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Abstract. We investigate the structural, spectral, and sparsity properties of Stochastic Galerkin
matrices as they arise in the discretization of linear differential equations with random coefficient
functions. These matrices are characterized as the Galerkin representation of polynomial multiplica-
tion operators. In particular, it is shown that the global Galerkin matrix associated with complete
polynomials cannot be diagonalized in the stochastically linear case.
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1. Introduction. As a technique for propagating data uncertainty through the
numerical solution of partial differential equations (PDEs), stochastic finite element
methods have received considerable attention in recent years. The introduction of a
Galerkin discretization scheme based on polynomials in random variables by Ghanem
and Spanos [13] led to both a wide adoption of this method among practitioners as
well as systematic investigation of the mathematical properties of these schemes. The
basic approach of such Stochastic Galerkin methods is a variational formulation in
which trial and test spaces consist of random fields rather than deterministic func-
tions, which are formally described as tensor products of functions of deterministic
variables (usually space and/or time) on one hand, and functions of a number of ran-
dom variables on the other. For linear partial differential equations with a stochastic
differential operator, the resulting Galerkin matrices are sums of tensor products of
matrices, of which one factor is associated with the deterministic function space, and
the other with the stochastic function space. For nearly all Stochastic Galerkin dis-
cretizations, the stochastic factors, which we refer to as Stochastic Galerkin matrices,
are of the same highly structured form, and certain practical questions naturally arise
when devising efficient solution algorithms for the Galerkin equations, in particular
as the global matrix is typically very large, its dimension being the product of the
number of degrees of freedom in the deterministic and stochastic function spaces,
respectively.

In this paper we address three issues. The first concerns the choice of basis func-
tions in the stochastic space leading to a desirable form of the resulting matrices. It
is known that, when using tensor product polynomials, a basis can be constructed for
which the resulting combined deterministic-stochastic Galerkin matrix is block diag-
onal (cf. [5, 6]). We show that this is not the case when the more popular subspace
of complete polynomials is used. Moreover, for the diagonalizable case, we show how
this basis can be constructed by solving a small tridiagonal eigenvalue problem. An-
other issue, arising in the design of iterative solution methods for Stochastic Galerkin
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equations, is the determination of the eigenvalues of the Stochastic Galerkin matrices.
Here we give a partial result covering the stochastically linear case and an additional
order in the stochastically nonlinear case in addition to spectral inclusion bounds and
symmetry properties. Finally, we investigate the sparsity structure of the Stochastic
Galerkin matrices.

The paper is organized as follows: in section 2 we describe the Stochastic Galerkin
discretization based on both spaces of multivariate tensor product and complete poly-
nomials in random variables, and derive the associated Stochastic Galerkin matrices,
displaying their basic Kronecker product structure and how their entries may be com-
puted using recurrence relations for orthogonal polynomials. Section 3 shows that a
well-known diagonalization procedure used in conjunction with tensor product poly-
nomials does not extend to the smaller space of complete polynomials. Eigenvalues
and eigenvalue bounds are given in section 4, and section 5 gives results on the sparsity
structure of Stochastic Galerkin matrices.

2. Stochastic Galerkin matrices. In this section we describe the two most
commonly occurring types of Stochastic Galerkin matrices, whose entries consist of
the expectation of the product of two or three multivariate polynomials in random
variables, respectively.

The point of departure is the representation of random fields (see [2] or [7] for an
introduction), which constitute the input data for Stochastic Galerkin discretizations
as finite separated expansions

(2.1) a(x, ξ) = a(x) +
∑

α∈Ia,
|α|>0

aα(x)ψα(ξ).

The deterministic variable x, which usually represents spatial coordinates and/or time,
lies in a bounded domain D ⊂ R

d of dimension d, and the function a : D → R denotes
the expectation of the random field a. The second variable ξ = ξ(ω) is a vector of
a finite number M ∈ N of independent centered random variables ξm : Ω → R,
m = 1, . . . ,M , with unit variance associated with a probability space (Ω,A , P ),
consisting of the abstract set Ω of elementary events, a σ-algebra A on Ω and a
probability measure P on A . We make the general assumption that all random
variables that occur have finite second moments and denote the Hilbert space of such
random variables by L2

P (Ω). Finally, α ∈ N
M
0 denotes a multi-index varying in an

index set Ia with |α| := α1+ · · ·+αM , and ψα denotes a polynomial in the variables
ξ1, . . . , ξM . Denoting the range of the mth random variable ξm by Γm := ξm(Ω) and
Γ := Γ1 × · · · × ΓM , we have ξ(ω) ∈ Γ for all ω ∈ Ω.

In the following we shall suppress the deterministic variable x and view a = a(ξ)
simply as a random variable taking values in a finite-dimensional space of functions.
This is sufficient for our purpose of studying the properties of the matrices obtained
after Galerkin discretization. Moreover, we mention a special case of the expansion
(2.1) which occurs frequently in applications and in which only linear polynomials in
ξ appear in the expansion, which then takes on the form

(2.2) a(ξ) = a+
M∑
m=1

amξm.

We refer to this situation as the (stochastically) linear case.
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1850 OLIVER G. ERNST AND ELISABETH ULLMANN

The space of polynomials ψα is determined by fixing the multi-index set Ia. We
distinguish the cases of tensor product polynomials

Ia = Ip := {α ∈ N
M
0 : αj ≤ p ∀j = 1, . . . ,M}

of individual degree at most p and that of complete polynomials

Ia = IC
p := {α ∈ N

M
0 : |α| ≤ p} ⊆ Ip

of total degree at most p. Introducing the multivariate polynomial spaces

Vp := span{ξα : α ∈ Ip} and V C
p := span{ξα : α ∈ I C

p },
where ξα denotes the M -variate monomial ξα1

1 ξα2

2 · · · ξαM

M , it is easily verified that
V C
p ⊆ Vp and

(2.3) Np := dimVp = (1 + p)M and NC
p := dimV C

p =

(
M + p

p

)
.

2.1. Galerkin equations. The matrices under study arise from a Galerkin dis-
cretization of the equation au = f with given random functions a and f , resulting in
the discrete variational problem of finding u ∈ V such that

(2.4) 〈a(ξ)u(ξ)v(ξ)〉 = 〈f(ξ)v(ξ)〉 ∀v ∈ V ,

where V is either Vp or V C
p and 〈ξ〉 denotes the expectation of the random variable ξ.

We note that (2.4) is the abstract representation of a Stochastic Galerkin formulation
in which the functions of the random vector ξ can be interpreted to take values either
in a function space appropriate for the underlying continuous variational setting or,
after discretization in the deterministic variable, a finite-dimensional vector space.
Assuming further that each of the independent random variables ξm has a probability
density ρm : Γm → R

+
0 , their joint density ρ : Γ → R

+
0 is given by the product

ρ =
∏M
m=1 ρm, and we may write

〈u(ξ)〉 =
∫
Γ

u(ξ) ρ(ξ) dξ =

∫
Γ1

· · ·
∫
ΓM

u(ξ1, . . . , ξM ) ρM (ξM ) dξM · · · ρ1(ξ1)dξ1.

Moreover, instead of L2
P (Ω), we may equivalently consider the weighted L2-space

L2
ρ(Γ). Inserting a representation u =

∑
β uβψβ of u with respect to a basis Ψ := {ψβ}

of V in (2.4) and requiring the variational equation to hold for each test function ψγ ,
γ ∈ I , we arrive at the linear system of equations

Gu = f

associated with (2.4) and the basis Ψ, where the Galerkin matrix G ∈ R
N×N , with

N = Np for V = Vp or N = NC
p for V = V C

p , respectively, has the form

(2.5) G = aG0 +
∑
|α|>0

aαGα

with matrices whose entries associated with each multi-index pair (β,γ) ∈ I × I
are given by

(2.6) [G0]β,γ = 〈ψβψγ〉 and [Gα]β,γ = 〈ψαψβψγ〉 , α ∈ Ia, |α| > 0.
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Note that we distinguish the index sets Ia for the coefficient field from that for the
basis functions I ; we shall see later that there are reasons for choosing the former
larger than the latter. In the stochastically linear case only the M multi-indices with
|α| = 1 occur in the sum and, indexing these with m = 1, 2, . . . ,M , the Galerkin
matrices in this case are simply

(2.7) [Gm]β,γ = 〈ξmψβψγ〉 , β,γ ∈ I , m = 1, 2, . . . ,M.

We note that the structure of the matrices Gα as given in (2.6) reveals that these
represent multiplication operators on the multivariate polynomial spaces Vp and V C

p ,
respectively. More precisely, denoting by PV : L2

ρ(Γ) → V the orthogonal projection

onto either V = Vp or V = V C
p , respectively, as well as by Mα the linear operator

which maps a polynomial ψ ∈ V to the product ψαψ with a fixed basis element ψα,
α ∈ Ia, the Stochastic Galerkin matrix Gα then represents the operator

PV Mα : V → V ,

ψ 
→ PV (ψαψ)

with respect to the basis Ψ.

