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Abstract. We consider the special case of the restarted Arnoldi method for approximating the product of a
function of a Hermitian matrix with a vector which results when the restart length is set to one. When applied
to the solution of a linear system of equations, this approach coincides with the method of steepest descent. We
show that the method is equivalent to an interpolation process in which the node sequence has at most two points of
accumulation. This knowledge is used to quantify the asymptotic convergence rate.
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1. Introduction. To evaluate the expression f(A)b for a matrix A ∈ Cn×n, a vector
b ∈ Cn and a function f : C ⊃ D → C such that f(A) is defined, approximations based on
Krylov subspaces have recently regained new attention, typically for the case whenA is large
and sparse or structured. In [6] we proposed a technique for restarting the Krylov subspace
approximation which permits the calculation to proceed using a fixed number of vectors (and
hence storage) in the non-Hermitian case and avoids the additional second Krylov subspace
generation phase in the Hermitian case. The method is based on a sequence of standard
Arnoldi decompositions

AVj = VjHj + ηj+1vjm+1e
T
m, j = 1, 2, . . . , k,

with respect to the m-dimensional Krylov subspaces Km(A, v(j−1)m+1), where v1 =
b/‖b‖. Alternatively, we write

AV̂k = V̂kĤk + ηk+1vkm+1e
T
km,

where V̂k := [V1 V2 · · · Vk] ∈ Cn×km,

Ĥk :=






H1

E2 H2

. . . . . .
Ek Hk





∈ C

km×km, Ej := ηje1e
T
m ∈ R

m×m, j = 2, . . . , k.

The approximation to f(A)b associated with this Arnoldi-like decomposition is given by

fk := ‖b‖V̂kf(Ĥk)e1

(cf. [6] or [1] for algorithms to compute fk) and we refer to this approach as the restarted
Arnoldi method with restart lengthm.
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The convergence analysis of the sequence {fk} is greatly facilitated by the fact (see, e.g.,
[6, Theorem 2.4]) that

fk = pkm−1(A)b,

where pkm−1 ∈ Pkm−1 is the unique polynomial of degree at most km−1which interpolates
f at the eigenvalues of Ĥk (i.e., at the eigenvalues of Hj , j = 1, 2, . . . , k) in the Hermite
sense. Convergence results for the restarted Arnoldi approximation can be obtained if we are
able to answer the following two questions:

1. Where in the complex plane is Λ(Ĥk), the spectrum of Ĥk, located?
2. For which λ ∈ C do the interpolation polynomials of f (with nodal set Λ(Ĥk))
converge to f(λ)?

We shall address these issues for the simplest form of this scheme obtained for a restart length
of m = 1, in which case all Hessenberg matrices Hj are 1 × 1 and Ĥk is lower bidiagonal.
We refer to this method as the method of steepest descent for matrix functions, and we shall
present it in greater detail and derive some of its properties in Section 2. In particular, we
shall show that, when applied to the function f(λ) = 1/λ, it reduces to the classical method
of steepest descent for the solution of Ax = b , at least if A is Hermitian positive definite.

Although not competitive for the practical solution of systems of linear equations, this
method has highly interesting mathematical properties and a remarkable history: More than
100 years after Cauchy [3] introduced it, Forsythe and Motzkin [11] noticed in numerical ex-
periments (see also [8]) that the associated error vectors are asymptotically a linear combina-
tion of the eigenvectors belonging to the smallest and largest eigenvalue of A, an observation
also made by Stiefel (Stiefel’s cage, see [16]) in the context of relaxation methods. Forsythe
and Motzkin also saw that the sequence of error vectors is “asymptotically of period 2”. They
were able to prove this statement for problems of dimension n = 3 and conjectured that it
holds for all n [10]. It was Akaike [2] who first proved this conjecture in 1959. He rephrased
the problem in terms of probability distributions and explained the observations of [11, 10]
completely. Later, in 1968, Forsythe [9] reconsidered the problem and found a different
proof (essentially based on orthogonal polynomials) which generalizes most (but not all) of
Akaike’s results from the case of m = 1 (method of steepest descent) to the case of m > 1
(m-dimensional optimum gradient method).

Drawing on Akaike’s ideas we investigate the first of the two questions mentioned above
in Section 3. Under the assumption that A is Hermitian we shall see that, in the case of
m = 1, the eigenvalues of Ĥk asymptotically alternate between two values, ρ∗

1 and ρ∗
2. Our

proofs rely solely on techniques from linear algebra and do not use any concepts from prob-
ability theory. We decided to sketch in addition Akaike’s original proof in Section 4 because
his techniques are highly interesting and hardly known today: In almost any textbook, the
convergence of the method of steepest descent is proven using Kantorovich’s inequality; see,
e.g., [7, §70], [12, Theorem 5.35] or [15, §5.3.1]. Such a proof is short and elegant (and also
gives the asymptotic rate of convergence, at least in a worst-case-sense) but does not reveal
the peculiar way in which the errors tend to zero.

Having answered the first of the above two questions we shall attack the second in Sec-
tion 5. We have to consider polynomial interpolation processes based, asymptotically, on just
two nodes ρ∗

1 and ρ∗
2 repeated cyclically. We shall use Walsh’s theory [18, Chapter III] on

the polynomial interpolation of analytic functions with finite singularities, which we comple-
ment by a convergence result for the interpolation of a class of entire functions. Putting the
pieces together we shall see that, if A is Hermitian, the method of steepest descent for matrix
functions converges (or diverges) geometrically when f has finite singularities, i.e., the error
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in step k behaves asymptotically as θk, where θ is determined by the eigenvalues of A, the
vector b and the singularities of f . For the function f(λ) = exp(τλ), the errors behave
asymptotically as θkτk/k!, where θ depends on the eigenvalues ofA and on the vector b , i.e.,
we observe superlinear convergence.

Finally, in Section 6 we show why it is so difficult to determine the precise values of the
nodes ρ∗

1 and ρ∗
2. For a simple example we reveal the complicated relationship between these

nodes on the one hand and the eigenvalues of A and the components of the vector b on the
other.

