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Abstract. We discuss the behavior of the minimal residual method applied to stabilized dis-
cretizations of one- and two-dimensional model problems for the stationary convection-diffusion equa-
tion. In the one-dimensional case, it is shown that eigenvalue information for estimating the con-
vergence rate of the minimal residual method is highly misleading due to the strong nonnormality
of these operators for large grid Péclet numbers. It is also shown that the field of values is a more
reliable tool for assessing the convergence rate. In the two-dimensional model problems considered,
we observe two distinct phases in the convergence of the iterative method: the first determined by
the field of values and the second by the spectrum. We conjecture that the first phase lasts as long
as the longest streamline takes to traverse the grid with the flow.
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1. Introduction. It is well known [12] that when convection-diffusion problems
are discretized using centered schemes such as central differences or the Galerkin finite
element method, nonphysical oscillations can occur in the discrete solution whenever
convection is the dominating term. In the context of finite element discretizations,
an approach to remedy this convective instability has been developed by Brooks and
Hughes [2] and Johnson, Nävert, and Pitkäranta [16]. These techniques are called
the streamline upwind Petrov Galerkin (SUPG) and the Galerkin least-squares (GLS)
methods and are based on adding a term to the variational formulation of the prob-
lem which is proportional to the residual of the discrete solution on each element.
Extensive discussions of these stabilization techniques can be found in the recent
monographs of Morton [18] and Roos, Stynes, and Tobiska [22].

Little attention, however, has been devoted to the effect of this stabilization on
the resulting discrete linear system of equations and its solution by iterative meth-
ods. In this paper, we consider one- and two-dimensional model problems, compare
the properties of the resulting discretization matrices, and analyze the convergence
of residual minimizing Krylov subspace methods applied to these linear systems. We
discover two things: First, for the one-dimensional Dirichlet problem, the stabilized
discrete operators are highly nonnormal. As a result, using spectral information to
estimate the convergence rate of Krylov subspace methods is potentially misleading
(cf. [19, 24]) and it is shown that this is indeed so. While most of the examples of
highly nonnormal matrices in, e.g., [24] are contrived mathematical pathologies, the
one-dimensional stabilized convection-diffusion discretization arises very naturally in
applications. We also show that, for this class of problems, the field of values (cf. [7])
is a more reliable tool for assessing the convergence rate. Our second observation con-
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cerns the two-dimensional model problem. It is observed that the convergence of the
minimal residual method consists of two distinct phases of linear convergence whose
rates seem to be determined by the field of values and the spectrum, respectively.
Thus, in this case the nonnormality only affects convergence in the first phase, whose
duration we conjecture to be the number of iteration steps it takes for information to
traverse the underlying grid along the longest streamline.

The paper is organized as follows. Section 2 introduces the continuous problem,
its standard Galerkin discretization, and two variants of finite element stabilization
techniques known as the SUPG and GLS methods. Section 3 introduces residual
minimizing Krylov subspace techniques and reviews classical and more recent conver-
gence results. In section 4 we consider a one-dimensional model problem and show
that the field of values gives a much better estimate of the rate of convergence than
the spectrum. Section 5 performs a computational study of two model problems in
two dimensions.

2. The convection-diffusion equation and its stabilized discretization.
This section briefly reviews the boundary value problem under consideration and its
discretization by stabilized finite element methods.

2.1. The continuous problem. We consider a bounded domain Ω ⊂ R
d on

which a given solenoidal velocity field a : Ω → R
d and a diffusivity tensor κ : Ω →

R
d×d are defined. We seek a function u : Ω → R which satisfies the differential

equation

−∇·(κ∇u− au) = f(2.1)

in Ω with a given source term f : Ω → R. Appropriate boundary conditions for this
problem are the specification of the total flux −n ·∇u+au along the inflow boundary
(where a ·n < 0, n being the exterior unit normal), the convective flux au along the
outflow boundary, or Dirichlet conditions on either part of the boundary. We restrict
ourselves to Dirichlet conditions

u = g on Γ = ∂Ω.(2.2)

2.2. Stabilized finite element methods. The variational formulation of prob-
lem (2.1), (2.2) is to find a function u ∈ V which satisfies

a(u, v) = �(v) ∀v ∈ V

with a bilinear form a : V × V → R and a linear functional � : V → R given by

a(u, v) =

∫
Ω

∇v · (κ∇u− au) dx and �(v) =

∫
Ω

vf dx,

along with a suitable trial/test space V depending on where essential boundary con-
ditions are imposed. By choosing trial and weighting space to coincide, we make the
assumption that all essential boundary conditions have been made homogeneous. For
a pure Dirichlet problem we may choose the usual Sobolev space V = H1

0 (Ω).
Given a finite-dimensional subspace Vh of V , the Galerkin finite element method

computes an approximate solution uh ∈ Vh determined by

a(uh, v) = �(v) ∀v ∈ Vh.(2.3)
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The SUPG and GLS stabilizations of the Galerkin discretization lead to modified
bilinear forms and right-hand side functionals, which we shall denote by ahj : Vh×Vh →
R, j = 1, 2, and �hj : V h → R, j = 1, 2, respectively. When referring to both methods
we shall omit the index j. To define these quantities we introduce the diffusive part
LDu = −∇·(κ∇u) and the advective part LAu = a · ∇u of the advection-diffusion
operator L = LD + LA. The SUPG method is defined by

ah1 (u, v) = a(u, v) +
∑

K∈Th

(Lu, τLAv)K , u, v ∈ Vh,(2.4)

�h1 (v) = �(v) +
∑

K∈Th

(f, τLAv)K , v ∈ Vh,(2.5)

where K denotes an arbitrary element in the finite element mesh Th, (·, ·)K denotes
the L2 inner product onK, and τ denotes an appropriately chosen stability parameter.
The corresponding terms for GLS are given by

ah2 (u, v) = a(u, v) +
∑

K∈Th

(Lu, τLv)K , u, v ∈ Vh,(2.6)

�h2 (v) = �(v) +
∑

K∈Th

(f, τLv)K , v ∈ Vh,(2.7)

i.e., the stabilization term weights with the full operator instead of just the advective
part. This makes it applicable to more general problems.