2.2. Choice of basis. The construction of a basis of multivariate polynomials
is most easily accomplished using suitable univariate polynomials. A convenient ap-

proach is based on the univariate orthonormal polynomials {ψ(m)
j (ξm)}j∈N0 associated

with each of the probability densities ρm as weight functions, such that〈
ψ
(m)
i ψ

(m)
j

〉
=
(
ψ
(m)
i , ψ

(m)
j

)
L2

ρm
(Γm)

:=

∫
Γm

ψ
(m)
i (ξ)ψ

(m)
j (ξ)ρm(ξ) dξ = δi,j , i, j ∈ N0.

Proposition 1. Given p ∈ N0, the (possibly unbounded) intervals Γm = [am, bm]
as well as probability densities ρm supported on Γm, then the set of multivariate poly-
nomials

(2.8) Ψ := {ψα : α ∈ I }, ψα(ξ) :=

M∏
m=1

ψ(m)
αm

(ξm),

where {ψ(m)
j }pj=0 denote the first p + 1 orthonormal polynomials with respect to the

probability density ρm, form an orthonormal basis of Vp for I = Ip as well as of V C
p

for I = IC
p .

Proof. In view of

〈ψαψβ〉 =
M∏
m=1

(
ψ(m)
αm

, ψ
(m)
βm

)
L2

ρm
(Γm)

=

M∏
m=1

δαm,βm ,

orthonormality follows directly from that of the univariate polynomials. That the
polynomials (2.8) form a basis is seen by comparing dimensions.

Note that the fact that the ρm are probability densities implies that
(1, 1)L2

ρm
(Γm) = 1 for all m; hence the orthonormal polynomial of degree zero is

always ψ
(m)
0 (ξm) ≡ 1. Moreover, the assumption that each random variable has zero

mean and unit variance implies

(2.9) (1, ξm)L2
ρm

(Γm) = 〈ξm〉 = 0, (ξm, ξm)L2
ρm

(Γm) =
〈
ξ2m
〉
= 1,
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and therefore we must have ψ
(m)
1 (ξm) = ξm for all m.

The construction of the bases for Vp and V C
p in Proposition 1 is based on the

representation of random fields in terms of independent random variables ξ1, . . . , ξM .
A more general approach, which is beyond the scope of this paper, can be found
in [23], where the expansion of random fields is carried out in terms of statistically
dependent random variables. A further alternative approach which employs wavelet
bases in place of polynomials in random variables has been proposed by Le Mâıtre
et al. [16, 17].

2.3. Kronecker structure. To fix the matrix representation of the Gα, we
now introduce an enumeration of the basis polynomials, i.e., of the index sets Ip

and IC
p . We number the multi-indices (α1, . . . , αM ) ∈ Ip associated with the tensor

product polynomials lexicographically, with α1 varying the most rapidly. We derive
the ordering of the multi-indices (α1, . . . , αM ) ∈ IC

p associated with the complete
polynomials from that of the tensor product polynomials by simply deleting in the
former ordering all multi-indices in Ip \ I C

p . An example is given in Table 2.1.

Table 2.1

Enumeration of V C
p as derived from lexicographic ordering of Vp for the case M = 2, p = 3.

Note that the polynomials in Vp \ V C
p occur in contiguous blocks as α1 varies.

α = (α1, α2) ψα ∈ V C
3 ?

(0,0) ψ0(ξ1)ψ0(ξ2) �
(1,0) ψ1(ξ1)ψ0(ξ2) �
(2,0) ψ2(ξ1)ψ0(ξ2) �
(3,0) ψ3(ξ1)ψ0(ξ2) �
(0,1) ψ0(ξ1)ψ1(ξ2) �
(1,1) ψ1(ξ1)ψ1(ξ2) �
(2,1) ψ2(ξ1)ψ1(ξ2) �
(3,1) ψ3(ξ1)ψ1(ξ2) ×
(0,2) ψ0(ξ1)ψ2(ξ2) �
(1,2) ψ1(ξ1)ψ2(ξ2) �
(2,2) ψ2(ξ1)ψ2(ξ2) ×
(3,2) ψ3(ξ1)ψ2(ξ2) ×
(0,3) ψ0(ξ1)ψ3(ξ2) �
(1,3) ψ1(ξ1)ψ3(ξ2) ×
(2,3) ψ2(ξ1)ψ3(ξ2) ×
(3,3) ψ3(ξ1)ψ3(ξ2) ×

The Kronecker product structure of the Stochastic Galerkin matrices (2.6) follows
directly from definition (2.8) of the multivariate orthonormal basis polynomials and is
summarized below. Given the probability densities {ρm}Mm=1, the associated sequences

{ψ(m)
n } of orthonormal polynomials, and p ∈ N0, we denote by U

(m)
n the (p + 1) ×

(p+ 1) matrices

(2.10) [U (m)
n ]i,j :=

〈
ψ(m)
n ψ

(m)
i ψ

(m)
j

〉
, 1 ≤ m ≤M, 0 ≤ i, j ≤ p, n ∈ N0,

associated with each set of univariate polynomials.
Proposition 2. The Stochastic Galerkin matrices Gα in (2.6) for |α| > 0

obtained for the basis (2.8) of the tensor product polynomial space V = Vp are given by

(2.11) Gα = U (M)
αM

⊗ · · · ⊗ U (2)
α2

⊗ U (1)
α1
.
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For |α| = 0 we have Gα = IN . Moreover, for |α| = 1 with αm = 1 we obtain

(2.12) Gα = Gm = Ip+1 ⊗ · · · ⊗ Ip+1 ⊗ U
(m)
1 ⊗ Ip+1 ⊗ · · · ⊗ Ip+1,

in which the univariate matrix U
(m)
1 from (2.10) is the mth factor (from right to left)

of the Kronecker product.
Proof. Relation (2.11) follows from (2.6) due to the independence of the random

variables {ξm}Mm=1, as a result of which all integrals decouple to products of one-
dimensional integrals. The order of the Kronecker product in (2.11) results from
the lexicographic ordering we have fixed for the multi-index set Ip, in which α1

varies most rapidly. Relation (2.12) follows from the orthonormality of the univariate

polynomials ψ
(m)
j , as a result of which U

(m)
0 = Ip+1.

When passing from tensor product polynomials to the space of complete polyno-
mials V = V C

p , the matrices Gα lose their Kronecker product structure since V C
p —in

contrast to Vp—is not a tensor product space. One can, however, describe the matrix
structure in terms of the tensor product case by making use of the fact that, since the
multivariate polynomial basis (2.8) of V C

p is a subset of the corresponding basis of Vp,

the Stochastic Galerkin matrix Gα associated with V C
p is a principal submatrix of

that obtained for Vp.
The following characterization of the structure of the Stochastic Galerkin matrices

obtained for complete polynomials in the stochastically linear case generalizes a result
given in [21, Lemma 3.1].

Lemma 3. For the stochastically linear case, denote the Stochastic Galerkin
matrices obtained for the multivariate polynomial basis (2.8) of the space of complete
polynomials V C

p by GC
m, m = 0, 1, . . . ,M . Then

(a) GC
0 = IN ;

(b) for m = 1, . . . ,M each matrix GC
m is permutation-similar to a block diago-

nal matrix consisting of
(
M−1+p

p

)
diagonal blocks, each of which is a leading

principal submatrix of the univariate matrix U
(m)
1 given in (2.10). The first

block, and only this, contains the entire matrix U
(m)
1 .

Proof. Assertion (a) follows by orthonormality of the basis polynomials ψβ.
We next consider the case m = 1 and show that GC

1 is block diagonal with
blocks as described in assertion (b). Indeed, GC

1 is a principal submatrix of the
corresponding matrix G1 from the tensor product polynomial basis, which is block

diagonal (cf. (2.12)), with a diagonal block U
(1)
1 ∈ R

(p+1)×(p+1) repeated (p+ 1)M−1

times along the diagonal:

(2.13) G1 = Ip+1 ⊗ · · · ⊗ Ip+1 ⊗ U
(1)
1 = I(p+1)M−1 ⊗ U

(1)
1 .

We obtain GC
1 from G1 by deleting the rows and columns associated with multi-

indices in Ip \IC
p , i.e., to basis polynomials with total degree exceeding p. Note that

each diagonal block U
(1)
1 of (2.13) corresponds to a range of multi-indices (α1, α̃) ∈ Ip

with a fixed subindex α̃ ∈ N
m−1
0 and α1 ranging from 0 to p. We distinguish two

cases: if |α̃| > p, then all multi-indices of this block lie outside IC
p and therefore

all associated rows and columns of G1 are deleted. If, on the other hand, |α̃| ≤ p,
then the multi-indices (α1, α̃) with 0 ≤ α1 ≤ p− |α̃| are retained. According to the
ordering we have introduced for the basis polynomials of Vp and V C

p (cf. Table 2.1),
this is a contiguous set of rows and columns from the beginning of a diagonal block,

thus leaving a leading principal submatrix of U
(1)
1 in the corresponding diagonal block
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of GC
1 . In summary, in passing from G1 to GC

1 , some diagonal blocks are deleted
and those remaining are replaced by leading principal submatrices with order ranging
from 0 to p. Order p is obtained only for |α̃| = 0, i.e., the first block. The number
of remaining blocks is given by the number of multi-indices α̃ of length M − 1 such
that |α̃| ≤ p, which is

(
M−1+p

p

)
.

