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The numerical simulation of rolling processes and its acceleration by model reduction
techniques is considered. The physical model is based on minimizing the deformation power
by using a flow formulation and the equivalent stress and strain. The reduction uses proper
orthogonal decomposition (POD) for linear terms together with the discrete empirical
interpolation method (DEIM) for nonlinear terms. In particular, the hardening can be
accelerated considerably. The solution can be represented by substantially fewer degrees of
freedom while maintaining acceptable accuracy.

1. Introduction

The numerical simulation of cold rolling remains a time
consuming computational challenge, especially when
many calculations are to be performed as is necessary
for process optimization. The two basic options for
speeding up the calculation are either simplifying the
mathematical model and performing faster but less
accurate calculations[1] or applying mathematically in-
spiredmethods ofmodel reduction tomodels representing
the full physics. This study follows the second approach,
applying proper orthogonal decomposition (POD) in
combination with the discrete empirical interpolation
method (DEIM) to a finite element model of cold rolling.

2. Mathematical Model

A plane strain assumption and thus a two-dimensional
calculation is justified by the typical dimensions of the
rolled strip. It is assumed that the whole domain is under
plastic deformations. Elastic deformations are negligible
as the strain can reach large values and are ignored. The
material is assumed to be isotropic and incompressible,
the von Mises yield criterion is used. For simulation an
Eulerian coordinate system is chosen and the strain rate
tensor _e is expressed by a velocity field u¼ (u1, u2), which is
incompressible, hence r ·u¼ 0 and _eij¼ (ui,jþuj,i)/2. The
equivalent strain rate is given by

_eV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

3
ð_e211 þ 2_e212 þ _e222Þ

r
:

The velocity is determined as the minimizer of the
deformation power P(u) in the considered geometry[2] (cf.
Figure 1). It consists of four parts P¼PpþPfþPvþPb

representing the plastic deformation described by
Pp ¼

R
Vkf _eVdx, the friction between workpiece and roll

Pf ¼
R
SC
mkjurelj ds, and boundary terms such as external

forces Pb ¼ &
R
SF
F ' u ds. The incompressibility constraint

is imposed by a Lagrange multiplier l(x) in the term
Pv ¼

R
Vl_evoldx. l can also be regarded as mean stress. The

notation is summarized in Table 1.
Restricting u and l to a stable pair of finite-dimensional

subspaces consisting of piecewise biquadratics for u and
piecewise bilinears for l and performing numerical
integration, the power can be written discretized as[3]

Phðu;lÞ ¼
X

i

kf
ffiffiffiffiffiffiffiffiffiffiffiffi
uTAiu

p
þ kLu& rk 1þ lTBu& f Tu: ð1Þ

In (1) and the following, u and l shall refer to the
vectors of finite element degrees of freedom of u
and l. In addition, Ai denotes the element stiffness
matrix in the ith quadrature node, B, L are matrices
representing the incompressibility and friction term,
respectively, k ' k 1 is the ‘1-norm (sum of absolute values
of vector components), r is a vector characterized by the
roll speed, and finally f is a vector describing external
forces.

2.1. Hardening

In the employed hardening model

kf ðxÞ ¼ Aem1uem2
V _em3

V em4=eV ð2Þ

the yield stress kf depends on the strain eV, the strain rate
_eV , and the temperature u. Of these, only _eV is obtained
directly from the finite element calculation, whereas eV
and u require further computation.
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2.1.1. Calculation of Strain
To evaluate eV (x) the strain rate _eV is integrated along the
particle trajectory x(t) beginning at the point x0 where
the particle enters the domain (cf. Figure 2)

eV ðxðtÞÞ ¼ eV ðx0Þ þ
Z t

0
_eV ðxðt0ÞÞdt0: ð3Þ

Here eV ðx0Þ contains initial deformations resulting, e.g.,
from a previous roll pass and the trajectory is determined
by

_xðtÞ ¼ uðxðtÞÞ; xð0Þ ¼ x0:

Since the strain is required at all quadrature nodes of the
finite element model this calculation is costly.