Following [3], we choose the stabilization parameter τ as

τ =
h

2|a |ξ(α) with ξ(α) = coth(α)− 1

α
,(2.8)

where | · | denotes the Euclidean length of a vector and the parameter α = ah/2κ is
the grid Péclet number, which measures the strength of convection versus diffusion
relative to the mesh size. This choice leads to nodally exact solutions for the one-
dimensional constant-coefficient problem and has been shown to converge with order
O(hp+1/2) in the L2-norm for higher dimensions, where p denotes the maximal degree
of complete polynomials used in the finite element approximation (cf. [26]).

For the following, we make the assumption that the diffusivity tensor κ is isotro-
pic, i.e., diagonal and elementwise constant. Moreover, we assume that the finite
element space consists of either piecewise linear or piecewise bilinear functions. In
this case we have

(Lu, τLv)K = (Lu, τLAv)K = (LAu, τLAv)K = (τaaT∇u,∇v)K ,

i.e., the stabilization term has the form of an additional diffusivity tensor given by
τaaT , which acts only in the direction of the flow. For this reason this type of
stabilization scheme is also known as the streamline diffusion method.

3. Iterative solution of the discrete system. In this section we briefly re-
view some well-known facts about residual-minimizing Krylov subspace methods—as
implemented, e.g., by the popular GMRES algorithm of Saad and Schultz [23]—for
solving the discrete linear system. The setting is the complex vector space C

n endowed
with an arbitrary (not necessarily the Euclidean) inner product (·, ·). We denote the
associated vector norm and induced matrix norm by ‖ · ‖.
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3.1. Minimal residual methods. Minimal residual methods belong to the
family of Krylov subspace algorithms, in which approximations to the solution u
of the matrix equation Au = f are sought in the sequence of shifted Krylov spaces
Vm := u0 +Km(A, r0), where

Km(A, r0) := span{r0, Ar0, . . . , A
m−1r0}, m = 1, 2, . . . ,

is the mth Krylov space with respect to A and r0 = f − Au0, the residual vector
of the initial guess u0. The vectors vm ∈ Vm are of the form vm = u0 + qm−1(A)r0

with a polynomial qm−1 ∈ Πm−1, the space of polynomials of degree not exceeding
m − 1. The residual of a vector in this space can then be written in the form rm =
f − Avm = pm(A)r0 with a polynomial pm in the set Π∗

m := {p ∈ Πm : p(0) = 1}.
The difference em = u − vm between vm ∈ Vm and the solution u is then given by
em = pm(A)e0, where e0 = u − u0 is the error in the initial guess. In particular, for
the given vector norm and its induced operator norm,

‖em‖ = ‖pm(A)e0‖, implying
‖em‖
‖e0‖ ≤ ‖pm(A)‖

with the analogous inequalities holding for rm. Thus, for a given matrix A, a Krylov
subspace method will succeed in reducing error and residual for all right-hand sides
and initial vectors to the extent it is able to find residual polynomials pm ∈ Π∗

m which
make ‖pm(A)‖ small.

Different Krylov subspace algorithms result from different strategies for selecting a
particular approximation um ∈ Vm or, equivalently, selecting a polynomial pm ∈ Π∗

m.
One possible and well-defined approach is to choose um to minimize the norm of the
residual, i.e., that

‖rm‖ = min
v∈Vm

‖f −Av‖.

We will refer to algorithms which implement this strategy as minimal residual meth-
ods. The GMRES algorithm of Saad and Schultz [23] is an implementation of this
method for general nonsingular linear systems of equations which employs an or-
thonormal basis of Km(A, r0) which is augmented by one basis vector in each iteration
step using the Arnoldi process. Two other well-known algorithms implementing the
minimal residual approach are MINRES by Paige and Saunders [21] for Hermitian
indefinite systems and the conjugate residual (CR) method for Hermitian positive
definite systems, which was first described in [14] by Hestenes and Stiefel on the
conjugate gradient algorithm.

3.2. Error bounds. The most well-known convergence result, which follows
immediately from the relations discussed above, is based on spectral properties of the
matrix A.

Theorem 3.1. Let A = V ΛV −1 be diagonalizable and Λ = diag(λ1, . . . , λn)
contain the eigenvalues on its diagonal. Then the residual rm after m steps of the
GMRES algorithm satisfies

‖rm‖
‖r0‖ ≤ ‖V pm(Λ)V −1‖ ≤ cond(V ) min

pm∈Π∗
m

‖pm‖Λ(A),(3.1)

where ‖φ‖D denotes the maximum value of the function φ on the compact set D and
cond(V ) = ‖V ‖ ‖V −1‖ is the condition number of the eigenvector matrix with respect
to the norm ‖ · ‖.
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If A is a normal matrix, then cond(V ) = 1, and hence in this case the bound
(3.1) for the convergence rate of the minimal residual method depends entirely on
how rapidly the quantity maxp∈Π∗

m
|p|Λ(A) decreases with m, i.e., the issue is reduced

to a polynomial approximation problem on the discrete set Λ(A) of eigenvalues of the
matrix A. The class of normal matrices includes the important cases of Hermitian,
skew-Hermitian, and circulant matrices. In the general nonnormal case, however,
cond(V ) may become sufficiently large to have a profound influence on the convergence
rate. This is particularly important when addressing the question of the convergence
rate for a whole sequence of parameter-dependent matrices such as those belonging to
the discretization of a convection-diffusion problem on successively refined meshes or of
problems with increasing Péclet numbers on one given mesh. Although often ignored
in applications, this effect may be strong enough to make any available eigenvalue
information completely useless (cf. [24]).