The remaining cases |α| = 1, αm = 1 with m > 1 follow by the same argument
after permuting Gm and GC

m in such a way that the multi-indices α1 and αm are
interchanged. This corresponds to a reordering of the basis polynomials resulting
from the exchange of the independent variables ξ1 and ξm.

2.4. Matrix entries. Since the Stochastic Galerkin matrices Gα are built up

from the univariate matrices U
(m)
n , consisting of Kronecker products (2.11) of these in

case of the tensor product polynomial space Vp and principal submatrices of these
in case of the complete polynomial space V C

p , analysis of their entries leads us to

investigate the matrices U
(m)
n , i.e., the triple products

(2.14)
〈
ψ(m)
n ψ

(m)
i ψ

(m)
j

〉
, 0 ≤ i, j ≤ p, m = 1, . . . ,M, n ∈ N0.

The product ψ
(m)
i ψ

(m)
j of two orthonormal polynomials from which the basis (2.8)

is constructed is a polynomial of exact degree i+ j. Therefore there exist coefficients

g
(m)
kij such that

(2.15) ψ
(m)
i ψ

(m)
j =

i+j∑
k=0

g
(m)
kij ψ

(m)
k .

By orthonormality we must have g
(m)
kij =

〈
ψ
(m)
k ψ

(m)
i ψ

(m)
j

〉
. In particular, g

(m)
kij = 0

whenever k > i+ j.

Proposition 4. The univariate Galerkin matrices U
(m)
n with respect to the or-

thonormal polynomials with degree ≤ p associated with the weight function ρm are
identically zero for n > 2p.

As a consequence of Proposition 4, the appropriate multi-index set Ia from which
the expansion of the input random field a is constructed in (2.1) is given by Ia = I2p

for the tensor product case (I = Ip) and Ia = I C
2p for complete polynomials

(I = I C
p ). For this choice one obtains the full Galerkin projection in (2.4) even

when the expansion of the input random field consists of an infinite number of terms.
This fact was, to the best of the authors’ knowledge, first observed by Matthies and
Keese in [19].

The task of computing the coefficients g
(m)
kij in (2.15) is known in the orthogonal

polynomials literature as the linearization of products problem; see [4, Lecture 5]. The
linearization coefficients for the orthonormal polynomials associated with common
probability density functions can be found in Appendix A, where several explicit
formulas for these coefficients are collected. We note that this problem has quite a
long history; see, e.g., [1, 9].

We single out the special case of the univariate matrices (2.10) obtained for n = 1,
namely

[U
(m)
1 ]i,j =

〈
ξψ

(m)
i (ξ)ψ

(m)
j (ξ)

〉
=

∫
Γm

ξ ψ
(m)
i (ξ)ψ

(m)
j (ξ) ρm(ξ) dξ, 0 ≤ i, j,≤ p.
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From the well-known three-term recurrence satisfied by real orthonormal polynomials

(2.16)
√
βj+1ψj+1(ξ) = (ξ − αj)ψj(ξ)−

√
βjψj−1(ξ), j = 0, 1, . . . , ψ−1 ≡ 0,

(see, e.g., [11, Definition 1.30 and Theorem 1.27]), where we have omitted the super-
script (m), we observe that

(2.17) U
(m)
1 =

⎡⎢⎢⎢⎢⎣
α0

√
β1

√
β1 α1

. . .

. . .
. . .

√
βp√

βp αp

⎤⎥⎥⎥⎥⎦
is the Jacobi matrix of recurrence coefficients of the orthonormal polynomials associ-
ated with the weight function ρm. It is, in particular, well known that the coefficients√
βj are positive numbers and that the eigenvalues of U

(m)
1 are the distinct real zeros

of the orthonormal polynomial of degree p + 1 associated with weight function ρm.
Moreover, these zeros are contained in the support of ρm.

3. Diagonalization in the stochastically linear case. When Stochas-
tic Galerkin discretizations are applied to PDEs with random data (see, e.g.,
[13, 24, 5, 19]), the N stochastic degrees of freedom are coupled in a tensor product
fashion to, say, Nx deterministic degrees of freedom, resulting in global stochastic-
deterministic Galerkin matrices of potentially very large dimension Nx ·N . Since the
solution process entails solving linear systems of equations with this coefficient ma-
trix, decoupling these equations will result in substantial computational savings. For
the stochastically linear case (2.7) with tensor product polynomials, a change of basis
under which the Stochastic Galerkin matrices become diagonal was introduced in [5,
section 7]. In coupled stochastic-deterministic formulations this results in block diag-
onal coefficient matrices, each block being of the size of one deterministic problem,
which is reminiscent of Monte-Carlo simulation.

In this section we recall the diagonalizing change of basis, give a simplification for
the eigenvalue calculations involved in its construction, and show that diagonalization
is not possible for complete polynomial spaces. Throughout this section we consider
only the stochastically linear case and employ the notation Gm, m = 0, 1, . . . ,M ,
introduced in (2.7).

To diagonalize the matrices Gm we pass from the orthonormal basis Ψ given in
(2.8) to a new basis Ψ̂ of Vp or V C

p , respectively, and denote the resulting Stochastic

Galerkin matrices by Ĝm,m = 0, . . . ,M . In order that Ĝ0, which is just the Gramian
matrix of Ψ̂ with respect to the L2

ρ(Γ)-inner product, be diagonal, we see that Ψ̂ must
again consist of orthogonal multivariate polynomials, and we again take them to
be normalized. Denoting by Ψ = [ψ1, ψ2, . . . , ψN ] and Ψ̂ = [ψ̂1, ψ̂2, . . . , ψ̂N ] the basis
functions arranged as row vectors , the change of basis between the orthonormal bases
Ψ and Ψ̂ is effected by an orthogonal matrix V ∈ R

N×N such that Ψ̂ = ΨV . As a
result, the Stochastic Galerkin matrices of the two bases are related by

(3.1) Ĝm = V�GmV , m = 0, 1, . . . ,M.

We thus arrive at the problem of finding an orthogonal matrixV which simultaneously
diagonalizes the matrices {Gm}Mm=0, a task known as simultaneous diagonalization
by orthogonal congruence; see [14, section 4.5]. Since (3.1) represents a spectral
decomposition, this problem is equivalent to finding a common system of orthogonal
eigenvectors of the matrices Gm.
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3.1. Tensor product polynomials. For the tensor product polynomial space
Vp with basis (2.8) it is apparent from the structure of the matrices Gm as given in
(2.12) that the matrix

(3.2) V = VM ⊗ VM−1 ⊗ · · · ⊗ V1

simultaneously diagonalizes all matrices Gm if and only if the m orthogonal matrices
{Vm}Mm=1 satisfy

(3.3) U
(m)
1 Vm = VmΛm, m = 1, . . . ,M,

with diagonal matrices {Λm}Mm=1, i.e., if the columns of Vm are the orthonormal

eigenvectors of U
(m)
1 . From their definition in (2.10) the matrices U

(m)
1 are given by

[U
(m)
1 ]i,j =

〈
ξmψ

(m)
i ψ

(m)
j

〉
, i, j = 0, 1, . . . , p, m = 1, . . . ,M.

In other words, for each of the M random variables ξ1, . . . , ξM we seek a set of poly-

nomials {ψ̂(m)
j }pj=0 of degree p with the properties〈

ψ̂
(m)
i ψ̂

(m)
j

〉
=

∫
Γm

ψ̂
(m)
i (ξ) ψ̂

(m)
j (ξ) ρm(ξ) dξ = δi,j ,(3.4a)

〈
ξψ̂

(m)
i ψ̂

(m)
j

〉
=

∫
Γm

ψ̂
(m)
i (ξ) ψ̂

(m)
j (ξ) ξ ρm(ξ) dξ = δi,jλ

(m)
i(3.4b)

for i, j = 0, . . . , p andm = 1, . . . ,M . In [5] Babuška, Tempone, and Zouraris suggested
the name double-orthogonal polynomials for polynomials satisfying (3.4), since they
are simultaneously orthogonal with respect to the “weight functions” w(ξ) = ρm(ξ)
and w(ξ) = ξρm(ξ).

To compute such double-orthogonal polynomials in general, an immediate ap-
proach is to represent the polynomials with respect to the monomial basis {1, ξ, . . . , ξp},
such that (dropping the superscripts and subscripts referring to m for now)

[ψ̂0, ψ̂1, . . . , ψ̂p] = [1, ξ, . . . , ξp]V.