2. Restart length one and the method of steepest descent for matrix functions. We
consider a restarted Krylov subspace method for the approximation of f(A)b with shortest
possible restart length, i.e., based on a succession of one-dimensional Krylov subspaces. The
restarted Arnoldi method with unit restart length given in Algorithm 1 generates (generally
non-orthogonal) bases of the sequence of Krylov spaces Kk(A, b), k ≤ L, where L denotes
the invariance index of this Krylov sequence. Note that for m = 1 restarting and truncat-
ing are equivalent and that this algorithm is therefore also an incomplete orthogonalization
process with truncation parameterm = 1; see [15, §6.4.2].

Algorithm 1: Restarted Arnoldi process with unit restart length.
Given: A, b
σ1 := ‖b‖, v1 := b/σ1

for k = 1, 2, . . . do
w := Avk

ρk := vH
k w

w := w − ρkvk

σk+1 := ‖w‖
vk+1 := w/σk+1

Here and in the sequel, ‖ · ‖ denotes the Euclidean norm. Obviously, σk+1 = 0 if and
only if vk is an eigenvector of A. Since vk is a multiple of (A − ρk−1I)vk−1, this can
only happen if already vk−1 is an eigenvector of A and, by induction, if already the initial
vector b is an eigenvector of A. In this case, Algorithm 1 terminates in the first step and
f(A)b = f(ρ1)b = σ1f(ρ1)v1. We may therefore assume that σk > 0 for all k.

Algorithm 1 generates the Arnoldi-like decomposition

(2.1) AVk = Vk+1B̃k = VkBk + σk+1vk+1e
T
k

with Vk := [v1 v2 · · · vk] ∈ Cn×k, the lower bidiagonal matrices

B̃k :=






ρ1

σ2 ρ2

σ3
. . .
. . . ρk

σk+1





∈ C

(k+1)×k, Bk := [Ik 0] B̃k ∈ C
k×k

and ek ∈ Rk denoting the k-th unit coordinate vector. The matrices Bk = Bk(A, b) will
play a crucial role in our analysis where the following obvious invariance properties will be
helpful.
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LEMMA 2.1. For the bidiagonal matrices Bk = Bk(A, b) of (2.1) generated by Algo-
rithm 1 with data A and b , there holds:

1.

Bk(τA, b) =





τρ1

|τ |σ2 τρ2

. . . . . .
|τ |σk τρk




, τ (= 0.

In particular, for τ > 0, there holds Bk(τA, b) = τBk(A, b).
2. Bk(A − τI, b) = Bk(A, b) − τI for τ ∈ C.
3. Bk(QHAQ, QHb) = Bk(A, b) for unitary Q ∈ Cn×n.
Given the Arnoldi-like decomposition (2.1) resulting from the restarted Arnoldi process

with restart length one, the approximation of f(A)b is defined as

(2.2) fk := σ1Vkf(Bk)e1, k = 1, 2, . . . ,

with e1 ∈ Rk denoting the first unit coordinate vector. We state as a first result an explicit
representation of these approximants:

LEMMA 2.2. Let Γ be a Jordan curve which encloses the field of values ofA and thereby
also ρ1, ρ2, . . . , ρk. Assume that f is analytic in the interior of Γ and extends continuously
to Γ. For r ∈ N0 and ' ∈ N, we denote by

∆r
!f :=

1

2πi

∫

Γ

f(ζ)

(ζ − ρ!)(ζ − ρ!+1) · · · (ζ − ρ!+r)
dζ

the divided difference of f of order r with respect to the nodes ρ!, ρ!+1, . . . , ρ!+r. Then

fk =
k∑

r=1

(
r∏

j=1

σj

)

(∆r−1
1 f) vr = fk−1 +

(
k∏

j=1

σj

)

(∆k−1
1 f) vk.

Proof. A short proof is obtained using a result of Opitz [13]: We have fk =
σ1Vkf(Bk)e1 and Opitz showed that

f(Bk) = D





∆0
1f

∆1
1f ∆0

2f

∆2
1f ∆1

2f ∆0
3f

...
...

...
. . .

∆k−1
1 f ∆k−2

2 f ∆k−3
3 f · · · ∆0

kf





D−1

with D := diag
(
1, σ2,

∏3
j=2 σj , . . . ,

∏k
j=2 σj

)
, from which the assertion follows immedi-

ately.
The following convergence result is another immediate consequence of the close con-

nection between fk and certain interpolation processes; see [5, Theorem 4.3.1].
THEOREM 2.3. Let W (A) := {vHAv : ‖v‖ = 1} denote the field of values of A and

let δ := maxζ,η∈W (A) |ζ −η| be its diameter. Let f be analytic in (a neighborhood of)W (A)
and let ρ > 0 be maximal such that f can be continued analytically to Wρ := {λ ∈ C :
minζ∈W (A) |λ − ζ| < ρ}. (If f is entire, we set ρ = ∞.)
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If ρ > δ then limk→∞ fk = f(A)b and this convergence is at least linear.
Proof. We choose 0 < τ < ρ and a Jordan curve Γ such that τ ≤ minλ∈W (A) |ζ−λ| < ρ

for every ζ ∈ Γ. Hermite’s representation of the interpolation error

(2.3) f(λ) − pk−1(λ) =
1

2πi

∫

Γ

(λ − ρ1)(λ − ρ2) · · · (λ − ρk)

(ζ − ρ1)(ζ − ρ2) · · · (ζ − ρk)

f(ζ)

ζ − λ
dζ

(see, e.g., [5, Theorem 3.6.1]) gives, for λ ∈ W (A),

|f(λ) − pk−1(λ)| ≤ C1

[
δ

τ

]k

,

with the constantC1 = length(Γ) maxζ∈Γ |f(ζ)|/[2π minζ∈Γ,λ∈W (A) |ζ−λ|]. The assertion
follows from a result of Crouzeix [4], who showed that

‖f(A) − pk−1(A)‖ ≤ C2 max
λ∈W (A)

|f(λ) − pk−1(λ)|,

with a constant C2 ≤ 12.
Note that Theorem 2.3 holds for Arnoldi approximations of arbitrary restart length (and

also for its unrestarted variant). Note further that we always have superlinear convergence if
f is an entire function; see also [6, Theorem 4.2].