One approach for addressing this difficulty is due to Trefethen [25], who has
derived residual bounds based on pseudospectra of the matrix A. For a positive
number ε, the associated ε-pseudospectrum of A is the set in the complex plane
defined by Λε(A) = {z : ‖(zI − A)−1‖ ≥ 1/ε}. This set contains the spectrum of
A, hence its boundary Γε may be used in the resolvent integral representation of any
analytic function of A, in particular of any polynomial of A. This results in the bound

‖pm(A)‖ ≤ �(Γε)

2πε
‖pm‖Γε

for the norm of a residual polynomial pm applied to A, where �(Γε) denotes the length
of the curve Γε, which in turn implies the bound

‖rm‖
‖r0‖ ≤ �(Γε)

2πε
min

pm∈Π∗
m

‖pm‖Γε

for the residual reduction.
Pseudospectra can sometimes result in much more realistic bounds than (3.1) but

are expensive to compute. Moreover, it is not always clear which value of ε leads to
the most useful information. In this paper we turn to another set associated with a
matrix A for predicting the convergence rate of minimum residual methods, namely,
its field of values

W (A) =

{
(Az , z )

(z , z )
: 0 �= z ∈ C

n

}
= {(Az , z ) : ‖z‖ = 1},

sometimes also called its numerical range. The field of values of a matrix is a convex
and compact set in the complex plane which contains the eigenvalues. For normal ma-
trices W (A) coincides with the convex hull of Λ(A), whereas for nonnormal matrices
it may be considerably larger. A measure for the size of W (A) is the numerical radius
µ(A) := max{|ζ| : ζ ∈ W (A)}. The numerical radius is related to the norm associated
with the underlying inner product by 1

2‖A‖ ≤ µ(A) ≤ ‖A‖. Further properties of
W (A) can be found in [15, Chapter 1]. The bound (3.1) relies on the fact that the
eigenvalues of p(A) are related to those of A via the spectral mapping theorem. An
analogous mapping theorem for the field of values does not hold in general. However,
a useful result recently obtained by Eiermann [8] does hold for convex sets and a
special sequence of polynomials, the Faber polynomials associated with this set.

Theorem 3.2. If {Fm}∞m=0 denotes the sequence of Faber polynomials of the field
of values W (A) of a matrix A ∈ C

n×n, then the numerical radius µ(Fm(A)) satisfies

µ(Fm(A)) ≤ ‖Fm‖W (A).(3.2)
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Proof. See [8] for the proof.
The crucial point of this result is that it relates the field of values of Fm(A) to

the size of the polynomial Fm on the set W (A). To use Faber polynomials for esti-
mating the convergence rate of Krylov subspace methods, we turn to the normalized
Faber polynomials F̂m(z) := Fm(z)/Fm(0), which are admissible as residual polyno-
mials. Hence we must require Fm(0) �= 0, which is assured if we assume 0 �∈ W (A).
The asymptotic behavior of these polynomials as m → ∞ is well understood: The
normalized Faber polynomials {F̂m} of a convex bounded set 0 �∈ D ⊂ C satisfy
‖F̂m‖D ≤ cmγm with 0 < γ < 1 and cm < 2/(1 − γm). The number γ is known as
the asymptotic convergence factor of the set D. In fact, if p∗m ∈ Π∗

m minimizes ‖p‖D
over all p ∈ Π∗

m, then

γ = lim
m→∞ ‖p∗m‖1/m

D .

If pm denotes the mth residual polynomial selected in the mth step of the minimal
residual method, then the minimization property implies

‖rm‖ = ‖pm(A)r0‖ ≤ ‖F̂m(A)r0‖ ≤ ‖F̂m(A)‖ ‖r0‖
for the residual after m steps of the algorithm. Theorem 3.2, together with the
asymptotic properties of normalized Faber polynomials, thus yields the bound

‖rm‖2

‖r0‖2
≤ ‖F̂m(A)‖2 ≤ 2µ(F̂m(A)) ≤ 2‖F̂m‖W (A) ≤ 2cmγm.

3.3. A special case. The one-dimensional model problem with constant coeffi-
cients and Dirichlet boundary conditions introduced in the next section is particularly
easy to analyze since in this case the field of values is an ellipse, for which both the
asymptotic convergence factor γ as well as the Faber polynomials are known explicitly.
In particular, the Faber polynomials are just suitably scaled and shifted Chebyshev
polynomials of the first kind.

The asymptotic convergence factor γ for domains D not containing the origin
whose complement with respect to the extended complex plane Ĉ is simply connected
may be determined using conformal mapping: In this case there exists a conformal
map Φ of the complement Ĉ\D of D to the exterior of the unit disk. The asymptotic
convergence factor γ = γ(D) is then given by (cf. [9])

γ =
1

|Φ(0)| .(3.3)

For an ellipse Eρ(σ, τ) with foci at σ ± τ defined by

Eρ(σ, τ) =
{
z ∈ C : |z − σ + τ |+ |z − σ − τ | ≤ |τ | (ρ+ ρ−1

)}
,(3.4)

we obtain

γ(Eρ(σ, τ)) = ρ ·
∣∣∣∣∣−σ

τ
+

√(σ

τ

)2

− 1

∣∣∣∣∣
−1

,

in which that branch of the square root is selected which results in γ < 1. Provided
0 �∈ Eρ(σ, τ), the Faber polynomials are given in terms of the first-kind Chebyshev
polynomials Tm by

Fm(z) =
Tm(ζ(z))

Tm(ζ(0))
, ζ(z) =

z − σ

τ
, m = 0, 1, . . . .
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4. The one-dimensional case. It is instructive to look at the one-dimensional
case, since, at least for constant coefficients, all the important quantities associated
with the discrete problem can be computed analytically. If we focus on the Dirichlet
problem,

−κu′′ + au′ = f on (0, L), u(0) = u(L) = 0,

then a Galerkin discretization using piecewise linear elements on a grid with uniform
spacing h and N interior mesh points leads to the discrete linear system of equations
Au = f , in which, after scaling by h/κ, the coefficient matrix A is given by

A = tridiag(−1− α, 2,−1 + α) ∈ R
N×N .

The stabilized scheme leads to a linear system Ãu = f̃ with modified right-hand
side f̃ and modified coefficient matrix Ã, which, after scaling by h/(κ + κ̃), is given
by

Ã = tridiag(−1− α̃, 2, 1 + α̃) ∈ R
N×N .

The parameter α̃ = ah/(2(κ+κ̃)), κ+κ̃ = κ(1+αξ) may be interpreted as the effective
Péclet number of the stabilized scheme.

4.1. Eigensystems. Both discretization matrices A and Ã are of the form T =
tridiag(−1−t, 2,−1+t) and, using the results on the eigenvalues of tridiagonal Toeplitz
matrices collected in the appendix, the eigenvalues of these matrices are given by

τj = 2

[
1 +

√
|(1 + t)(1− t)|e i

2 [π+arg(t−1)] cos

(
jπ

N + 1

)]
, j = 1, . . . , N.