Inserting this representation into (3.4) reveals that V is the solution of the generalized
eigenvalue problem

M1V =M0V Λ

in terms of the moment matrices

[M0]i,j =
〈
ξi+j

〉
, [M1]i,j =

〈
ξi+j+1

〉
, i, j = 0, 1, . . . , p.

A simpler (standard) eigenvalue problem is obtained if we start from the basis of
orthonormal polynomials {ψj}pj=0 instead of the monomials. In this case the moment
matrix is replaced with the Gramian matrix of this basis, i.e., the identity and the
matrix M1 is replaced by the matrix

U1 = [〈ξψi(ξ)ψj(ξ)〉]pi,j=0,

which we identified in (2.17) as the symmetric tridiagonal Jacobi matrix associated
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with the weight function ρ.
In summary, constructing the double-orthogonal polynomial basis Ψ̂ of Vp requires

only the Jacobi matrices U
(m)
1 up to degree p for each of the probability density

functions ρm, m = 1, 2, . . . ,M , or, equivalently, the coefficients {αj, βj}pj=0 for the
three-term recurrence of the orthogonal polynomials generated by ρm. These can
be obtained either from the literature or generated using the well-known Stieltjes
procedure, the polynomial equivalent of the Lanczos process. The columns of the
matrices Vm in (3.2) and (3.3) are then obtained as the normalized eigenvectors of

the Jacobi matrices U
(m)
1 with the corresponding eigenvalues forming the diagonal of

the matrices Λm in (3.3).
Theorem 5. For the space of tensor product polynomials Vp, the Stochastic

Galerkin matrices {Gm}Mm=0 are simultaneously diagonalized by the Hermitian matrix
V = VM ⊗ Vm−1 ⊗ · · · ⊗ V1 in (3.2), the Kronecker factors of which contain the

orthonormal eigenvectors of the univariate matrices U
(m)
1 , resulting in theM diagonal

matrices

Ĝm = V�GmV = Ip+1 ⊗ · · · ⊗ Ip+1 ⊗ Λm ⊗ Ip+1 ⊗ · · · ⊗ Ip+1, m = 1, 2, . . . ,M,

as well as Ĝ0 = I . The diagonal matrices Λm contain the eigenvalues of the matrices

U
(m)
1 , respectively, i.e., the zeros of the orthogonal polynomial of degree p+ 1 associ-

ated with the weight function ρm. The matrix V effects a change of basis from the
orthogonal polynomials {ψj}pj=0 to the basis of double-orthogonal polynomials {ψ̂j}pj=0

satisfying (3.4).
We note that the same argument also applies when different polynomial degrees

pm are used in each random variable and emphasize that each random variable may
have a different probability density ρm. Moreover, the distributions need not possess a

density function; all that is needed is the recurrence coefficients {α(m)
j , β

(m)
j }pmj=0, i.e.,

the existence of the distribution’s moments. What is crucial to the diagonalization is
the tensor product structure of the polynomial space, which is a direct consequence
of the independence of the random variables ξm.

3.2. Complete polynomials. Turning now to the space V C
p of complete poly-

nomials, we assume M > 1 and p > 0 to avoid trivial cases.
Lemma 6. For the stochastically linear case with M > 1 random variables and

polynomial degree p ≥ 1, the Stochastic Galerkin matrices {GC
m}Mm=1 associated with

the space of complete polynomials V C
p are singular.

Proof. For each of the matrices {GC
m}Mm=1, we find a nonzero basis function which

is mapped to zero by the operator represented by GC
m.

For each fixed m, our assumptions M > 1 and p > 0 imply that the polynomial
basis Ψ in (2.8) contains at least one polynomial

ψ(ξ) = ψ(k)
p (ξk), k �= m

of exact degree p depending only on the kth random variable ξk. When applied to ψ,
the multiplication operator associated with GC

m yields the orthogonal projection of
the polynomial ξmψ(ξ) onto V C

p . We verify that ξmψ(ξ) is orthogonal to V C
p . Indeed,
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for any basis polynomial ψα,α ∈ IC
p , we obtain

〈ξmψ(ξ)ψα(ξ)〉 =
〈
ξmψ

(k)
p (ξk)

M∏
�=1

ψ(�)
α�

(ξ�)

〉

=
〈
ξmψ

(m)
αm

(ξm)
〉〈

ψ(k)
p (ξk)ψ

(k)
αk

(ξk)
〉 M∏

�=1
� �=m,k

〈
ψ(�)
α�

(ξ�)
〉

and assert that one of the first two factors on the right-hand side of the last equality
must vanish. Otherwise, a nonzero first factor implies αm = 1, and for the second
factor not to vanish it is necessary that αk = p, which together imply |α| ≥ p+ 1, a
contradiction to ψα ∈ V C

p .
Theorem 7. For the stochastically linear case with M > 1 random variables and

polynomial degree p ≥ 1, the Stochastic Galerkin matrices {GC
m}Mm=0 associated with

the space of complete polynomials V C
p are not simultaneously diagonalizable.

Proof. In the proof of Lemma 6 it was shown that for each matrix GC
m there exists

an index k �= m such that ψ
(k)
p lies in the null space of the operator represented by

GC
m, i.e., ψ

(k)
p is an eigenfunction associated with eigenvalue zero. We show that this

polynomial is not an eigenfunction of the operator represented by GC
k , a necessary

condition for simultaneous diagonalizability.
Otherwise, we would have〈

ξk ψ
(k)
p (ξk)ψα(ξ)

〉
= λ

〈
ψ(k)
p (ξk)ψα(ξ)

〉
∀ψα ∈ Ψ.

In particular, choosing ψα = ψ
(k)
p−1, we obtain〈

ξk ψ
(k)
p (ξk)ψ

(k)
p−1(ξk)

〉
= λ

〈
ψ(k)
p (ξk)ψ

(k)
p−1(ξk)

〉
= 0

by orthogonality of ψ
(k)
p−1 and ψ

(k)
p . The term on the left-hand side, however, is just

the last entry on the first subdiagonal of the Jacobi matrix U
(k)
1 associated with the

orthonormal polynomials generated by the weight function ρk. Since this quantity
is always positive (see [11, Definition 1.30 and Theorem 1.27]), we have arrived at a
contradiction.

Many authors use the space of complete polynomials Vp for the stochastic dis-
cretization (see, e.g., [13, 19, 22, 21]) to avoid the so-called curse of dimensionality
since the number of degrees of freedom in Vp grows exponentially with the number of
random variables M in contrast to V C

p where this growth is only algebraic (cf. (2.3)).
On the other hand, Theorem 7 shows that an uncoupling of the equations is not pos-
sible for this smaller space. By consequence, in Stochastic Galerkin discretizations of
coupled deterministic-stochastic problems, using the smaller space of complete poly-
nomials of degree p requires the solution of large linear systems of equations in which
several instances of the deterministic problem are coupled; see [12, 20, 21, 10, 8] for
methods for solving the fully coupled system.

4. Eigenvalues of Stochastic Galerkin matrices. In this section we present
eigenvalue location results for Stochastic Galerkin matrices. Such results, besides
being of interest in their own right, are necessary in the analysis of preconditioning
schemes for Stochastic Galerkin discretizations (cf. [21, 10, 8]).
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4.1. Tensor product polynomials. We begin with the simpler situation of ten-
sor product polynomials. The Kronecker product structure of the Stochastic Galerkin
matrices in this case immediately yields the following eigenvalue bounds.

Theorem 8. The eigenvalues of the Stochastic Galerkin matrices Gα for the
space Vp of tensor product polynomials are given by

(4.1) Λ(Gα) =

{
M∏
m=1

λ(m) : λ(m) ∈ Λ(U (m)
αm

)

}
, α = (α1, . . . , αM ) ∈ I2p.

Proof. Assertion (4.1) follows from the well-known expression for the eigenvalues
of a Kronecker product (2.11), as can be found, e.g., in [15, Theorem 4.2.12].

Corollary 9. In the stochastically linear case the eigenvalues of the Stochastic
Galerkin matrices {Gm}Mm=1 obtained for the space of tensor product polynomials Vp
are given by

Λ(Gm) = Λ(U
(m)
1 ), m = 1, . . . ,M.

In other words, the eigenvalues consist of the roots of the orthogonal polynomial of
degree p+ 1 generated by the weight function ρm.

Proof. This follows immediately from (2.12) and the discussion at the end of
section 2.

In the stochastically nonlinear case, a complete characterization of the eigenvalues

of the matrices Gα requires the eigenvalues of the matrices U
(m)
n associated with the

univariate weight function ρm for n ≥ 2. Some first results on this topic are presented
in section 4.4. In general, however, the complete information on the eigenvalues
of these matrices is not available. We therefore show how inclusion bounds on the
spectrum of the Stochastic Galerkin matrices may be obtained with the help of suitable
Gaussian quadrature rules.