2.1.2. Calculation of Temperature
The temperature is determined by the Fourier law

@u

@t
¼ &u 'ru þ 1

rc
r ' ðkruÞ þ 1

rc
kf _eV ð4Þ

containing a dominant convection term and a source term
resulting from plastic deformations. The following bound-
ary conditions were used (b ¼ ffiffiffiffiffiffiffiffi

rkc
p

, broll same with rolling
parameters):

Top left=right: &k
@u

@n
¼ hairðu & uairÞ þ eradsðu4 & u4airÞ;

Roll contact: &k
@u

@n
¼ hrollðu & urollÞ &

b

bþ broll
mkjurelj;

Left: u ¼ u0ðxÞ;

Bottom:
@u

@n
¼ 0:

ð5Þ

The occurring material constants are thermal conduc-
tivity k, density r, specific heat capacity c, heat transfer
coefficient h, Stefan-Boltzmann constant s, and emissivity
erad. In addition, u0 is the prescribed temperature, uair and
uroll the temperature of the environment and roll, respec-
tively, and n is the outer unit normal vector.

2.2. Minimization of the Power

To find a stationary point of the power functional Ph(u, l)
as a function of the finite element degrees of freedom for
the velocity u andmultiplier l, Newton’smethod is used in
damped form to solve rPh ¼ 0. This requires a regulariza-
tion to ensure that the functional is differentiable. The
easiest solution is to add a small constant under the
square root of the plastic deformation term and to control
its size by the amount of admissible error for Ph. The
absolute value |urel| in the friction term can be regularized
using (2/p)urel tan

&1(urel/u0), where u0 is a small constant
compared to the average relative velocity.[2,4]

3. Model Reduction

In particular due to the nonlinear hardening law (2),
solving the full discretized problem (1) is not feasible in
real time applications. The most time consuming part is

P Power

u Velocity

urel Relative velocity u–uroll on boundary

kf Yield stress

_eV Equivalent strain rate

F Boundary force

l Lagrange multiplier, mean stress

_evol Volumetric strain rate r ·u

V Domain

SF Boundary left/right

SC Interface boundary

m Friction coefficient

k Shear yield stress kf =
ffiffiffi
3

p

Table 1. Notations used in the model.

Figure 2. Particle trajectories for strain calculation.

Figure 1. Rolling geometry.
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the calculation of the strain eV, as many line integrals
following the path of the particles have to be determined.
The linear systems in each Newton step and the
temperature calculation can also be computationally
expensive if the number of elements is high. The main
idea of the proper orthogonal decomposition[5,6] model
reduction approach is to restrict the problem to a lower
dimensional subspace, requiring fewer (and problem-
adapted) degrees of freedom. To avoid the dependence on
the unreduced problem size in nonlinear terms, we also
employ the discrete empirical interpolation method.[7]

Together, POD and DEIM provide speed-up potential for
not only (cold) rolling processes but for further applica-
tions such as simulation of temperature or stress, but also
the parametrization of material properties such as micro-
structures. POD begins by solving the full finite element
problem (1) for a sufficiently large and well-chosen set of
values of the parameters on which the solution depends,
among these the quantitiesm1, . . ., m4 from the hardening
law (2) as well as roll speed, friction coefficient m and
boundary forces F. This typically time consuming task is
known as the offline phase and is used to construct the
problem-adapted subspaces for subsequent solves for
general parameter values with the reduced model in the
so-called online phase.

Given a number ns of solutions to the full finite element
problem for a representative set of parameter values, we
refer to these as snapshots and arrange them as the
columns of the snapshot matrix

Y ¼ y1j ' ' ' jyns
" #

; yi ¼
ui

li

" #

2 RN ; i ¼ 1; . . . ; ns: ð6Þ

POD now extracts a subspace of dimension k ( N from
the snapshot matrix column space by computing the
best approximation of Y by a matrix of rank k. This best
approximation is obtained by computing the singular
value decomposition (SVD)

Y ¼ USVT withVTV ¼ I ; UTU ¼ I ; S ¼
Sr 0

0 0

" #

of the snapshot matrix. The matrices U 2 RN)N and
V 2 Rns)ns are orthogonal and

P
r¼diag(s1, . . ., sr) is a

diagonal matrix containing in descending order all positive
singular values s1* ' ' ' * sr> 0 of Y. It is well known that
the first k columns X :¼Uk of U contain an orthonormal
basis of the range space of the best approximation to the
column space of Y. Alternatively it is possible to calculateU
and hence X using the matrix YYT . The matrix U then
consists of the normalized eigenvectors of YYT and the
eigenvalues are the squared singular values s2

i .
The reduced approximations are now constrained to lie

in the space spanned by the k columns of X, i.e., generic
solutions of the discrete problem (1) are approximated as

y + x1y
1
k þ ' ' ' þ xky

k
k ¼ Xyk ; ð7Þ

containing only k(N degrees of freedom. The error of
best approximation (in mean square sense) of any vector
in the column space of Y by vectors of the form (7) is
known to be bounded by s2

kþ1 þ ' ' ' þ s2
r . This means that

the decay of the singular values of the snapshot matrix
determines how large k has to be chosen. Figure 3 shows
a typical plot of the singular value decay.