For the Galerkin discretization matrix A this results in eigenvalues {λj}Nj=1 given by

λj = 2

{
1−√

1− α2 cos(jπh), 0 ≤ α ≤ 1,

1 + i
√
α2 − 1 cos(jπh), α ≥ 1,

j = 1 . . . , N.

The eigenvalues for the stabilized discretization are obtained by replacing the Péclet
number α with α̃ = tanh(α). The effective Péclet number α̃ is a strictly increasing
function of α: It equals α in the diffusion-dominated limit α = 0 and approaches unity
in the convection-dominated limit α → ∞. Hence α̃ ∈ [0, 1) so that the eigenvalues
{λ̃j}Nj=1 of Ã are always real and given by

λ̃j = 2
(
1−

√
1− α̃2 cos(jπh)

)
, j = 1, . . . , N.

This results in the following qualitative behavior of the eigenvalues for varying Péclet
number: In the diffusion-dominated limit both spectra lie in the real interval [0, 4]
with a slight clustering at the endpoints. As α approaches the critical value of unity,
the eigenvalues of A coalesce at the value 2 and, as α grows beyond 1, the eigenvalues
of A lie on the complex interval [2 − iα, 2 + iα] parallel to the imaginary axis. In
contrast, the eigenvalues of Ã always lie on a real interval symmetric with respect to
two which shrinks monotonically as α increases. The diameter of this interval is

λ̃max − λ̃min =
4 cosπh

coshα
,

which decreases at an exponential rate as the Péclet number α increases.



1086 OLIVER G. ERNST

The GMRES convergence bound (3.1) is the product of the condition number of
the eigenvector matrix and the maximum norm of the GMRES polynomial on the
spectrum of the matrix. By the minimization property of GMRES, we obtain an
upper bound by replacing the mth GMRES polynomial with the shifted and scaled
Chebyshev polynomial

pm(z) =
Tm(ζ(z))

Tm(ζ(0))
, ζ(z) =

z − σ

τ
,

where Tm is the first-kind Chebyshev polynomial of degree m and σ = (λ1 + λN )/2
is the center of the spectrum, which in our case is a line segment centered at z = 2
parallel to either the real or imaginary axis. By employing the bound (A.8) on the
polynomials pm from the appendix, we obtain the bounds

cond2(V ) ‖pm‖Λ(A) ≤
∣∣∣∣α+ 1

α− 1

∣∣∣∣
(N−1)/2

2γm

1− γ2m

for the matrix A and

cond2(Ṽ ) ‖pm‖Λ(Ã) ≤ e(N−1)α 2γ̃m

1− γ̃2m

for the matrix Ã, respectively, where

γ = |Φ(ζ(0))|−1, Φ(ζ) = ζ +
√

ζ2 − 1, ζ �∈ [−1, 1],
is the asymptotic convergence factor of Λ(A), and γ̃ is the corresponding quantity for
Λ(Ã).

If only the spectral distributions of A and Ã are considered, the residual bound
(3.1) would indicate that GMRES should converge much more rapidly for Ã than for
A in the convection-dominated case, since then the spectrum of the former rapidly
shrinks to a point, hence low order polynomials are sufficient to yield small values on
Λ(Ã). Numerical experience, however, results in almost identical behavior of GMRES
for both systems.

An indication that something is going wrong is obtained from looking at the
second term in (3.1), the condition number of the eigenvector matrix. Drawing again
from the results in the appendix, the eigenvector matrix V of the tridiagonal Toeplitz
matrix T has the form V = DU with an orthogonal matrix U and a diagonal matrix

D = diag(δ, . . . , δN ), where δ = δ(t) =



√

1+t
1−t , 0 < t < 1,

i
√

t+1
t−1 , t > 1.

Hence, the spectral condition number of the eigenvector matrix V is given by

cond2(V ) = ‖V ‖2‖V −1‖2 = ‖D‖2‖D−1‖2 = |δ|N−1,

which, written in terms of the grid Péclet number α, yields

cond2(V ) =

∣∣∣∣α+ 1

α− 1

∣∣∣∣
(N−1)/2

and cond2(Ṽ ) = e(N−1)α

for the matrices A (t = α) and Ã (t = α̃ = tanhα), respectively. We see that cond2(V )
is bounded in the limit α → ∞ while cond(Ṽ ) grows exponentially.
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Fig. 4.1. Λ(A) (crosses), Λ(Ã) (circles), W (A) (dashed line), andW (Ã) (solid line) for N = 32
and α = 0.1, 1, 2, and 8.

4.2. Field of values. From the results collected in the appendix, the field of
values of the tridiagonal Toeplitz matrix T = tridiag(−1− t, 2,−1 + t) is the ellipse
Eρ(σ, τ) with

σ = 2, τ = 2 cos(πh)
√
1− t2, ρ =

∣∣∣∣1 + t

1− t

∣∣∣∣
1/2

.

In particular, for t < 1 the focal line lies on the real axis, while for t > 1 it lies parallel
to the imaginary axis. Thus, since α̃ ∈ [0, 1) for all values of the grid Péclet number,
the field of values of the stabilized matrix Ã is always an ellipse with a real focal line.
As derived in the appendix, the field of values of the one-dimensional convection-
diffusion operator is a parabola, and for decreasing values of h the elliptical fields of
values of A and Ã, suitably rescaled, approximate this parabola near its intersection
with the real axis. In the convection-dominated limit α → ∞, the field of values
degenerates to a circle centered at z = 2 with radius r = 2 cos(πh). Figure 4.1 shows
the spectra and fields of values for the discretization of the one-dimensional model
problem on a mesh with 32 interior points and α = 0.1, 1, 2, and 8.

4.3. Numerical experiments. The asymptotic convergence factors of the field
of values and the convex hull of the spectrum of A and Ã of dimension N = 255 for
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Table 4.1
Asymptotic convergence factors, α = 0.1, 1, 2, and 8.

α = 0.1 α = 1 α = 2 α = 8
W (A) 0.9992 0.9999 1 1

CH(Λ(A)) 0.9038 0 0.5773 0.8819

W (Ã) 0.9992 0.9999 0.9999 0.9999

CH(Λ(Ã)) 0.9041 0.3678 0.1353 3.354e-04
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Fig. 4.2. GMRES “lifespan” curves for A (left) and Ã (right) for the cases α = 0.1 and α = 8.
The solid vertical line represents the asymptotic convergence factor predicted by the field of values
and the dashed vertical line represents that predicted by the spectrum.