To this end, let (ηm,i, wm,i)
δm
i=1 denote the nodes and weights, respectively, of the

δm-point Gaussian quadrature rule associated with the probability density function
ρm, m = 1, . . . ,M . That is,

〈ψ〉 =
∫
Γm

ψ(ξ) ρm(ξ) dξ ≈
δm∑
i=1

ψ(m)(ηm,i)wm,i.

Each quadrature rule above is exact for polynomials ψ ∈ span{1, ξ, . . . , ξ2δm−1}. Fur-
thermore, we define the tensor product grid of quadrature nodes,

(4.2) Ξδ :=
M×
m=1

{ηm,1, ηm,2, . . . , ηm,δm},

in which the components δm of the multi-index δ ∈ N
M
0 denote the number of nodes

in the mth quadrature rule.
Theorem 10. The eigenvalues of the Stochastic Galerkin matrices Gα for the

space Vp of tensor product polynomials with the basis {ψα} introduced in (2.8) are
bounded by Λ(Gα) ⊂ [θα,Θα], where

(4.3) θα := min{ψα(η) : η ∈ Ξδ}, Θα := max{ψα(η) : η ∈ Ξδ}, α ∈ I2p,

where Ξδ is an M -dimensional grid of quadrature nodes as defined in (4.2), in which
the number of nodes in the mth rule is at least δm := p+

⌈
αm+1

2

⌉
, m = 1, . . . ,M .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1860 OLIVER G. ERNST AND ELISABETH ULLMANN

Proof. Since the Stochastic Galerkin matrices Gα, α ∈ I2p, are symmetric, the
largest eigenvalue of Gα satisfies

λmax(Gα) = max
v∈R

Np\{0}
v�Gαv

v�v
= max

ψ∈Vp\{0}

〈
ψαψ

2
〉

〈ψ2〉 = max

∑
β,γ∈Ip

cβcγ 〈ψαψβψγ〉∑
β,γ∈Ip

cβcγ 〈ψβψγ〉

= max

∑
β,γ∈Ip

cβcγ
∏M
m=1

∑ιm
i=1 ψ

(m)
αm (ηm,i)ψ

(m)
βm

(ηm,i)ψ
(m)
γm (ηm,i)wm,i∑

β,γ∈Ip
cβcγ

∏M
m=1

∑ιm
i=1 ψ

(m)
βm

(ηm,i)ψ
(m)
γm (ηm,i)wm,i

for 2ιm− 1 ≥ αm+2p, or, equivalently, ιm ≥ p+
⌈
αm+1

2

⌉
, m = 1, . . . ,M . In addition,

the numerator in the last expression above can be estimated as follows:∑
β,γ∈Ip

cβcγ
∏M
m=1

∑ιm
i=1 ψ

(m)
αm (ηm,i)ψ

(m)
βm

(ηm,i)ψ
(m)
γm (ηm,i)wm,i

≤max
{∏M

m=1 ψ
(m)
αm (ηm,i) : i = 1, . . . , ιm, m = 1, . . . ,M

}
×∑β,γ∈Ip

cβcγ
∏M
m=1

∑ιm
i=1 ψ

(m)
βm

(ηm,i)ψ
(m)
γm (ηm,i)wm,i.

Thus, defining the multi-index δ ∈ N
M
0 with δm := p +

⌈
αm+1

2

⌉
, m = 1, . . . ,M , we

obtain the desired result for the largest eigenvalue of Gα:

λmax(Gα) ≤ max
{∏M

m=1 ψ
(m)
αm (ηm,i) : i = 1, . . . , δm, m = 1, . . . ,M

}
= max {ψα(η) : η ∈ Ξδ} .

The lower bound for the smallest eigenvalue of Gα follows analogously.
Corollary 11. In the stochastically linear case, the inclusion bound in (4.3) is

sharp.
Proof. For |α| = 1, αm = 1, we have δm = p+ 1, m = 1, . . . ,M , in Theorem 10.

Noting that ψα(ξ) = ψ(m)(ξm) = ξm, the spectral bounds for Gα in (4.3) read

θα = min
i=1,...,p+1

{ηm,i} , Θα = max
i=1,...,p+1

{ηm,i} .

Finally, since the quadrature nodes ηm,i, i = 1, . . . , p + 1, are the zeros of ψ
(m)
p+1, the

assertion follows from Corollary 9.

4.2. Complete polynomials. For the complete polynomial spaces V C
p , the

eigenvalues of the associated Stochastic Galerkin matrices GC
α may be bounded by

those of their tensor product polynomial counterparts.
Corollary 12. The eigenvalues of the Stochastic Galerkin matrices GC

α for the
space V C

p of complete polynomials are bounded by

(4.4) Λ(GC
α ) ⊂ [λmin(Gα), λmax(Gα)], α ∈ IC

2p,

where for each multi-index α ∈ I C
2p the matrix Gα = [〈ψαψβψγ〉]β,γ∈Ip

denotes the
Stochastic Galerkin matrix with the same multi-index α where the polynomials ψβ

and ψγ vary over Vp rather than the smaller space V C
p .

Proof. The inclusion (4.4) follows by a Rayleigh quotient argument because
for each α ∈ IC

2p the matrix GC
α is a principal submatrix of Gα (see [14, Theo-

rem 4.3.15]).
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Corollary 13. The eigenvalues of the Stochastic Galerkin matrices GC
α for the

space V C
p of complete polynomials are bounded by

Λ(GC
α ) ⊂ [θα,Θα], α ∈ IC

2p,

where θα and Θα are defined in (4.3).
Proof. This follows from Corollary 12 and Theorem 10.
In the stochastically linear case for complete polynomials we can characterize the

eigenvalues completely. (See also [21, Lemma 3.1] for the same observation in a more
restricted context.)

Theorem 14. In the stochastically linear case the eigenvalues of the Stochastic
Galerkin matrices {GC

m}Mm=1 for the space V C
p of complete polynomials are given by

(4.5) Λ(GC
m) =

p+1⋃
j=1

Λ(U
(m)
1,j ),

where U
(m)
1,j denotes the jth leading principal submatrix of the Jacobi matrix U

(m)
1 ∈

R
(p+1)×(p+1) associated with the weight function ρm. In other words, the eigenvalues

of GC
m consist of the union of all zeros of the orthonormal polynomials {ψ(m)

j }p+1
j=1

generated by the weight function ρm.
Proof. This assertion follows from the fact that, as shown in the proof of Lemma 3,

the matrices GC
m are permutation-similar to a block diagonal matrix whose diagonal

blocks are Jacobi matrices of dimension 1, 2, . . . , p + 1 associated with the orthonor-
mal polynomials generated by the weight function ρm, where all Jacobi matrices
occur.

Corollary 15. In the stochastically linear case the inclusion bound (4.4) is
sharp.

Proof. This follows from Theorem 14 and the interlacing property of the zeros of
real orthogonal polynomials (cf. [11, Theorem 1.20]).

4.3. Even weight functions and the multivariate case. We shall assume
throughout the remainder of this section that the weight functions ρm, and therefore
also their product, are even functions of ξ, i.e., that

(4.6) ρm(−ξm) = ρm(ξm) ∀ ξm ∈ Γm.

In the primary case of interest where the weight functions ρm are probability density
functions, (4.6) is satisfied for many commonly occurring probability distributions,
notably the centered Gaussian distribution as well as a centered uniform distribution.

Proposition 16. For even weight functions the associated multivariate orthonor-
mal basis polynomials ψα in (2.8) are even or odd functions according to whether their
total degree |α| is even or odd, respectively, i.e., there holds

(4.7) ψα(ξ) = (−1)|α|ψα(−ξ) ∀α ∈ N
M
0 .

Proof. In [11, Theorem 1.17] this relation is established for monic univariate
orthogonal polynomials. After normalization we have

ψ
(m)
j (ξm) = (−1)jψ

(m)
j (−ξm), j ≥ 0, m = 1, . . . ,M.
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Hence, for the multivariate orthonormal polynomials in (2.8) we obtain

ψα(ξ) =
M∏
m=1

ψ(m)
αm

(ξm) =
M∏
m=1

(−1)αmψ(m)
αm

(−ξm) = (−1)|α|ψα(−ξ).

Proposition 17. For even weight functions the entries of the Stochastic Galerkin
matrices Gα satisfy the relation

(4.8) 〈ψαψβψγ〉 = (−1)|α|+|β|+|γ| 〈ψαψβψγ〉 .

Proof. Relation (4.8) follows from (4.7) by substituting −ξm for ξm in the M
integrals into which 〈ψαψβψγ〉 decouples.

For multi-indices α of odd degree the symmetry property (4.7) of the basis poly-
nomials results in a symmetric spectrum for Gα.

Theorem 18. For even weight functions the eigenvalues of the Stochastic Galerkin
matrices Gα lie symmetric with respect to the origin.