3.1. Linear Terms

Once the subspace for the reduction is known it is possible
to formulate a reduced problem. As an example for the
linear case we consider the stationary Fourier equation (4)
with vanishing radiation (erad ¼ 0). Discretizing this model
using standard finite elements[8] results in a linear system
of equations

KT ¼ f ð8Þ

for the vector T of temperature degrees of freedom. Similar
to above we restrict the vector T to a reduced subspace X
and replace T by XTk where Tk 2 Rk . Applying the Galerkin
method with subspace X to the linear system (8) yields the
reduced problem

XTKXTk ¼ XT f or K 0Tk ¼ f 0: ð9Þ

Here, K 0:=XTKX and f 0:=XT f. The reduced problem (9) is
of order k, which is typically much smaller than the order N
of the full finite element approximation (8). One shortcoming
is that thematrix K 0 is, in contrast to K, in general not sparse.
The calculation of K 0 and X can be performed in the offline
phase whereas the solution of the reduced system can be
performed in the online phase for different right hand sides
at nearly (depending on the size of k) real time.

Other terms of the power functional such as the one for
incompressibility lTBu and equivalent strain rate

ffiffiffiffiffiffiffiffiffiffiffi
uTAu

p

are handled analogously. For the strain rate,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðXukÞTAðXukÞ

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uTk ðXTAX Þuk

q
ð10Þ

is obtained and A0:=XTAX can also be pre-computed in the
offline phase. The structure of the problem is preserved,

Figure 3. Decay of the scaled singular values si/s1 for variation of
hardening coefficients m1, . . .,m4.
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only the individual vectors and matrices change, allowing
to reuse most parts of the software for the solution of the
unreduced system. As k becomes larger it may be possible
that A 0 contains more entries than A, but in this case it is
possible to treat the strain rate term using DEIM, which
will be explained in the next section.

3.2. Nonlinear Terms

POD works well for linear problems such as (8) but can
also be applied to the nonlinear case. Let us consider
again the Fourier equation but with a nonvanishing
radiation term. The stiffness matrix K does not change
compared to the linear case but the right hand side
f¼ f(T) is now state dependent due to the u4 term in (5).
Applying the POD method and using T+XTk results
similar to (9) in

K 0Tk ¼ XT f ðXTkÞ: ð11Þ

To solve (11) we first consider the unreduced equation
and apply Newton’s method. The problem is already
solved in few iterations as the effect of radiation is weak for
cold rolling processes. Starting with an initial guess T(0)

(obtained, for example, by solving the linear system
without radiation) it reads:

Tðnþ1Þ ¼ TðnÞ & ðK &rTfðTðnÞÞÞ&1ðKTðnÞ & fðTðnÞÞÞ:

For the reduced system the iteration reads

T
ðnþ1Þ
k ¼ T

ðnÞ
k & ðK 0 & XTrTfðXTðnÞ

k ÞX Þ&1ðK 0T
ðnÞ
k & XT fðXTðnÞ

k ÞÞ:
ð12Þ

The calculation of the gradient of f is computationally
expensive because it is of size N)N. Also the multiplica-
tion with the k)N matrix XT from the left and the N) k
matrix X from the right results again in a small k) kmatrix
but the matrix products are time consuming. Similar
problems arise in the general case, e.g., for the hardening
term, and these must be addressed before we can apply
model reduction efficiently.

DEIM offers a solution to this problem by finding a
different representation for the nonlinearity f in (11).
Considering again the general case and denoting the
variable by u, assume we wish to approximate a function
fðuÞ : RN ! RM with M, 1. Similar to (7) the goal is to
represent the function values by a low dimensional
subspace, i.e.,

fðXukÞ + Uc ð13Þ

with a subspace spanned by U 2 RM)m representing the
nonlinearity, a coefficient vector c2Rm, where m(M is
the dimension of the subspace. This is an overdetermined
linear system of equations which, in general, has no

solution. We try to find an approximation by restricting
it and proceed as follows:

1. Select m row indices i1,. . .,im of U.
2. Determine c from the m)m system:

fðiÞðXukÞ ¼ U ðiÞc: ð14Þ

Using the given ns snapshots uj a natural requirement
is that all f(uj) are approximated well. Let us denote by
F the matrix of function evaluations of the snapshots
F :¼ [f(u1)| ' ' ' |f(uns )]. As for the treatment of the linear
terms the first m left singular vectors f1,. . ., fm of F are the
best choice for U. The DEIM algorithm for finding the
indices i uses a greedy strategy:

4. Results and Discussion

With the DEIM algorithm a nonlinear function from a
high-dimensional space can be efficiently reduced. The
given variational problem (1) is scalar, but can nevertheless
be expressed in the required vector form. All except the
plastic deformation term are handled by simply substitut-
ing u by Xuuk, where according to (6)

X ¼
X u

Xl

" #
:

The Lagrange multiplier can be omitted if it is not
required for postprocessing as the considered subspace
ensures incompressibility. Otherwise it is analogously
replaced by l+Xl lk.

The plastic deformation term including hardening in kf
can be written as a sum over all M quadrature points

Pp;hðuÞ ¼
XM

i¼1

kif _e
i
V ¼ kTf _eV :

DEIM can be applied to kf as well as _eV : According to (13)
the approximations kf+U1kf

0, _eV+U2_eV0 with short coeffi-
cient vectors kf

0, _eV0 are used and hence

Pp;hðuÞ + k0f
T
UT

1U2 _eV
0 :
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The matrix UT
1U2 can be calculated in the offline

phase and then no longer depends onM. It is also possible
to apply DEIM only to kf as this has the strongest effect on
computation time and to use (10) for the strain rate.

To illustrate the complexity of the calculation of k0f,
note that using (14) the coefficient vector for the nonlinear
term is calculated as

k0f ¼ U&1
1ðiÞkfðiÞðX uukÞ:

This requires only the evaluation of m components
of kf. Since each component represents the hardening in
a quadrature point it is necessary to calculate kf in the
points characterized by i which is obtained from the
DEIM algorithm. Figure 2 shows the determined trajec-
tories for the calculation of eV for an unreduced problem,
whereas Figure 4 visualizes the five points selected by
DEIM where the trajectories for the approximation of kf
are required.

For the calculation DC04 steel with the material
parameters from Table 2 and Table 3 was used. The roll
radius is 0.1275m, the roll speed 0.11ms&1, the initial
temperature 258C, the friction coefficient m is 0.1, and
no external forces are applied. For the finite element
discretization N¼ 4914 degrees of freedom for the velocity
were used. At the various roll passes, the height was
reduced successively from 2.00mm to 1.46mm, and
further 1.13, 0.74, and 0.54mm. The results for this pass
schedule can be found in Table 4. Figure 5 compares
the unreduced and reduced vertical stress component for
k¼m¼ 5 for the first roll pass.

5. Conclusions

We have demonstrated that model reduction using POD
combined with DEIM is an effective tool to reduce the
calculation time for the numerical simulation of cold
rolling. Speedup factors of 30 and more were achieved and
will even be greater if themesh is chosen finer. In particular,
the computation of the hardening process was accelerated.
A disadvantage of the reduction is the costly setup phase.
Moreover, the selection of system snapshots was not

Figure 4. Points selected by the DEIM algorithm for strain
calculation for acceleration of hardening.

A [MPa] m1 [–] m2 [–] m3 [–] m4 [–]

655.42 &0.00132 0.14496 0.01803 0.00013

Table 2. Used hardening parameters.

r
[kgm&3]

c
[J kg&1 K&1]

k
[Wm&1 K&1]

hroll

[Wm&2 K&1]
hair

[Wm&2 K&1]

7861.2 466.43 65.08 6000 15

Table 3. Used thermal data.

Pass Time [s] ku& ufullk
kufullk

Power [W]

Full Reduced Full Reduced

1 243.1 11.0 0.000535 17202.9 17198.7

2 242.6 8.4 0.000229 12151.9 12280.3

3 371.7 10.8 0.000416 30286.7 30165.6

4 259.6 8.7 0.000312 15814.1 15739.9

5 517.0 10.9 0.000671 16908.2 16828.6

Table 4. Calculation for different roll passes.
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discussed and is not yet satisfactorily automated. Never-
theless, the decay of the singular values provides a good
indication of the quality of the approximation and, by
adjusting the subspace sizes k and m, a simple control
method exists to choose between fast and inaccurate
solutions on the one hand and slower but more accurate
solutions on the other. This is not easily possible with
commonly used approaches based on simplifying the
physical model.
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