α = 0.1, 1, 2, and 8 are given in Table 4.1 to four digits. This table shows that, while
the spectral information alone would predict considerably faster convergence for the
stabilized discretization as soon as α > 1, the fields of values of both discretization
matrices indicate the same slow convergence rate of almost unity.

The behavior of GMRES for the Galerkin and the stabilized discretizations for the
cases α = 0.1 and α = 8 can be seen in Figure 4.2. Here GMRES was applied to both
systems, again of size N = 255, with zero initial guess and a random right-hand side.
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While right-hand sides arising from the discretization of the boundary value problem
resulted in similar behavior, we chose nonetheless to use a random right-hand side to
make sure we were observing generic behavior of GMRES for these matrices. Rather
than the usual plot of normalized residual norms ‖rm‖/‖r0‖ in a logarithmic scale,
we instead plot quotients ‖rm+1‖/‖rm‖ of successive residual norms throughout the
iteration history. Such lifespan curves were introduced by Nevanlinna [20] and give a
more accurate view of the rate of convergence in different phases of the iteration. The
solid vertical line represents the asymptotic rate of convergence predicted by the field
of values and the dashed line represents that predicted by the spectrum. We observe
that, after an initial phase of sublinear convergence (cf. [20]), the rate of convergence
of GMRES during the linear phase is predicted remarkably well by the field of values,
whereas the spectrum would have indicated a much too optimistic rate. For the case
α = 8, which is a very low Péclet number with regard to applications, the matrix Ã is
basically a Jordan block and the spectrum gives no information whatsoever regarding
the convergence rate. Moreover, in all cases GMRES behaves almost identically for
the Galerkin and the stabilized discretizations.

5. The two-dimensional case. In this section we consider two model problems
on a rectangular domain. The first is a constant-coefficient problem with velocity at
an angle to the coordinate axes; the second involves a semicircular velocity field. The
numerical experiments will focus only on the stabilized problem since, for interesting
grid Péclet numbers, it yields the only physically meaningful discretization.

5.1. First model problem. We consider the Dirichlet problem (2.1), (2.2) on
the unit square Ω = (0, 1) × (0, 1) with the constant coefficients κ = κI2 and a =
a(cos θ, sin θ)T with f = 0. We discretize the problem using bilinear elements on
a uniform rectangular mesh. The resulting stiffness matrices A and Ã can then be
written as the sum of Kronecker products

A = M ⊗
(
κ11K +

a1h

2
C

)
+

(
κ22K +

a2h

2
C

)
⊗M − κ12 + κ21

4
C ⊗ C

in terms of the matrices

M =
1

6
tridiag(1, 4, 1), K = tridiag(−1, 2,−1), C = tridiag(−1, 0, 1),

which are recognized as the mass, stiffness, and gradient matrices of the discretization
of the one-dimensional constant-coefficient/uniform mesh model problem using linear
elements. The diffusivity tensor κ is given by κ = κI in the Galerkin case and
by κ = κI + τaaT in the stabilized case. Using the definition (2.8) again for the
stabilization parameter τ , we obtain, after scaling the system by (κ(1 + αξ))−1, the
coefficient matrix

Ã = M ⊗
(
1 + αξc2

1 + αξ
K + c tanh(α)C

)

+

(
1 + αξs2

1 + αξ
K + s tanh(α)C

)
⊗M +

sc

2
ξ tanh(α)C ⊗ C

for the stabilized discretization, where c = cos θ, s = sin θ. The corresponding matrix
for the Galerkin case is obtained by setting ξ = 0.

Although the Kronecker product representation of Ã seems simple enough, we
were unable to find a closed form representation for the eigenvalues, eigenvectors,
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Fig. 5.1. W (Ã) and Λ(Ã) for N = 312, α = 1000, and θ = 0, π/8, and π/4.

and field of values of the discretization matrices of even this simple model problem
without making some simplifications. One such simplification results from setting the
flow angle θ to zero, which corresponds to flow in the direction of the x-axis (cf. also
[11]). In this case s = 0, c = 1, and the resulting matrix Ã0 is the sum of only two
Kronecker products

Ã0 = M ⊗ (K + tanh(α)C) +
tanh(α)

α
K ⊗M.

The first factors of the two terms are both symmetric tridiagonal Toeplitz matrices,
and hence they share a common system of orthogonal eigenvectors {u1, . . . ,un} such
that

Muj = µjuj and Kuj = νjuj , j = 1, . . . , n,

where the eigenvalues {µj}nj=1 and {νj}nj=1 and eigenvectors {uj}nj=1 are given in
terms of the well-known trigonometric formulas

µj =
1

3
(2 + cos(jπh),

νj = 2(1− cos(jπh)),

and (uj)k = sin(jkπh), k = 1, . . . , n.

By using the properties of Kronecker products, we obtain that a vector uj ⊗vj ∈ R
n2

is an eigenvector of Ã0 if the vector vj ∈ R
n is an eigenvector of the matrix

µj (K + tanh(α)C) + νj
tanh(α)

α
M, j = 1, . . . n.

Each value of j yields a nonsymmetric tridiagonal Toeplitz matrix whose eigenvalues
and eigenvectors can be determined using the results cited in the appendix.

For other flow angles, we resort to numerical computation. Figure 5.1 shows the
computed eigenvalues and the boundary of W (Ã) for N = 312, α = 1000, κ = 1
and flow angles θ = 0, π/8, and π/4. In the second and third cases the eigenvalues
were computed with Matlab’s eig function and the boundary of the field of values
was computed by finding the extremal eigenvalues of the symmetric part of rotated
matrices using the Lanczos algorithm combined with Chebyshev acceleration (cf. [1]).
We note that, in terms of distance of the boundary ∂W (Ã) to the convex hull of the
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Table 5.1
Asymptotic convergence factors of W (Ã) and CH(Λ(Ã)).

θ = 0 θ = π/8 θ = π/4

W (Ã) 0.999 0.995 0.997

CH(Λ(Ã)) 0.308 0.631 0.658

spectrum, the matrix seems farthest from normal in the case of flow along one of the
coordinate axes.