We conclude this section by considering the specific function f(λ) = 1/λ. For a non-
singular matrix A, computing f(A)b is nothing but solving the linear system Ax = b . It
is known (cf. [6, §4.1.1]) that the Arnoldi method with restart length m = 1 is equivalent
to FOM(1) (restarted full orthogonalization method with restart length 1; see [15, §6.4.1]) as
well as to IOM(1) (incomplete orthogonalization method with truncation parameter m = 1;
see [15, §6.4.2]). If we choose f0 = 0 as the initial approximation and express the approxi-
mants fk in terms of the residual vectors rk := b − Afk, there holds

fk = fk−1 + (σ1σ2 · · ·σk)(∆k−1
1 f)vk = fk−1 + αkrk−1,

where

αk =
1

ρk
=

1

vH
k Avk

=
rH

k−1rk−1

rH
k−1Ark−1

,

which is known as the method of steepest descent, at least if A is Hermitian positive definite.

3. Asymptotics of Bk in the Hermitian case. The aim of this section is to show how
the entries of the bidiagonal matrix Bk in (2.1) behave for large k.

We first consider a very special situation.
LEMMA 3.1. For a Hermitian matrix A ∈ Cn×n, assume that b and therefore v1 are

linear combinations of two (orthonormal) eigenvectors of A,

v1 =
1

√
1 + |γ|2

z1 +
γ

√
1 + |γ|2

z2,

where Azj = λjzj (j = 1, 2), λ1 < λ2 and ‖z1‖ = ‖z2‖ = 1. Then, for k = 1, 2, . . ., there
holds

v2k−1 = v1=
1

√
1 + |γ|2

z1 +
γ

√
1 + |γ|2

z2,

v2k = v2= −
|γ|

√
1 + |γ|2

z1 +
γ

|γ|
√

1 + |γ|2
z2.
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Proof. A straightforward calculation shows

Av1 − ρ1v1 =
λ1 − λ2

(1 + |γ|2)3/2

(
|γ|2z1 − γz2

)

and

v2 =
Av1 − ρ1v1

‖Av1 − ρ1v1‖
=

−|γ|
√

1 + |γ|2
z1 +

γ

|γ|
√

1 + |γ|2
z2.

By the same token,

Av2 − ρ2v2 =
|γ|(λ1 − λ2)

(1 + |γ|2)3/2
(z1 + γz2) ,

and therefore

v3 =
Av2 − ρ2v2

‖Av2 − ρ2v2‖
=

1
√

1 + |γ|2
(z1 + γz2) = v1.

Another elementary calculation leads to the following result.
COROLLARY 3.2. Under the assumptions of Lemma 3.1, the entries ρk and σk+1 (k =

1, 2, . . .) of the bidiagonal matrices Bk are given by

ρ2k−1 = θλ1 + (1 − θ)λ2,

ρ2k = (1 − θ)λ1 + θλ2, and

σk+1 =
√

θ(1 − θ) (λ2 − λ1),

with θ := 1/(1 + |γ|2).
In an asymptotic sense Corollary 3.2 covers the general case ifA is Hermitian, which we

shall assume throughout the remainder of this section.
THEOREM 3.3. If A is Hermitian with extremal eigenvalues λmin and λmax and if the

vector b has nonzero components in the associated eigenvectors, then there is a real number
θ ∈ (0, 1), which depends on the spectrum of A and on b , such that the entries ρk and σk+1

(k = 1, 2, . . .) of the bidiagonal matrices Bk in (2.1) satisfy

lim
k→∞

ρ2k−1 = θλmin + (1 − θ)λmax =: ρ∗
1,

lim
k→∞

ρ2k = (1 − θ)λmin + θλmax =: ρ∗
2,

lim
k→∞

σk+1 =
√

θ(1 − θ) (λmax − λmin) =: σ∗.

The proof of this result will be broken down into the following three lemmas. It simplifies
if we assume that A has only simple eigenvalues,

λ1 < λ2 < · · · < λn, n ≥ 2,

otherwise we replace A by A|KL(A,b). By z1, z2, . . . , zn we denote corresponding normal-
ized eigenvectors: Azj = λjzj , ‖zj‖ = 1. We also assume, again without loss of gen-
erality, that the vector b and therefore v1 have nonzero components in all eigenvectors:
zH

j b (= 0 for j = 1, 2, . . . , n. Next, we may assume that A is diagonal (otherwise we
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replace A by QHAQ and b by QHb , where Q = [z1, z2, . . . , zn]; cf. Lemma 2.1). Fi-
nally, we assume that b = [b1, b2, . . . , bn]T is real. (If not, we replace b by QHb , where
Q = diag(b1/|b1|, b2/|b2|, . . . , bn/|bn|) is a diagonal unitary matrix. Note that QHAQ = A
if A is diagonal.)

In summary, for Hermitian A we may assume that A is a real diagonal matrix with
pairwise distinct diagonal entries and that b is a real vector with nonzero entries.

LEMMA 3.4. The sequence {σk+1}k∈N of the subdiagonal entries of Bk is bounded and
nondecreasing and thus convergent. Moreover, σk+1 = σk+2 if and only if vk and vk+2 are
linearly dependent.

Proof. Boundedness of the sequence {σk+1}k∈N follows easily via

0 ≤ σk+1 = ‖(A − ρkI)vk‖ ≤ ‖A − ρkI‖ ≤ ‖A‖ + |ρk| ≤ 2‖A‖.

Monotonicity is shown as follows:

σk+1 = ‖(A − ρkI)vk‖
= ‖vk+1‖ ‖(A − ρkI)vk‖ since ‖vk+1‖ = 1

= |vH
k+1(A − ρkI)vk| since σk+1vk+1 = (A − ρkI)vk

= |vH
k+1(A − ρkI)Hvk| since A is Hermitian

= |vH
k+1(A − ρk+1I + (ρk+1 − ρk)I)Hvk|

= |vH
k+1(A − ρk+1I)Hvk + (ρk+1 − ρk)vH

k+1vk|
= |vH

k+1(A − ρk+1I)Hvk| since vk ⊥ vk+1

≤ ‖(A − ρk+1I)vk+1‖ ‖vk‖ by the Cauchy-Schwarz inequality
= ‖(A − ρk+1I)vk+1‖ since ‖vk‖ = 1

= σk+2.

