 and d¼0

Input value
Absolute
error

Relative
error RemarkT in K l d

600 0.9 0 8.3&10%5 4.2&10%4 l variation
600 1.1 0 1.0&10%5 5.2&10%5

600 1.0 0.1 2.1&10%5 1.4&10%4 d variation
600 1.0 0.2 1.7&10%5 8.4&10%5

600 1.0 0.3 1.3&10%5 6.6&10%5

570 1.0 0 1.3&10%4 6.4&10%4 T variation
630 1.0 0 2.1&10%5 1.1&10%4

600 0.9 0.1 7.8&10%5 3.9&10%4 l and d

variation
600 1.1 0.1 2.5&10%6 1.3&10%5

630 1.1 0.1 5.9&10%6 3.1&10%5 l, d and T
variation

570 0.9 0.1 1.8&10%4 8.8&10%4

570 1.1 0.1 5.3&10%6 2.6&10%5
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for the evaluation of the ROM‐Jacobian. The output log of the ODE
integrator (MATLAB’s ode15s) shown in Table 5 offers further
insight into the possible reasons for this behaviour.

In some respects the ROM appears easier to solve than the full
model, requiring around 37% less time, 62% fewer evaluations of
the right‐hand‐side as well as 62 % fewer linear system solves.
This, however, is offset by an only modest saving of 18 % in
Jacobian evaluations and 37 % in LU decompositions. In essence,

this is due to the ratio n/N of the sizes of reduced and full model,
which is too large to compensate the increased cost of the dense
computations (Table 6).
The relatively good performance of the full problem also benefits

from a tuning of the parameters for the ODE solver, for example
separate absolute and relative error tolerances for each species and
the use of the non‐negative option. This requires deep insight into
the structure of the problem, especially in the structure of the
chemical source term. This a priori information is not available for
the ROM, so standard values have to be used for the ODE solver
instead. In addition, and more importantly, the non‐negative
option cannot be used (the components of the POD solution can be
negative), so the control over the non‐negativity of the species is
lost. It should be mentioned that, without the parameter tuning,
the full problem performed considerably worse than the ROM.
All these effects combined lead to the somewhat disappointing
performance of the ROM in this particular case.
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Figure 5. Comparison between full model solution and POD results for gas‐
phase species.
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Figure 6. Comparison between full model solution and POD results for
solid species.

Table 5. Performance comparison at different conditions using a base
from 600K, l¼1 and d¼0

Input value

Timing full
system [s]

Timing
reduced
system [s]

Ratio
reduced/fullT in K l d

600 1.0 0 6.01 6.23 1.04
600 0.9 0 5.29 4.42 0.84
600 1.1 0 2.07 1.42 0.69
600 1.0 0.1 4.02 3.59 0.89
600 1.0 0.2 3.72 3.43 0.92
600 1.0 0.3 6.30 7.77 0.98
570 1.0 0 5.77 6.23 1.08
630 1.0 0 2.96 2.93 0.99
600 0.9 0.1 4.56 3.80 0.83
600 1.1 0.1 1.97 1.70 0.86
630 1.1 0.1 1.59 1.26 0.79
570 0.9 0.1 6.70 4.39 0.65
570 1.1 0.1 2.68 2.17 0.81

Table 6. Log of the ODE integrator

Full problem POD ROM

ODE steps 1369 463
Failed attempts 309 215
Function evaluations 3411 1307
Computed Jacobians 165 135
LU decompositions 508 320
Solutions of linear system 3408 1305
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CONCLUSION AND OUTLOOK

The model reduction method of POD was applied to a reaction‐
diffusion problem exemplary for automotive exhaust‐gas
aftertreatment systems. However, the method investigated is not
restricted to this application. The methodology is expected to be
applicable to other systems where reaction‐diffusion processes in
pores are relevant, for example biomass or coal conversion.

It was shown that the method can be successfully applied to
systems with complex non‐linear source terms. The POD basis was
obtained for each involved species separately using an individual
number of basis vectors based on an error criterion. This was
necessary due to the characteristic differences in species concen-
trations and dynamics in this kind of stiff reaction‐diffusion
system. Using a POD basis calculated for one baseline case,
predictions for other temperature and species concentrations could
be made.

The solutions obtained from the reduced system were compara-
ble to the solutions obtained from solving the full system with
respect to computing time and accuracy. However, the observed
time savings were not as significant as reported for other
applications. This is suspected to be due to the additional matrix
multiplications introduced by the transformation of the non‐linear
source terms.

In future work, the calculation speed and accuracy of the ROM
will be further investigated. Further gains in efficiency of the ROM
were observed using the DEIM to accelerate the evaluation of the
nonlinearity. Another interesting topic could be the influence of the
used grid on the POD parameters. Using a fine grid initially and
switching to a coarser one when possible could decrease
computational speed without significant loss in accuracy.

NOMENCLATURE

C concentration
kk rate coefficient of reaction
_Si reaction rate
t time
X pore length
Ak pre‐exponential factor
Deff,i effective diffusion coefficient
Dknud,i Knudsen diffusion coefficient
Dmol,i molecular diffusion coefficient
Ea,k activation energy
KS number of surface reactions
NG, NS number of gas‐phase/surface species
R universal gas constant
S0i sticking coefficient
T temperature
W molecular weight

Greek Symbols
bk temperature exponent
g catalytic active surface area per washcoat volume
d conversion factor
e porosity
l equivalence ratio
mik, 2ik parameters for surface species interaction
v0ik; v00ik stoichiometric coefficient of forward/backward reac-

tion
~v0ik reaction order of species j in reaction k
si number of occupied surface spots

t tortuosity
G surface site density
Qi surface coverage fraction
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