Proof. To show that λ ∈ Λ(Gα) implies −λ ∈ Λ(Gα), denote by [v ]β , β ∈ I ,
where I denotes either Ip or I C

p , the components of the eigenvector v associated
with an eigenvalue λ. Setting ṽ to be the vector obtained by replacing the component
[v ]β of v with (−1)|β|[v ]β, there holds

[Gαṽ ]β =
∑
γ∈I

〈ψαψβψγ〉 [ṽ ]γ =
∑
γ∈I

(−1)|α|+|β|+|γ| 〈ψαψβψγ〉 (−1)|γ|[v ]γ

= (−1)|α|+|β| λ[v ]β = −λ[ṽ ]β.

4.4. Even weight functions and the univariate case. In the remainder of
this section we present some first results on the eigenvalues of the Stochastic Galerkin

matrices in the univariate case, i.e., the matrices U
(m)
n . For clarity of presentation,

we omit the superscript (m). Note that, for typographical reasons, we shall represent
finite sequences of orthogonal polynomials as column vectors in this section. Since all
matrices of recurrence coefficients are symmetric this should not cause confusion.

We first recall that for even weight functions the diagonal recurrence coefficients
αk in (2.16) and (2.17) vanish, i.e., the three-term recurrence (2.16) simplifies to

(4.9)
√
βk+1ψk+1(ξ) = ξψk(ξ) −

√
βkψk−1(ξ), k = 0, 1, . . . , ψ−1 ≡ 0,

and the associated tridiagonal Jacobi matrices U1 have a vanishing diagonal.
The connection of eigenvalues of the matrices U1 =: U1,p ∈ R

(p+1)×(p+1) to the
zeros of ψp+1 is revealed by collecting the recurrence relations (4.9) for k = 0, 1, . . . , p,
yielding

(4.10) ξ

⎡⎢⎢⎢⎢⎢⎣
ψ0(ξ)
ψ1(ξ)

...
ψp−1(ξ)
ψp(ξ)

⎤⎥⎥⎥⎥⎥⎦ = U1,p

⎡⎢⎢⎢⎢⎢⎣
ψ0(ξ)
ψ1(ξ)

...
ψp−1(ξ)
ψp(ξ)

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
0
0
...
0√

βp+1ψp+1(ξ)

⎤⎥⎥⎥⎥⎥⎦ .

For each of the p+ 1 distinct zeros {μp+1,�}p+1
�=1 of ψp+1, setting ξ = μp+1,� in (4.10)

represents an eigenvalue-eigenvector relation for the matrix U1,p.
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To determine the eigenvalues of the matrices U2,p, we first establish a recurrence
relation similar to (4.9) for the product ψ2ψk.

Lemma 19. For even weight functions the polynomial sequence {ψ2ψk}k≥0 satis-
fies the five-term recurrence

ψ2ψk = c2
√
βk+2βk+1ψk+2 + [c2(βk+1 + βk) + c0]ψk

+ c2
√
βkβk−1ψk−2, k = 0, 1, 2, . . . ,

(4.11)

where ψ2(ξ) = c2ξ
2 + c0, and ψk(ξ) ≡ 0 for k = −1,−2.

Proof. Recalling from the proof of Proposition 16 that the orthonormal polyno-
mial ψ2 is an even function, we may factor it as

(4.12) ψ2(ξ) = c2(ξ − λ)(ξ + λ),

where λ denotes the positive root. From the recurrence relation (4.9) we deduce

(ξ + λ)ψk(ξ) =
√
βk+1ψk+1(ξ) + λψk(ξ) +

√
βkψk−1(ξ),(4.13)

(ξ − λ)ψk(ξ) =
√
βk+1ψk+1(ξ)− λψk(ξ) +

√
βkψk−1(ξ).(4.14)

Utilizing (4.12) together with (4.13) and (4.14), we obtain

ψ2(ξ)ψk(ξ) = c2(ξ − λ)(ξ + λ)ψk(ξ)

= c2(ξ − λ)
(√

βk+1ψk+1(ξ) + λψk(ξ) +
√
βkψk−1(ξ)

)
= c2

√
βk+1

(√
βk+2ψk+2(ξ)− λψk+1(ξ) +

√
βk+1ψk(ξ)

)
+ c2λ

(√
βk+1ψk+1(ξ)− λψk(ξ) +

√
βkψk−1(ξ)

)
+ c2

√
βk

(√
βkψk(ξ) − λψk−1(ξ) +

√
βk−1ψk−2(ξ)

)
= c2

√
βk+2βk+1ψk+2(ξ) + c2(βk+1 + βk − λ2)ψk(ξ) + c2

√
βkβk−1ψk−2(ξ).

Substituting c0 = ψ2(0) = −c2λ2 establishes (4.11).
Collecting the five-term recurrence (4.11) for k = 0, 1, . . . , p in a manner analogous

to (4.10) now yields

ψ2(ξ)

⎡⎢⎢⎢⎢⎢⎣
ψ0(ξ)
ψ1(ξ)

...
ψp−1(ξ)
ψp(ξ)

⎤⎥⎥⎥⎥⎥⎦ = U2,p

⎡⎢⎢⎢⎢⎢⎣
ψ0(ξ)
ψ1(ξ)

...
ψp−1(ξ)
ψp(ξ)

⎤⎥⎥⎥⎥⎥⎦+

⎡⎢⎢⎢⎢⎢⎣
0
...
0

c2
√
βp+1βpψp+1(ξ)

c2
√
βp+2βp+1ψp+2(ξ)

⎤⎥⎥⎥⎥⎥⎦ .

To obtain an eigenvalue-eigenvector relation it is necessary that both the last two
entries vanish in the last vector on the right-hand side for some values of ξ. By the
interlacing property of real orthogonal polynomials, however, it follows that ψp+1 and
ψp+2 have no common zeros. However, if the basis polynomials are ordered in an
odd-even fashion, i.e.,

ψ0(ξ), ψ2(ξ), ψ4(ξ), . . . , ψp(ξ), ψ1(ξ), ψ3(ξ), . . . , ψp−1(ξ),
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assuming p is even, the following block 2× 2 structure emerges:

(4.15) ψ2(ξ)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0(ξ)
ψ2(ξ)

...
ψp(ξ)
ψ1(ξ)
ψ3(ξ)

...
ψp−1(ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
U even
2,p O
O Uodd

2,p

]
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ψ0(ξ)
ψ2(ξ)

...
ψp(ξ)
ψ1(ξ)
ψ3(ξ)

...
ψp−1(ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

c2
√
βp+2βp+1ψp+2(ξ)

0
...
0

c2
√
βp+1βpψp+1(ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The reordered matrix U2,p is block diagonal because the recurrence (4.11) only couples
polynomials of even index with polynomials with even index, as well as odd with odd,
respectively. The block diagonal structure in (4.15) now reveals that the eigenvalues of
U2,p are those of U

even
2,p together with those of Uodd

2,p . These are obtained by considering
the two uncoupled recurrences

ψ2(ξ)

⎡⎢⎢⎢⎣
ψ0(ξ)
ψ2(ξ)

...
ψp(ξ)

⎤⎥⎥⎥⎦ = U even
2,p

⎡⎢⎢⎢⎣
ψ0(ξ)
ψ2(ξ)

...
ψp(ξ)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0
...
0

c2
√
βp+2βp+1ψp+2(ξ)

⎤⎥⎥⎥⎦
and

ψ2(ξ)

⎡⎢⎢⎢⎣
ψ1(ξ)
ψ3(ξ)

...
ψp−1(ξ)

⎤⎥⎥⎥⎦ = Uodd
2,p

⎡⎢⎢⎢⎣
ψ1(ξ)
ψ3(ξ)

...
ψp−1(ξ)

⎤⎥⎥⎥⎦+

⎡⎢⎢⎢⎣
0
...
0

c2
√
βp+1βpψp+1(ξ)

⎤⎥⎥⎥⎦ .
Turning to the first, we observe that ψp+2 has p + 2 roots which lie symmetrically
about the origin. In view of the fact that ψ2(ξ) is an even function of ξ, we conclude
that all eigenvalues of U even

2,p are obtained by inserting the positive roots of ψp+2

into ψ2. Analogously, in the odd recurrences we obtain the eigenvalues of Uodd
2,p by

inserting the positive roots of ψp+1 into ψ2.
Noting that the case of p odd works in an analogous manner, we summarize our

findings in the following theorem.
Theorem 20.

(a) In case p = 2k, k ∈ N0, assuming even weight functions, the eigenvalues of
the univariate Stochastic Galerkin matrix U2,p are given by

Λ(U2,p) = {ψ2(μp+2,�)}k+1
�=1 ∪ {ψ2(μp+1,�)}k�=1 ,

where {μp+2,�}k+1
�=1 denote the k + 1 positive roots of ψp+2, and {μp+1,�}k�=1

denote the k positive roots of ψp+1.
(b) In case p = 2k + 1, k ∈ N0, assuming even weight functions, the eigenvalues

of U2,p are given by

Λ(U2,p) = {ψ2(μp+2,�)}k+1
�=1 ∪ {ψ2(μp+1,�)}k+1

�=1 ,

where {μp+2,�}k+1
�=1 denote the k + 1 positive roots of ψp+2, and {μp+1,�}k+1

�=1
denote the k + 1 positive roots of ψp+1.
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Corollary 21. Assuming even weight functions, the upper inclusion bound in
(4.3) for the univariate Stochastic Galerkin matrix U2,p is sharp.