Equality holds if and only if vk and (A−ρk+1I)vk+1 = σk+2vk+2 are linearly dependent.
LEMMA 3.5. Every accumulation point of the vector sequence {vk}k∈N generated by

Algorithm 1 is contained in span{z1, zn}, i.e., in the linear hull of the eigenvectors of A
associated with its extremal eigenvalues.

Proof. By the compactness of the unit sphere inCn, the sequence of unit vectors {vk}k∈N

must have at least one point of accumulation. Each such accumulation point is the limit of a
subsequence {vkν

}, for which, by Lemma 3.4, the associated sequence {σkν+1} converges,
and we denote its limit by σ∗. We conclude that for each accumulation point u1 there holds
σ1 = ‖Au1 − (uH

1 Au1)u1‖ = σ∗. Furthermore, one step of Algorithm 1 starting with
an accumulation point u1 as the initial vector yields another accumulation point u2, and
therefore also σ2 = ‖Au2 − (uH

2 Au2)u2‖ = σ∗. Two steps of Algorithm 1 with initial
vector u1 thus result in the decomposition

A [u1 u2] = [u1 u2 u3]




uH

1 Au1 0
σ∗ uH

2 Au2

0 σ∗



 ,

and from the fact that σ2 = σ3 = σ∗ we conclude using Lemma 3.4 that u1 and u3 must be
linearly dependent, i.e., u3 = κu1 for some κ. We thus obtain

A [u1 u2] = [u1 u2] A2 with A2 :=

[
uH

1 Au1 κσ∗

σ∗ uH
2 Au2

]
,

which means that span{u1,u2} is an A-invariant subspace, which in turn is only possible if
span{u1,u2} = span{z!, zm} for some 1 ≤ ' < m ≤ n.
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We note in passing that A2 = [u1 u2]
H A [u1 u2] must be Hermitian—in fact, real and

symmetric—and that consequently κ = 1 and u3 = u1; cf. Lemma 3.1.
Expanding the vectors vk =

∑n
j=1 γj,kzj generated by Algorithm 1 in the orthonormal

eigenbasis of A, we note that, by our assumption that the initial vector not be deficient in any
eigenvector, there holds γj,1 (= 0 for all j = 1, 2, . . . , n. In addition, since ρk ∈ (λ1, λn) and
γj,k+1 = γj,k(λj − ρk)/σk+1, we see that γ1,k and γn,k are both nonzero for all k. For the
interior eigenvalues {λj}n−1

j=2 it may well happen that ρk0
= λj for some k0 (cf. Section 6 for

examples), whereupon subsequent vectors of the sequence {vk} will be deficient in zj , i.e.,
γj,k = 0 for all k > k0. It follows that, for the sequence considered above starting with an
accumulation point u1, γm,k and γ!,k must also be nonzero for all k.

Assume now that m < n and consider a subsequence {vkν
} converging to u1 (without

loss of generality, vk1
= v1). For ν → ∞ the Rayleigh quotients ρkν

, being continuous
functions of the vectors vkν

, then converge to a limit contained in (λ!, λm). Consequently,
λn − ρkν

> λm − ρkν
> 0 for all sufficiently large ν. Since zH

n u1 = 0 by assumption, we
further have

0 = lim
ν→∞

∣∣∣∣
γn,kν

γm,kν

∣∣∣∣ =

∣∣∣∣
γn,1

γm,1

∣∣∣∣ lim
ν→∞

∏ν
η=1

|λn − ρkη
|

|λm − ρkη
|
.

But this is impossible since none of the factors on the right-hand side is zero and |λn −
ρkν

|/|λm − ρkν
| > 1 for all sufficiently large ν. In a similar way, the assumption 1 < ' is

also found to lead to a contradiction.
LEMMA 3.6. For the vector sequence {vk}k∈N of Algorithm 1 there exist nonzero real

numbers α and β, α2 + β2 = 1, which depend on the spectrum of A and on b , such that

lim
k→∞

v2k−1 = αz1 + βzn and lim
k→∞

v2k = sign(αβ)[−βz1 + αzn],

where sign(λ) denotes the sign of the real number λ.
Proof. We count the candidates for accumulation points u of the sequence {vk}. By

Lemma 3.5, u ∈ span{z1, zn} and, since ‖u‖ = 1, every accumulation point can be written
as u = αz1 + βzn with α2 + β2 = 1. For every vector of this form, there holds

‖Au − (uHAu)u‖2 = α2β2(λn − λ1)
2 = α2(1 − α2)(λn − λ1)

2.

Since u is an accumulation point of the sequence {vk}, we have, as in the proof of
Lemma 3.4, ‖Au − (uHAu)u‖ = σ∗, i.e.,

α2(1 − α2) =

(
σ∗

λn − λ1

)2

.

This equation has at most four solutions α which shows that there are at most eight points of
accumulation.

Assume now that vk is sufficiently close to such an accumulation point u = u1 =
αz1 +βzn. Since all operations in Algorithm 1 are continuous, vk+1, for k sufficiently large,
will be arbitrarily close to

u2 =
A − (uH

1 Au1)u1

‖A − (uH
1 Au1)u1‖

= sign(αβ)[−βz1 + αzn]

(which is also an accumulation point of {vk} different from u1 since αβ (= 0). Moreover,
vk+2 must then be close to

u3 =
A − (uH

2 Au2)u2

‖A − (uH
2 Au2)u2‖

= αz1 + βzn = u1.
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Since we already know there are only finitely many accumulation points of {vk}, we conclude
that the sequence {vk} must asymptotically alternate between u1 and u2.