Next, we compute the asymptotic convergence factors γ of both the convex hull
CH(Λ(Ã)) of the spectrum and the field of values for the three cases depicted in Fig-
ure 5.1. Since these sets are both simply connected and do not contain the origin, γ
may be calculated via the conformal mapping connection (3.3). To this end, we have
used the Schwarz–Christoffel Toolbox (version 2.0) of Driscoll [5] to evaluate the exte-
rior mapping Φ of CH(Λ(Ã)) and a polygonal approximation of W (Ã), respectively,
at the origin. The results are shown in Table 5.1. As expected from the eigenvalue
plot, the convergence factors of CH(Λ(Ã)) are much smaller than those of W (Ã), the
latter being very close to unity due to the proximity of the field of values to the origin.

The convergence behavior of GMRES applied to the linear systems belonging to
the three flow angles, α = 1000 and N = 312 is shown in Figure 5.2. In all cases, a
zero initial vector and a random right-hand side were used. The figures on the left
show the normalized residual norms ‖rk‖/‖r0‖ of GMRES applied to each of the three
systems (solid line); the dashed lines indicate the linear convergence rates predicted
by the convex hull of the spectrum and by the field of values, respectively. To make
sure that the convex hull of the spectrum isn’t overestimating the convergence rate,
we have also included the residual curve of GMRES applied to the same system with
Ã replaced by a diagonal matrix with the same eigenvalues as Ã (dotted line). The
three plots on the right show the corresponding lifespan curves ‖rk+1‖/‖rk‖. We
observe two distinct phases of linear convergence in the residual curves of all three
cases. The convergence rates of the first phase are slightly below the rate predicted
by the field of values. Those of the second phase seem to approach the rate the
spectrum would predict, in the absence of nonnormality, although the lifespan curves
lie slightly below and above this rate in the first and third examples. The transition
between the two phases occurs at iteration steps 35 and 44 for flow angles θ = π/8 and
θ = π/4, respectively, which are upper bounds for the number of steps information
would take to traverse the underlying finite element grid. For the case θ = 0, however,
this transition does not occur until step 52. Moreover, the transition is much more
gradual than in the other two cases.

5.2. Second model problem. Our second model problem is a slight modifica-
tion of a widely used test problem for discretizations of convection-diffusion equations
(cf. [18, p. 10]). The domain is the rectangle Ω = (−1, 1)× (0, 1), the diffusion tensor
κ is the identity, and the incompressible velocity field is given by

a(x, y) = 2a

[
y(1− x2)
−x(1− y2)

]
,

the semicircular flow pattern of which is shown in Figure 5.3. The parameter a can
be used to vary the Péclet number. Along the resulting inflow boundary we impose
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Fig. 5.2. GMRES residual curves for θ = 0, π/8, and π/4, α = 1000 and N = 312.
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Fig. 5.3. Velocity field of second model problem.
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Fig. 5.4. Field of values, spectrum, and the convex hull of the spectrum for the stabilized
discretization of the second model problem on a 32 × 16 grid.

the Dirichlet condition

u(x, 0) = 1 + tanh[ν(2x+ 1)], −1 ≤ x ≤ 0,

in which another parameter ν determines the sharpness of the inflow profile. The
remaining Dirichlet conditions are given by

u(x, 0) = 0, 0 ≤ x ≤ 1,

u(x, y) = 1 + tanh(ν) on the remaining portion of ∂Ω.

Figure 5.4 shows the field of values, the spectrum and the convex hull of the spectrum
for this problem with a = 105 discretized on a uniform mesh of 32 × 16 bilinear
rectangular elements, which corresponds to a grid Péclet number of α = 6250. The
field of values is more than twice the size in diameter than the spectrum, so some
nonnormality effects can be expected. Again, we have scaled the problem by (κ(1 +
αξ))−1.

In Figure 5.5, the solid line represents the GMRES residual norm curve for this
problem. As before, the upper and lower dashed lines show the linear rates of con-
vergence predicted by the asymptotic convergence factors of W (Ã) and CH(Λ(Ã),
respectively. The dotted line is the residual curve of GMRES applied to a diagonal
matrix D̃ with the same eigenvalues as Ã using a zero initial guess and a random
right-hand side. Since D̃ is a normal matrix, the convergence of GMRES is com-
pletely determined by Λ(D̃) = Λ(Ã). Again we observe two distinct phases of linear
convergence. The rate in the first phase is somewhat overestimated by the field of
values but noticeably smaller than the rate predicted by the spectrum. The convex
hull of the spectrum also overestimates the rate in the second phase, but the residual
curve of the diagonal matrix is seen to have the same rate as that observed in the sec-
ond phase. The transition between these two phases takes place at iteration step 40,
which is the roughly the number of iteration steps required for the profile prescribed
at the inlet boundary to propagate across the mesh to the outflow boundary.
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Fig. 5.5. GMRES residual norms for the solution of the second model problem (solid), linear
convergence rate predicted by W (Ã (upped dashed) and CH(Λ(Ã)) (lower dashed), and residual
norms for GMRES applied to diagonal matrix D with Λ(D) = Λ(Ã).

6. Conclusions. We have tried to gain insight into the convergence behav-
ior of residual minimizing Krylov subspace methods for stabilized discretizations
of convection-diffusion problems by studying various model problems. The one-
dimensional results show that, while the stabilization results in a better discretization
of the boundary value problem, it also results in a highly nonnormal discrete operator.
The nonnormality can be characterized by the condition number of the eigenvector
matrix, which grows exponentially with both the grid Péclet number and the grid
size. A consequence of the high degree of nonnormality is that spectral information
is virtually useless for assessing the convergence rate of Krylov subspace methods.
We have also seen that the field of values is a viable alternative in this case. In the
two-dimensional examples, we observed that, while less pronounced, nonnormality is
still an issue. Its effect, as observed in computational experiments, is an initial rate
of convergence governed essentially by the field of values, after which convergence
governed by the spectrum takes over. It is conjectured that the duration of the initial
phase is governed by the time it takes for boundary information to pass from the
inflow boundary across the domain following the streamlines of the velocity field.