Proof. For M = 1 and α = (2) we have δ = (p+2) in Theorem 10. Thus, for the
matrix U2,p, the upper spectral bound in (4.3) reads Θα = max {ψ2(η) : ψp+2(η) = 0}.
The assertion follows from Theorem 20 and the interlacing property of the zeros of
real orthogonal polynomials (cf. [11, Theorem 1.20]).

Can we proceed in the same way in order to compute the eigenvalues of the
next matrix in turn, i.e., the Stochastic Galerkin matrix U3,p? Following the lines
of the proof of Lemma 19, it is easy to establish a seven-term recurrence relation for
the product ψ3ψk. In fact, as we will see in the proof of Lemma 23, the product
ψnψk of any two orthonormal polynomials generated by an even weight function can
be expressed in terms of the polynomials ψ�, with degree � satisfying the relation
|n− k| ≤ � ≤ n+ k and n+ k+ � is an even integer. Thus, the product ψnψk satisfies
a (2n+ 1)-term recurrence relation.

Lemma 22. For even weight functions the polynomial sequence {ψ3ψk}k≥0 satis-
fies the seven-term recurrence relation

ψ3(ξ)ψk(ξ) = c3
√
βk+3βk+2βk+1ψk+3(ξ) + c3

√
βkβk−1βk−2ψk−3(ξ)

+ (c3(βk+2 + βk+1 + βk) + c1)ψk+1(ξ)

+ (c3(βk+1 + βk + βk−1) + c1)ψk−1(ξ), k = 0, 1, 2, . . . ,

(4.16)

where ψ3(ξ) = c3ξ
3 + c1ξ, and ψk(ξ) ≡ 0 for k = −1,−2,−3.

We omit the technical proof and utilize the recurrence relation (4.16) in the by
now well-established way:

(4.17) ψ3(ξ)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ0(ξ)
ψ1(ξ)

...
ψp−2(ξ)
ψp−1(ξ)
ψp(ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= U3,p

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ψ0(ξ)
ψ1(ξ)

...
ψp−2(ξ)
ψp−1(ξ)
ψp(ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
...
0

c3
√
βp+1βpβp−1ψp+1(ξ)

c3
√
βp+2βp+1βpψp+2(ξ)

c3
√
βp+3βp+2βp+1ψp+3(ξ) + r(ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

where r(ξ) = (c3(βp+2 + βp+1 + βp) + c1)ψp+1(ξ). To answer the question above, it is
not obvious in which way, if at all, one could use the matrix equation (4.17) for the
eigenvalue computation of U3,p. The idea of reordering, which was applied successfully
for the eigenvalue computation of U2,p, does not lead to a decoupling of the matrix
U3,p, resulting instead in a block antidiagonal matrix. Moreover, when using (4.17),
we assume the eigenvectors of U3,p to have a special structure, an approach which
might be misleading.

5. Sparsity of Stochastic Galerkin matrices. In this section we investigate
the sparsity pattern of the Stochastic Galerkin matrices Gα in (2.6), where we assume
even probability density functions ρm; see (4.6). In particular, we derive upper bounds
on the number of nonzero entries of the univariate Stochastic Galerkin matrices Un in
(2.10), and of the matrices Gα where |α| = 1 for the space of complete polynomials
V = V C

p . Information on the sparsity pattern is useful for the efficient implementation
of matrix-vector multiplication with Stochastic Galerkin matrices.

5.1. The univariate case. We first specialize the linearization formula (2.15)
for even weight functions. Again we omit the sub- and superscripts m which distin-
guish the random variables and weight functions.
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Lemma 23. The product of any two orthonormal polynomials ψi and ψj associated
with an even weight function has the representation

(5.1) ψi(ξ)ψj(ξ) =

i+j∑
k=|i−j|,

i+j+k is even

gkij ψk(ξ).

Proof. Following an idea given by Markett [18, section 1], we deduce a recurrence
relation for the product ψiψj utilizing the reordered three-term recurrence relation in
(4.9):

0 = ξψi(ξ)ψj(ξ)− ξψj(ξ)ψi(ξ)

=
√
βiψi−1(ξ)ψj(ξ) +

√
βi+1ψi+1(ξ)ψj(ξ)

−√
βjψj−1(ξ)ψi(ξ)−

√
βj+1ψj+1(ξ)ψi(ξ);

hence

(5.2) ψiψj =

√
βi√
βj
ψi−1ψj−1 +

√
βi+1√
βj

ψi+1ψj−1 −
√
βj−1√
βj

ψiψj−2.

For j = 1, . . . , i the product ψiψj can be traced back to the initial products
ψkψ0 = ψk, k = i − j, i − j + 2, . . . , i + j − 2, i + j; cf. Figure 5.1. In addition the
polynomials ψk on the right-hand side of (5.1) must have the same parity as the
product ψiψj ; hence i+ j + k is even in all cases.

j

i

(i,j)

i−j i−j+2 i+j−2 i+j

Fig. 5.1. Visualization of recurrence relation (5.2).

We note that by orthonormality we have gkij = 〈ψkψiψj〉 = [Uk]i,j in (5.1);
cf. section 2.4. Thus, for even weight functions we obtain the following necessary
condition for vanishing entries of Un.

Corollary 24. For even weight functions, [Un]i,j �= 0 implies |i− j| ≤ n ≤ i+ j
and i+ j + n is even.

The number of nonzero entries of Un may be bounded as follows.
Lemma 25.

(a) In case n = 2k, k ∈ N0,

nnz(Un) ≤

⎧⎪⎨⎪⎩
(p− n+ 1)(n+ 1) + k2, 0 ≤ n ≤ p,

(p− k + 1)2, p+ 1 ≤ n ≤ 2p,

0, n > 2p.
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(b) In case n = 2k + 1, k ∈ N0,

nnz(Un) ≤

⎧⎪⎨⎪⎩
(p− n+ 1)(n+ 1) + k2 + k, 0 ≤ n ≤ p,

(p− k + 1)(p− k), p+ 1 ≤ n ≤ 2p,

0, n > 2p.

Proof. We distinguish three cases:
(1) n > 2p: by Proposition 4 we have Un = O, i.e., nnz(Un) = 0.
(2) p+1 ≤ n ≤ 2p: 0 ≤ i, j ≤ p implies |i− j| ≤ p; hence the necessary condition

in Corollary 24 reduces to n ≤ i+ j and i + j + n is even. Note that matrix
positions with i+ j = n are admissible since i+ j+n = n+n = 2n is always
even. We count the number of admissible matrix positions running along the
antidiagonals of the matrix.

• If n = 2k, k ∈ N, is even, so is i + j, meaning that entries on the main
diagonal of Un are admissible; see Figure 5.2(a):

nnz(Un) ≤
p−k∑
s=0

2s+ 1 = (p− k + 1) + (p− k) (p− k + 1) = (p− k + 1)2.

• If n = 2k + 1, k ∈ N0, is odd, so is i + j, meaning that entries on the
main diagonal of Un are not admissible; see Figure 5.2(b):

nnz(Un) ≤
p−k∑
s=1

2s = (p− k) (p− k + 1) .

(3) 0 ≤ n ≤ p: As in case (2) matrix positions with i + j = n are admissible.
In addition positions that satisfy |i− j| = n are admissible since i+ j + n =
j ± n + j + n = 2j + n ± n is always even. Again we count the number of
admissible matrix positions running along the antidiagonals of the matrix Un.

• If n = 2k, k ∈ N0, is even, entries on the main diagonal of Un are
admissible; see Figure 5.3(a):

nnz(Un) ≤ (p+ 1− n)(n+ 1) +

k−1∑
s=0

2s+ 1

= (p+ 1− n)(n+ 1) + k + (k − 1) k

= (p+ 1− n)(n+ 1) + k2.

• If n = 2k+1, k ∈ N0, is odd, entries on the main diagonal of Un are not
admissible; see Figure 5.3(b):

nnz(Un) ≤ (p+ 1− n)(n+ 1) +

k∑
s=1

2s

= (p+ 1− n)(n+ 1) + k2 + k.

The bounds given in Lemma 25 are sharp, since we count the exact number of
nonzero entries provided that every admissible entry in Un is not zero. This is true, for
example, for the standard Gaussian probability density function, cf. (A.1) in Appen-
dix A.1 and Figure 5.4.
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i

j

i+j=n

(a) n even

i

j

i+j=n

(b) n odd

Fig. 5.2. Nonzero entries of Un for p+ 1 ≤ n ≤ 2p.

i

j

i+j=n

i=j+n

j=i+n

(a) n even

i

j

i+j=n

j=i+n

i=j+n

(b) n odd

Fig. 5.3. Nonzero entries of Un for 0 ≤ n ≤ p.