The assertion of Theorem 3.3 now follows by elementary calculations, e.g.,

lim
k→∞

ρ2k−1 = lim
k→∞

vH
2k−1Av2k−1 = uH

1 Au1 = (αz1 + βzn)HA(αz1 + βzn)

= α2λmin + β2λmax = θλmin + (1 − θ)λmax,

where θ := α2.

4. Akaike’s probability theory setting. Theorem 3.3, the main result of the previous
section, is implicitly contained in Akaike’s paper [2] from 1959. His proof is based on the
analysis of a transformation of probability measures: As is well-known (see, e.g., [17]) a
Hermitian matrix A ∈ Cn×n and any vector v ∈ Cn of unit length give rise to a probability
measure µ on R, assigning to any setM ⊂ R the measure

(4.1) µ(M) :=

∫

M
w(λ) dλ, w(λ) :=

n∑

j=1

ω2
j δ(λ − λj),

where δ denotes the Dirac δ-function, λ1 < λ2 < · · · < λn are the eigenvalues of A (we
assume again without loss of generality that A has n simple eigenvalues) with corresponding
eigenvectors zj , ‖zj‖ = 1, j = 1, 2, . . . , n, and where the weights are given by ω2

j = |zH
j v |2.

For a fixed matrix A, this correspondence between unit vectors v and probability measures
µ supported on Λ(A) is essentially one-to-one (if we do not distinguish between vectors
v = [v1, v2, . . . , vn]T and w = [w1, w2, . . . , wn]T with |vj | = |wj | for all j = 1, 2, . . . , n).
In this way, each basis vector vk generated by the restarted Arnoldi process with unit restart
length (Algorithm 1) induces a probability measure µk whose support is a subset of Λ(A).

The Lebesgue integral associated with (4.1) is given by
∫

R

f(λ)w(λ) dλ =
n∑

j=1

ω2
j f(λj)

for any function f defined on Λ(A). In particular, the mean of µ,

ρµ :=

∫

R

λw(λ) dλ =
n∑

j=1

ω2
j λj = vHAv ,

is the Rayleigh quotient of v and A, and the variance of µ is given by

σ2
µ :=

∫

R

(λ − ρµ)2w(λ) dλ =
n∑

j=1

ω2
j (λj − ρµ)2 = ‖(A − ρµI)v‖2,

the squared norm of the vector Av − (vHAv)v . We now see that the (nonlinear) vector
transformation

vk+1 = Tvk, where Tv :=
Av − (vHAv)v

‖Av − (vHAv)v‖
,

underlying Algorithm 1 can be rephrased as a transformation of probability measures, µk+1 =
Tµk, where

(4.2) (Tµ)(M) :=

∫

M

[
λ − ρµ

σµ

]2

w(λ) dλ, if µ(M) =

∫

M
w(λ) dλ.
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As above, we assume that v1 and thus vk, k ≥ 1, is not an eigenvector of A, which implies
that the support of µk consists of more than one point and therefore σk = σµk

> 0. We
also remark that the transformation (4.2) µ -→ Tµ is not only well-defined for probability
measures with finite support but for any probability measure whose first and second moments
exist.

The crucial points in the proof of Theorem 3.3 were to show that the subdiagonal entries
σk of Bk, which we have now identified as the standard deviations of µk, form a nondecreas-
ing sequence (see Lemma 3.4) and that σk+1 = σk can only hold if vk is a linear combination
of two eigenvectors of A; see Lemma 3.5. Akaike based his proof on explicit formulas for
the mean and variance of the transformed measure Tµ:

ρ Tµ = ρµ +
1

σ2
µ

∫

R

(λ − ρµ)3w(λ) dλ

(cf. [2, Lemma 1]) and

σ2
Tµ = σ2

µ +
1

σ4
µ

det(M3), where M3 :=

[∫

R

(λ − ρµ)k+jw(λ) dλ

]

0≤k,j≤2

is the (3×3)-moment matrix associated with (f, g) =
∫

R
f(λ)g(λ)w(λ) dλ; cf. [2, Lemma 2].

SinceM3 is positive semidefinite it follows that σ2
Tµ ≥ σ2

µ, with equality holding if and only
ifM3 is singular, which can only happen if the support of µ consists of two points or less.

5. Convergence for functions of Hermitian matrices. As mentioned previously our
convergence analysis is based on the close connection between Krylov subspace methods
for approximating f(A)b and polynomial interpolation; see, e.g., [6, Theorem 2.4]. For the
vectors fk of (2.2), we have

fk = σ1Vkf(Bk)e1 = pk−1(A)b,

where pk−1 ∈ Pk−1 interpolates f in the Hermite sense at the Rayleigh quotients ρj =
vH

j Avj (j = 1, 2, . . . , k). If A is Hermitian there holds (see Theorem 3.3)

(5.1) lim
k→∞

ρ2k−1 = ρ∗
1 and lim

k→∞
ρ2k = ρ∗

2,

with two numbers ρ∗
1 and ρ∗

2 both contained in the convex hull of Λ(A). In other words,
asymptotically, the restarted Arnoldi approximation of f(A)b with unit restart length is
equivalent to interpolating f at just the two nodes ρ∗

1 and ρ∗
2 with increasing multiplicity.

Interpolation processes of such simple nature are well understood. To formulate the conver-
gence results we need additional terminology: For δ ≥ 0, we define the curves

(5.2) Γδ := {λ ∈ C : |λ − ρ∗
1||λ − ρ∗

2| = δ2},

known as lemniscates† with foci ρ∗
1 and ρ∗

2. If ρ∗
1 = ρ∗

2 these reduce to concentric circles of
radius δ. Otherwise, if 0 < δ < δ0 := |ρ∗

1 − ρ∗
2|/2, Γδ consists of two mutually exterior

analytic Jordan curves. When δ = δ0, we obtain what is known as the Bernoulli lemniscate,
for which these curves touch at (ρ∗

1 + ρ∗
2)/2, whereas for δ > δ0 the lemniscate is a single

analytic Jordan curve. Obviously, its interior int Γδ contains ρ∗
1 and ρ∗

2 for every δ > 0,
Γγ ⊂ int Γδ for 0 ≤ γ < δ, and every λ ∈ C is located on exactly one Γδ .