Appendix A. Ellipses and Chebyshev polynomials. In this section we
collect some results pertaining to Chebyshev polynomials on ellipses in the complex
plane. Chebyshev polynomials are often used to bound the convergence rate of Krylov
subspace methods. For real intervals not containing the origin (and for ellipses with
real foci “far enough away” from the origin [10]), scaled Chebyshev polynomials are
the polynomials of least maximum modulus normalized at the origin. For general
ellipses, the Chebyshev polynomials are still asymptotically optimal, i.e., they satisfy

limm→∞ ‖pm‖1/m
Ω = γ(Ω). These results are well known [4, 17, 6] and we include

them only for convenient reference.

We parameterize an ellipse in the complex plane by two complex numbers σ and
τ such that the former represents the midpoint of the focal line and the two foci lie
at σ ± τ . A third parameter ρ > 1 is used to parameterize the family of ellipses with
these two foci (0 < ρ < 1 yields the same family again). The closed interior of an
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Fig. A.1. Ellipses in the confocal family Eρ = Eρ(0, 1), ρ = 1, 1.25, . . . , 2.5.

ellipse can then be characterized in terms of the sum of the distances to the foci as
the set

Eρ(σ, τ) =
{
z ∈ C : |z − σ + τ |+ |z − σ − τ | ≤ |τ | (ρ+ ρ−1

)}
.

The boundary of the ellipse may be parameterized as

∂Eρ(σ, τ) =
{
z = σ +

τ

2

(
ρeiθ + ρ−1e−iθ

)
: θ ∈ [0, 2π)

}
,

from which we immediately see that the two semiaxes, i.e., the largest and smallest
distances from σ to the boundary of the ellipse, are |τ |(ρ±ρ−1)/2. It is convenient to
consider Chebyshev polynomials on the family of confocal ellipses Eρ = Eρ(0, 1) with
foci located at ±1. A given ellipse Eρ(σ, τ) is mapped onto the associated ellipse from
this family having the same eccentricity (which is |τ |) by the linear transformation
ζ = (z − σ)/τ . The ellipses Eρ for ρ = 1, 1.25, . . . , 2.5 are shown in Figure A.1. For
ζ ∈ [−1, 1], the first-kind Chebyshev polynomials can be defined by

Tm(ζ) = cos(m arccos ζ), m = 0, 1, . . . .

These polynomials satisfy the recurrence relation

T0 ≡ 1, T1(ζ) = ζ, Tm+1(ζ) = 2ζTm(ζ)− Tm−1(ζ) (m > 1)(A.1)

and their zeros are all contained in the interval (−1, 1). The analysis of the Chebyshev
polynomials is facilitated by introducing the Joukowski map

ζ = Ψ(w) :=
1

2

(
w +

1

w

)
, w �= 0,

which maps the exterior |w| > 1 of the unit circle one-to-one onto C\[−1, 1]. Each
circle |w| = ρ > 1 is mapped to the ellipse Eρ. The inverse map Φ is given by

w = Φ(ζ) = ζ +
√

ζ2 − 1, ζ �∈ [−1, 1],
in which that branch of the square root is chosen which results in |Φ(ζ)| > 1. (A
method for selecting the proper branch is described in [13, p. 296].) Using the
recurrence relation (A.1), one easily verifies that the Chebyshev polynomials satisfy

Tm(ζ) =
1

2
(wm + w−m) =

1

2
[Φ(ζ)m +Φ(ζ)−m], ζ �∈ [−1, 1].
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This also holds for z ∈ [−1, 1], but then the w associated with ζ is no longer unique.
Setting w = ρeiθ, this yields

Tm(ζ) =
1

2
(ρmeimθ + ρ−me−imθ),(A.2)

from which we conclude that the mth Chebyshev polynomial maps the ellipse Eρ to
the ellipse Eρm , which is covered m times. This implies that

1

2
(ρm − ρ−m) ≤ |Tm(ζ)| ≤ 1

2
(ρm + ρ−m), ζ ∈ Eρ,

or, equivalently, |Tm(ζ)| = (ρm + tmρ−m)/2 with |tm| < 1.
We obtain normalized Chebyshev polynomials pm on arbitrary ellipses Eρ(σ, τ)

not containing the origin by shifting and scaling the Chebyshev polynomials on Eρ:

pm(z) :=
Tm(ζ(z))

Tm(ζ(0))
=

Tm((z − σ)/τ)

Tm(−σ/τ)
, m = 0, 1, . . . .(A.3)

Since 0 �∈ Eρ(σ, τ) implies ζ(0) �∈ Eρ and since the zeros of Tm lie in (−1, 1), we have
Tm(ζ(0)) �= 0.

We also define

γ = γ(σ, τ) :=
1

|Φ(ζ(0))| =
1

|Φ(−σ
τ )| .(A.4)

We can now describe the asymptotic properties of the residual polynomials defined
by (A.3).

Theorem A.1. If σ and τ are arbitrary complex numbers such that 0 �∈ Eρ(σ, τ),
then the residual polynomials defined in (A.3) satisfy

‖pm‖Eρ(σ,τ) ≤ (ρm + ρ−m)
γm

1− γ2m
.(A.5)

The corresponding bound for ‖pm‖[σ−τ,σ+τ ] is obtained by setting ρ = 1.
Proof. By their definition, the polynomials pm satisfy

|pm(z)| ≤ 1

2
(ρm + ρ−m)

1

|Tm(ζ(0))| .(A.6)

It is thus only necessary to examine |Tm(ζ(0))| = |Tm(−σ/τ)|. Since γ−1 = |Φ(ζ(0))|
lies outside the unit circle, its image under Ψ—i.e., ζ(0)—lies on the boundary of
the ellipse Eγ−1 and hence, by the mapping properties of the Chebyshev polynomials,
Tm(ζ(0)) lies in the ellipse Eγ−m . This implies

1

2
(γ−m − γm) ≤ |Tm(ζ(0))| ≤ 1

2
(γ−m + γm),(A.7)

and, together with (A.6), yields (A.5). The assertion for the complex line segment is
obtained in the same way by using the fact that |Tm(ζ)| ≤ 1| for ζ ∈ [−1, 1].