5.2. The multivariate case. Since the entries of a Stochastic Galerkin matrix
(2.6) decouple into products of the form

〈
ψ
(m)
αm ψ

(m)
βm

ψ
(m)
γm

〉
=: g

(m)
αmβmγm

for all m =
1, . . . ,M , utilizing (5.1) we arrive at the following proposition.

Proposition 26. For even weight functions, α ∈ Ia and β,γ ∈ I , where
I = Ip and Ia = I2p or I = IC

p and Ia = IC
2p, respectively, the entries of the

Stochastic Galerkin matrices in (2.6) read

[Gα]β,γ = 〈ψαψβψγ〉 =

⎧⎪⎨⎪⎩
∏M
m=1 g

(m)
αmβmγm

, |βm − γm| ≤ αm ≤ βm + γm

and αm + βm + γm is even,

0 otherwise.

As a consequence, for the determination of the sparsity structure of each individ-
ual matrix Gα, we look for a description of all pairs of multi-indices in the set

Nα = {(β,γ) ∈ I × I : |βm − γm| ≤ αm

≤ βm + γm, αm + βm + γm is even, m = 1, . . . ,M},(5.3)

where I denotes either Ip or IC
p , because only these multi-indices are associated

with nonzero entries in Gα. Counting all admissible pairs of multi-indices will provide
us at least an upper bound for the number of nonzero entries in Gα.
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Fig. 5.4. Number of nonzero entries of Un for a standard Gaussian probability density function
and p = 20, 30, 40.

Lemma 27. For the space of tensor product polynomials V = Vp there holds

(5.4) nnz(Gα) ≤
M∏
m=1

nnz
(
U (m)
αm

)
.

Proof. This assertion follows from (2.11) and the properties of the Kronecker
product.

We note that the bound in (5.4) holds for all weight functions regardless of their
symmetry properties. For even weight functions, however, we have derived upper

bounds for the factors nnz(U
(m)
αm ) in (5.4) in the proof of Lemma 25. In addition,

since these bounds are sharp, the bound given in Lemma 27 is also sharp for this
special case.

Lemma 28. For the space of complete polynomials V = V C
p and |α| = 1 there

holds, assuming even weight functions,

nnz(GC
α ) ≤ 2

(
M + p− 1

p− 1

)
.

Proof. Let αm = 1 and αk = 0 for m �= k. It is easy to see that the set of
admissible pairs of multi-indices given in (5.3) simplifies to

Nα =
{
(β,γ) ∈ IC

p × IC
p : βk = γk, k �= m, |βm − γm| = 1

}
.

In addition, the multi-indices β,γ ∈ I C
p must satisfy |β| ≤ p and |γ| ≤ p. Consider

the case βm = γm + 1. We obtain all admissible pairs (β,γ) in the following way:
First fix βm = 1 and γm = 0. The remaining M − 1 positions can be filled with all
configurations such that their sum is less than or equal to p − 1, meaning that we
list all polynomials in M − 1 variables of total degree not larger than p− 1. Next we
choose βm = 2, γm = 1, and list all polynomials in M − 1 variables of total degree
not larger than p− 2 and so on up to βm = p and γm = p− 1. Thus the number of
admissible pairs is

p∑
�=1

(
M − 1 + p− �

p− �

)
=

p−1∑
n=0

(
M − 1 + n

n

)
=

(
M − 1 + p− 1 + 1

p− 1

)
=

(
M + p− 1

M

)
.
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The second case γm = βm + 1 generates the same number of admissible pairs by
simply interchanging the role of βm and γm, hence nnz(GC

α ) ≤ 2
(
M+p−1
M

)
.

We note that sparsity results for the stochastically nonlinear case could also be
investigated for the individual matrices {Gα}α∈Ia

. However, in this case the full
Galerkin matrix (2.5) consisting of a linear combination of these matrices is essentially
fully populated in the sense that, for each pair of multi-indices (β,γ) ∈ I ×I , there
is a multi-index α ∈ Ia such that [Gα]β,γ �= 0. There is, therefore, little sparsity to
exploit.

6. Conclusions. We have presented a discussion of the structure as well as
spectral and sparsity properties of the matrices occurring in the Stochastic Galerkin
discretization of linear PDEs with random coefficients. Besides being helpful in the
implementation of Stochastic Galerkin schemes, such results are crucial for the design
and analysis of efficient iterative solution methods. In particular, if the coefficient
function depends linearly on a finite number of independent random variables, we have
shown that employing the space of complete polynomials for the discretization of the
stochastic function space precludes the decoupling of the stochastic degrees of freedom.
By consequence, it is then necessary to solve a large fully coupled linear system
of Galerkin equations involving all stochastic and deterministic degrees of freedom.
Finally, Stochastic Galerkin matrices possess interesting structural properties and
provide challenging matrix eigenvalue problems, for which we have given a partial
solution.

Appendix A. Linearization coefficients. We collect the nonzero entries of
the Stochastic Galerkin matrices Un defined in (2.10) for systems of orthonormal
basis polynomials associated with common weight functions. In section 2.4 we have
identified the matrix entry [Un]i,j as the linearization coefficient gnij ; cf. (2.15). The
basis polynomials {ψk}k∈N0 along with their corresponding weight function ρ and
support Γ are defined in Table A.1.

Table A.1

Orthonormal basis polynomials associated with common weight functions. The last column
refers to the entries of the corresponding Stochastic Galerkin matrices Un provided in Appendix A.

Polynomial Weight: ρ(ξ) Support: Γ Basis: ψk(ξ) [Un]i,j

Hk(ξ): Hermite 1√
2π
e−ξ2/2

R
1√
2kk!

Hk(
ξ√
2
) (A.1)

Pk(ξ): Legendre 1
2
√

3
]−√

3,
√
3[

√
2k + 1Pk(

ξ√
3
) (A.2)

Tk(ξ): Chebyshev (first kind) 1
π

1√
2−ξ2

]−√
2,

√
2[

√
2− δ0,kTk(

ξ√
2
) (A.3)

Uk(ξ): Chebyshev (second kind) 1
2π

√
4− ξ2 ]−2, 2[ Uk(

ξ
2
) (A.4)

A.1. Standard Gaussian distribution. The linearization coefficients for the
Hermite polynomials {Hk}k∈N0 are given, e.g., in [9, Chapter XVI, section 16.5] and [4,
Lecture 5]. Normalization as defined in Table A.1 yields the entries of the Stochastic
Galerkin matrices Un corresponding to the standard Gaussian weight function:

(A.1) [Un]i,j =

{ √
i!j!n!

s!(i−s)!(j−s)! , s = i+j−n
2 , i+ j − n even, |i− j| ≤ n ≤ i+ j,

0 otherwise.

A.2. Uniform distribution. We utilize the linearization coefficients for the
Legendre polynomials {Pk}k∈N0 given in [1]. Normalizing the Legendre polynomials
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as defined in Table A.1, we arrive at

(A.2)

[Un]i,j =

⎧⎪⎪⎨⎪⎪⎩
√

(2i+1)(2j+1)(2n+1)

i+j+n+1
A(s−i)A(s−j)A(s−n)

A(s) , s = i+j+n
2 , i+ j + n even,

|i− j| ≤ n ≤ i+ j,

0 otherwise

for the uniform weight function. Above, we have introduced the function

A(n) =

⎧⎪⎨⎪⎩
1·3·5···(2n−1)

n! , n ≥ 1,

1, n = 0,

0, n < 0.

A.3. Beta(1/2,1/2) distribution. The product of any two Chebyshev poly-
nomials of first kind can be expressed as

Ti(ξ)Tj(ξ) =
(
Ti+j(ξ) + T|i−j|(ξ)

)
/2;

see, for example, [3, section 5.1]. Hence the linearization coefficients for the Chebyshev
polynomials of first kind are given by 〈TiTjTn〉 = 1

2

(
δi+j,n + δ|i−j|,n

)
, i, j, n ≥ 0.

Normalization of the Chebyshev polynomials (see Table A.1) yields

(A.3)

[Un]i,j =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1, n = 0, i = j ≥ 0,

1, i = 0, j = n > 0,

1, j = 0, i = n > 0,
1√
2
(δi+j,n + δ|i−j|,n), i, j, n > 0, i+ j − n even, |i− j| ≤ n ≤ i + j,

0 otherwise

for the Beta(1/2,1/2) probability density function.

A.4. Beta(3/2,3/2) distribution. The product of any two Chebyshev poly-
nomials of second kind can be expressed as

Ui(ξ)Uj(ξ) =

min(i,j)∑
�=0

Ui+j−2�(ξ);

see, for example, [3, section 5.1]. Thus the linearization coefficients for the Chebyshev
polynomials of second kind are one for i+ j − n even and |i− j| ≤ n ≤ i+ j and are
zero otherwise. Utilizing the definition in Table A.1 we obtain

(A.4) [Un]i,j =

{
1, i+ j − n even, |i− j| ≤ n ≤ i+ j,

0 otherwise

for the Beta(1/2,1/2) probability density function.
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