†Lemniscates of polynomials of degree 2 are also known as Ovals of Cassini.
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We first assume that f is analytic in (an open set containing) ρ∗
1 and ρ∗

2 but not entire,
i.e., that it has finite singularities in the complex plane. There exists thus a unique δf > 0
such that f is analytic in int Γδf

but not in int Γδ for any δ > δf ,

(5.3) δf := max {δ : f is analytic in int Γδ} .

THEOREM 5.1 (Walsh [18, Theorems 3.4 and 3.6]). Let the sequence ρ1, ρ2, . . . be
asymptotic to the sequence ρ∗

1, ρ∗
2, ρ∗

1, ρ∗
2, . . . in the sense of (5.1). Assume that f is defined

in all nodes ρ1, ρ2, . . . and let pk−1 ∈ Pk−1 be the polynomial which interpolates f at
ρ1, ρ2, . . . , ρk. Then limk→∞ pk−1 = f uniformly on compact subsets of int Γδf

. More
precisely, there holds

lim sup
k→∞

|f(λ) − pk−1(λ)|1/k ≤
δ

δf
for λ ∈ int Γδ.

For λ (∈ int Γδf
the sequence {pk−1(λ)}k≥1 diverges (unless λ is one of the nodes ρj).

It remains to investigate the convergence of the interpolation polynomials if f is an entire
function. We here concentrate on f(λ) = exp(τλ), τ (= 0, which among entire functions is
of the most practical interest. We remark, however, that the following argument applies to all
entire functions of order 1 and type |τ | and can be generalized to arbitrary entire functions. We
further note that the following theorem could be easily deduced from more general results of
Winiarski [19] or Rice [14], but we prefer to present an elementary and self-contained proof.

THEOREM 5.2. Let the sequence ρ1, ρ2, . . . satisfy the assumptions of Theorem 5.1 and
let pk−1 ∈ Pk−1 be the polynomial which interpolates f(λ) = exp(τλ) at ρ1, ρ2, . . . , ρk.
Then {pk−1} converges to f uniformly on compact subsets of C. More precisely, there holds

lim sup
k→∞

[
k |f(λ) − pk−1(λ)|1/k

]
≤ δ |τ | e for λ ∈ int Γδ,

where e = exp(1).
Proof. We first interpolate f(λ) = exp(τλ) at the nodes ρ∗

1 and ρ∗
2 repeated cyclically,

i.e., at ρ∗
1, ρ∗

2, ρ∗
1, ρ∗

2, ρ∗
1, . . . By p∗k−1 ∈ Pk−1 we denote the polynomial which interpolates

f at the first k points of this sequence, and by q∗k ∈ Pk the corresponding nodal polynomial.
For λ ∈ int Γδ , Hermite’s error formula (2.3) implies

f(λ) − p∗k−1(λ) =
1

2πi

∫

Γη

q∗k(λ)

q∗k(ζ)

exp(τζ)

ζ − λ
dζ =

∞∑

j=0

τ j

j!

1

2πi

∫

Γη

q∗k(λ)

q∗k(ζ)

ζj

ζ − λ
dζ,

where η > δ. Note that
∫
Γη

q∗

k(λ)
q∗

k(ζ)
ζj

ζ−λ dζ is the interpolation error for the function g(λ) = λj

which vanishes for j = 0, 1, . . . , k − 1. Hence,

f(λ) − p∗k−1(λ) =
∞∑

j=k

τ j

j!

1

2πi

∫

Γδ

q∗k(λ)

q∗k(ζ)

ζj

ζ − λ
dζ

= q∗k(λ)
τk

k!

∞∑

j=0

τ jk!

(k + j)!

1

2πi

∫

Γδ

1

q∗k(ζ)

ζk+j

ζ − λ
dζ

and therefore,

|f(λ) − p∗k−1(λ)| ≤| q∗k(λ)|
|τ |k

k!

∞∑

j=k

|τ |j

j!

1

2π

length(Γη)

dist(Γδ,Γη)

[
max
ζ∈Γη

|ζ|
]j [

max
ζ∈Γη

|ζ|k

|q∗k(ζ)|

]
,
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where we used k!/(k+j)! ≤ 1/j!. Assume that k is even, then q∗k(λ) = [(λ−ρ∗
1)(λ−ρ∗

2)]
k/2

and thus |q∗k(λ)| ≤ δk. We further set C1 := maxζ∈Γη
|ζ| ∼ η (for η → ∞), C2 :=

maxζ∈Γη

|ζ|2

|ζ−ρ∗

1
||ζ−ρ∗

2
| ∼ 1 (for η → ∞) and C3 := 1

2π
length(Γη)
dist(Γδ,Γη) ∼ 1 (for η → ∞). Now,

k! |f(λ) − p∗k−1(λ)| ≤ δk |τ |k Ck/2
2 C3 exp(|τ |C1).

Using Stirling’s formula, k! ∼
√

2πk (k/e)k (for k → ∞), and taking the k-th root we obtain

(5.4) lim sup
k→∞

[
k |f(λ) − p∗k−1(λ)|1/k

]
≤ δ |τ | e

√
C2,

which is valid for every η > δ. Since C2 → 1 for η → ∞ we arrived at the desired
conclusion, at least if the two nodes ρ∗

1 and ρ∗
2 are cyclically repeated. A minor modification

shows that this inequality holds also for odd k.
It remains to show that (5.4) is valid if we interpolate f(λ) = exp(τλ) in nodes

ρ1, ρ2, ρ3, . . . satisfying (5.1). We use again a result of Walsh [18, §3.5], who proved that

lim
k→∞

|(λ − ρ1)(λ − ρ2) · · · (λ − ρk)|1/k = lim
k→∞

|q∗k(λ)|1/k

uniformly on any compact set that does not contain one of the nodes ρ1, ρ2, ρ3, . . ., which,
together with (2.3), completes the proof.

Now all that remains is to translate the preceding interpolation results to the matrix set-
ting. Introducing the quantity

δA := inf{δ : Λ(A) ⊆ int Γδ} = max{|(λ − ρ∗
1)(λ − ρ∗

2)|1/2 : λ ∈ Λ(A)},

we are now in position to formulate our main result.
THEOREM 5.3. Let A be Hermitian and let f denote a function which is analytic in a

neighborhood of the spectral interval [λmin, λmax] of A. For the approximants fk generated
by the Arnoldi method with unit restart length and initial vector b , there holds:
If f possesses finite singularities, then

lim sup
k→∞

‖f(A)b − fk‖1/k ≤
δA

δf
,

where δf is defined by (5.3).
If f(λ) = exp(τλ), τ (= 0, then

lim sup
k→∞

[
k‖f(A)b − fk‖1/k

]
≤ δA |τ | e.

Proof. Since A is Hermitian, i.e., normal, there holds

‖f(A)b − fk‖ ≤ max
λ∈Λ(A)

|f(λ) − pk−1(λ)| ‖b‖.

Now Theorems 5.1 and 5.2 imply the desired conclusion.
We next derive a necessary and sufficient condition for the convergence of the method

of steepest descent. As before, we expand the k-th basis vector vk generated by the Arnoldi
method with unit restart length in the orthonormal eigenbasis of A as vk =

∑n
j=1 γj,kzj . As

noted already in the proof of Lemma 3.5, it is possible that at some index k0 in Algorithm 1
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the Rayleigh quotient ρk0
coincides with an eigenvalue λj0 (2 ≤ j0 ≤ n − 1). In this case

γj0,k+1 = γj0,k(λj − ρk)/σk+1 = 0 for all k > k0. But since

f(A)b − fk = f̃(A)vk+1 =
n∑

j=1

f̃(λj)γj,k+1zj , for some ‘restart function’ f̃

(cf. [6, Theorem 2.6]), there follows zH
j0 (f(A)b − fk) = 0 for all k > k0 or, in other words,

fk has no error component in the direction of zj0 .
Consider now an eigenvalue λj0 (2 ≤ j0 ≤ n−1) with λj0 (= ρk for all k. The sequence

∣∣∣∣
γj0,k+2

γn,k+2

∣∣∣∣ =

∣∣∣∣
γj0,k

γn,k

∣∣∣∣

∣∣∣∣
(λj0 − ρk)(λj0 − ρk+1)

(λn − ρk)(λn − ρk+1)

∣∣∣∣

tends to 0 for k → ∞ (see Lemma 3.6), the second factor of the right-hand side tends to
|(λj0 − ρ∗

1)(λj0 − ρ∗
2)|/|(λn − ρ∗

1)(λn − ρ∗
2)|. Consequently, we have

|(λj0 − ρ∗
1)(λj0 − ρ∗

2)| < |(λn − ρ∗
1)(λn − ρ∗

2)|,

i.e., the lemniscate Γδ∗ , with

δ∗ := |(λn − ρ∗
1)(λn − ρ∗

2)|1/2 = |(λ1 − ρ∗
1)(λ1 − ρ∗

2)|1/2,

which passes through the extremal eigenvalues of A, contains all other eigenvalues in its
interior (at least those which are relevant for the convergence of the steepest descent method).

THEOREM 5.4. Denote by Γδ∗ the lemniscate of the family (5.2) which passes through
λmin and λmax. Then the method of steepest descent for computing f(A)b converges if and
only if Γδ∗ and its interior contain no singularity of f .

We conclude this section by an obvious consequence.
COROLLARY 5.5. Let f be a function analytic in [λmin, λmax] which has no singular-

ities in C \ R. Then the method of steepest descent for computing f(A)b converges. The
convergence is at least linear with convergence factor

θ =
λmax − λmin

|ζ0 − λmax| + |ζ0 − λmin|
,

where ζ0 is a singularity of f closest to [λmin, λmax].
Proof. Convergence follows from Theorem 5.4. Denoting the foci of the lemniscates Γδ

(5.2) by ρ1 = 1
2 (λmin + λmax)− γ and ρ2 = 1

2 (λmin + λmax)+ γ, γ ∈ [0, 1
2 (λmax −λmin)],

the convergence factor is given by
[
|λmax − ρ∗

1||λmax − ρ∗
2|

|ζ0 − ρ∗
1||ζ0 − ρ∗

2|

]1/2

=

[
(λmax − λmin)2 − 4γ2

(|ζ0 − λmax| + |ζ0 − λmin|)2 − γ2|

]1/2

which is a monotonically decreasing function of γ, i.e., it attains its maximal value for γ = 0.

Functions satisfying the assumptions of this corollary, such as e.g., f(λ) = log(λ),
f(λ) =

√
λ etc., play important roles in applications. Among them is also f(λ) = 1/λ and,

if we assume that A is positive (or negative) definite, then we regain the well-known result
that the classical method of steepest descent converges with a convergence factor which is
not greater than

λmax − λmin

|λmax| + |λmin|
=

κ − 1

κ + 1
,

where κ = λmax/λmin is the condition number of A.
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FIG. 6.1. The function [γ1, γ2, γ3] !→ ρ.

6. Location of the foci. We have not been able to determine the exact location of
the foci ρ∗

1 and ρ∗
2. Of course, by Theorem 3.3 they are contained in the open interval

(λmin, λmax) and lie symmetric to 1
2 (λmin + λmax). If 1

2 (λmin + λmax) is an eigenvalue
of A (and if v1 has a nonzero component in the corresponding eigenvector) then

|ρ∗
1 − ρ∗

2| <
1

2

√
2(λmax − λmin)

because otherwise the lemniscate passing through λmin and λmax would not contain 1
2 (λmin+

λmax) in its interior.
More precise information is only available in very special situations: Assume that Λ(A)

is symmetric with respect to 1
2 (λmin + λmax),

|λj −
1

2
(λmin + λmax)| = |λn+1−j −

1

2
(λmin + λmax)|

for j = 1, 2, . . . , n/2 if n is even and for j = 1, 2, . . . , (n−1)/2 if n is odd. In the latter case
this means that λ(n+1)/2 = 1

2 (λmin + λmax). In addition, we require that the coefficients of
v1 =

∑n
j=1 γj,1zj are symmetric as well:

γj,1 = ±γn+1−j,1, j = 1, 2, . . . , 1n/22.

It is then easy to see that ρk = 1
2 (λmin + λmax) for every k and thus, ρ∗

1 = ρ∗
2 = 1

2 (λmin +
λmax).

As a case study, we consider the fixed matrix A = diag(−1, 0, 1) together with a real
vector v1 = [γ1, γ2, γ3]T , ‖v1‖ = 1, γ1γ3 (= 0. The restarted Arnoldi process with unit
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FIG. 6.2. The function [γ1, γ3] !→ ρ.

restart length (Algorithm 1) then generates a sequence {vk = [γ1,k, γ2,k, γ3,k]T }k≥1 of unit
vectors as follows,

(6.1)




γ1,k+1

γ2,k+1

γ3,k+1



 = T




γ1,k

γ2,k

γ3,k



 :=
1

σk+1




γ1,k(−1 − ρk)

−γ2,kρk

γ3,k(1 − ρk)



 ,

with ρk = −γ2
1,k + γ2

3,k, σk+1 =
√

(γ2
1,k + γ2

3,k) − (γ2
1,k − γ2

3,k)2 and the initial vector
[γ1,1, γ2,1, γ3,1]T := [γ1, γ2, γ3]T . We know from Lemma 3.6 that

lim
k→∞

v2k−1 =




α
0
β



 and lim
k→∞

v2k = sign(αβ)




−β
0
α



 ,

for some nonzero real numbers α, β, α2 + β2 = 1, and that consequently (cf. Theorem 3.3)

ρ∗
1 = lim

k→∞
vT
2k−1Av2k−1 = −α2 + β2 and ρ∗

2 = lim
k→∞

vT
2kAv2k = α2 − β2 = −ρ∗

1.

Denoting by ρ = |ρ∗
1| = |ρ∗

2| the common modulus of these two nodes we are interested in
the mapping ρ = ρ(γ1, γ2, γ3) which is defined on the unit sphere in R3 with the exception
of the great circles γ1 = 0 and γ3 = 0. Figure 6.1 illustrates this function.

We first observe certain symmetries: Obviously the eight vectors [±γ1,±γ2,±γ3]T lead
to the same value of ρ. Moreover, we have ρ(γ1, γ2, γ3) = ρ(γ3, γ2, γ1); see (6.1). The great
circle γ2 = 0 is of special interest: If we select v1 = [γ1, 0,

√
1 − γ2

1 ]T as the starting vector
of the iteration (6.1), then v2k−1 = v1 and v2k = v2 = [−

√
1 − γ2

1 , 0, γ1]T for every k;
cf. Lemma 3.1. A simple computation yields

ρ = ρ
(

γ1, 0,
√

1 − γ2
1

)
= |vT

1 Av1| = |1 − 2γ2
1 |.

Therefore, for a suitable choice of γ1, the function ρ attains every value in [0, 1). Values
of ρ contained in (

√
2/2, 1) are attained if we select v1 on the ‘red subarcs’ of the great
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circle γ2 = 0; see Figure 6.1. Note that ρ = ρ(γ1, γ2, γ3) ∈ [0,
√

2/2) whenever γ2 (= 0.
Consequently, ρ is discontinuous at every point of those arcs.

We next determine combinations of γ1, γ2 and γ3 which lead to the value ρ = 0: If
we start the iteration with v1 =

√
2/2 [±1, 0,±1]T then, for the Rayleigh quotients ρk =

vT
k Avk, there holds ρk = 0 for all k > 0. We set S0 := {

√
2/2 [±1, 0,±1]T }. Now we

define inductively the sets

S! := {v : Tv ∈ S!−1}, ' = 1, 2, . . . ,

and note that, for starting vectors v1 ∈ S!, there holds ρk = 0 for all k > '.
To illustrate these sets in a more convenient way, we eliminate γ2,1 = (1−γ2

1,1−γ2
3,1)

1/2

from the transformation T defined in (6.1) and consider ρ as a function of the two variables γ1

and γ3; see Figure 6.2. For symmetry reasons we can restrict our attention to 0 < γ1, γ3 < 1.
The intersection of the sets S! and this restricted domain will be denoted by R!. We have

R0 = {[γ1, γ3]
T : γ1 = γ3 =

√
2/2},

R1 = {[γ1, γ3]
T : γ3 = γ1},

R2 = {[γ1, γ3]
T : γ3 = 1 − γ1},

R3 = {[γ1, γ3]
T : p(γ1, γ3) = 0},

...
...

where p(γ1, γ3) = γ6
1+γ6

3−γ4
1−γ4

3+2γ2
1γ2

3−γ4
1γ2

3−γ2
1γ4

3+2γ5
1γ3+2γ1γ5

3−4γ3
1γ3

3−2γ1γ3.
Figure 6.3 shows these setsR!, ' = 0, 1, . . . , 5, whereR4 andR5 were computed numerically
using Newton’s method.

FIG. 6.3. The sets R!, # = 0, 1, . . . , 5.

In summary, determining the foci ρ∗
1 and ρ∗

2 requires the analytic evaluation of the func-
tion ρ = ρ(γ1, γ2, γ3)which, even in the simple example considered here, appears intractable.



ETNA
Kent State University 
etna@mcs.kent.edu

222 M. AFANASJEW, M. EIERMANN, O. G. ERNST, AND S. GÜTTEL

7. Conclusion. We have given a convergence analysis of the restarted Arnoldi approx-
imation for functions of Hermitian matrices in the case when the restart length is one. The
analysis is based on an earlier result of Akaike given in a probability theory setting, which
we have translated into the terminology of linear algebra, and results of Walsh on the conver-
gence of interpolation polynomials. In particular, we have shown that the restarted Arnoldi
method exhibits, asymptotically, a two-periodic behavior. Moreover, we have characterized
the asymptotic behavior of the entries of the associated Hessenberg matrix. The precise loca-
tion of the asymptotic interpolation nodes is a complicated task, as was illustrated for a simple
example. These results may be viewed as a first step towards understanding the asymptotic
behavior of the restarted Arnoldi process.
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