Two special cases allow the bounds in Theorem A.1 to be improved, as follows.
Theorem A.2. If, in addition to the assumptions of Theorem A.1, the foci of

Eρ(σ, τ) and the origin are colinear, there holds

‖pm‖Eρ(σ,τ) ≤ (ρm + ρ−m)
γm

1 + γ2m
.(A.8)
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If, in addition to the assumptions of Theorem A.1, the line connecting σ and the
origin is perpendicular to the focal line of Eρ(σ, τ), then

‖pm‖Eρ(σ,τ) ≤ (ρm + ρ−m)

{
γm

1+γ2m for m even,
γm

1−γ2m for m odd.
(A.9)

The corresponding bounds for ‖pm‖[σ−τ,σ+τ ] are obtained by setting ρ = 1.
Proof. Since γ−1 = |Φ(ζ(0))|, we can write Φ(ζ(0)) = γ−1eiα, with α being the

argument of Φ(ζ(0)). Using the relation (A.2), we obtain

|Tm(ζ(0))| =
∣∣∣∣12(γ−meimα + γme−imα)

∣∣∣∣ .
Thus,

|Tm(ζ(0))| ≤ 1

2

{
γ−m + γm for arg(Φ(ζ(0))) = k

mπ,

γ−m − γm for arg(Φ(ζ(0))) = 2k+1
2m π,

k ∈ Z.

If the foci are colinear or, equivalently, −σ/τ is real, this implies that also Φ(−σ/τ)
is real and hence its argument can be written in the form kπ/m for some suitable
k ∈ {0, . . . , 2m− 1}. In the second special case −σ/τ , and hence also Φ(σ/τ), is pure
imaginary. For even m, arg(Φ(−σ/τ)) is equal to π/2 or 3π/2 and may be written in
the form kπ/m. For odd m it can be written in the form (2k + 1)π/(2m).

As a consequence of Theorem A.1, the asymptotic convergence factor of the resid-
ual polynomials pm on the ellipse Eρ(σ, τ) is given by

lim
m→∞ ‖pm‖1/m

Eρ(σ,τ) = ργ.

Appendix B. Spectral properties and the field of values of tridiagonal
Toeplitz matrices. For convenient reference, we include a derivation of the eigenval-
ues, eigenvectors and field of values of tridiagonal Toeplitz matrices. The presentation
follows [6].

B.1. Eigensystem. It is sufficient to consider tridiagonal Toeplitz matrices with
zero diagonal

T = tridiag(α, 0, β) ∈ C
n×n,

since otherwise the spectrum is simply shifted by the diagonal term. For αβ = 0
the spectrum consists of one zero eigenvalue of algebraic multiplicity n and, unless
α = β = 0, geometric multiplicity one. Assuming αβ �= 0, the matrix T may be
symmetrized by the diagonal similarity transformation D−1TD = ηT1, where

η = η(α, β) =
√
|αβ|e i

2 [arg(α)+arg(β)]

and T1 = tridiag(1, 0, 1) and D = diag(δ, δ2, . . . , δn) with

δ = δ(α, β) =
√
|α/β|e i

2 [arg(α)−arg(β)].

As is easily verified using basic trigonometric identities, the eigenvalues of T1 are

µj = 2 cos

(
jπ

n+ 1

)
(j = 1, . . . , n)(B.1)
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with corresponding normalized orthogonal eigenvectors uj = [u1j , . . . , unj ]
T given by

ukj =

√
2

n+ 1
sin

(
kjπ

n+ 1

)
(k, j = 1, . . . , n).

For T this results in the eigenvectors

tj = Duj = [δu1j , . . . , δ
nunj ]

T (j = 1, . . . , n)

and corresponding eigenvalues τj = ηµj (j = 1, . . . , n). The eigenvector matrix is
V = [t1, . . . , tn] = DU .

B.2. Field of values.
Lemma B.1. The field of values of the tridiagonal Toeplitz matrix T =

tridiag(α, 0, β) ∈ C
n×n consists of the closed interior of the ellipse

z = cn(αe
iθ + βe−iθ), cn = cos(π/(n+ 1), 0 ≤ θ < 2π.(B.2)

Proof. We begin by showing that the field of values of the n × n Jordan block
J = tridiag(0, 0, 1), which is connected with T by T = αJT + βJ , is a closed disk
centered at the origin. If ζ ∈ W (J), then there exists a vector z ∈ C

n of unit norm
such that ζ = zHJz . If a new vector w is defined by wj = eijφzj (j = 1, . . . , n) with
an arbitrary angle φ, then we have ‖w‖2 = 1 and

wHJw =

n−1∑
j=1

wjwj+1 = eiφ
n−1∑
j=1

zjzj+1 = eiφζ.

This shows that, for any ζ ∈ W (J), the entire circle |z| = |ζ| must also belong to
W (J). Since the field of values is convex, this means that W (J) must be a disk
centered at the origin. The radius of this disk is obtained as the largest eigenvalue of
(J + JH)/2. This follows from the characterization of the field of values of a matrix
A as the intersection of strips Sθ in the complex plane:

W (A) =
⋂

θ∈[0,π)

Sθ, Sθ = {z ∈ C : λmin(Hθ) ≤ Re (eiθz) ≤ λmax(Hθ)},

where Hθ is the Hermitian part Hθ := (Aθ +AH
θ )/2 of the rotated matrix Aθ = eiθA.

By (B.1), the largest eigenvalue of J + JT is cn = cos(π/(n + 1)), hence W (J) =
S(0, cn).

Now assume ω ∈ W (T ). This means there exists w ∈ C
n, ‖w‖2 = 1, such that

ω = wHTw = αwHJHw + βwHJw = αζ + βζ

for some ζ ∈ W (Jn). Thus, each point in W (T ) has the form (B.2) and, conversely,
any complex number of the form (B.2) lies in W (T ).

We note that, in the notation defined in (3.4), Lemma B.1 states that W (T ) =
Eρ(σ, τ) with

σ = 0, τ = 2 cos(π/(n+ 1))
√
|αβ|e i

2 [arg(α)−arg(β)], and ρ =
√

|α/β|.
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Appendix C. Field of values and spectrum of the one-dimensional dif-
ferential operator. For the one-dimensional case, we determine the field of values

W (L) =

{
a(u, u)

(u, u)
: 0 �= u ∈ V

}

of the differential operator with constant coefficients

L : V → V ′, Lu = −(κu′)′ + au′, V = H1
0 (0, 1)

associated with the Dirichlet problem considered as an unbounded linear operator on
L2(0, 1) with associated bilinear form a(u, v) = (Lu, v). Of course, for an unbounded
operator, the field of values will be an unbounded set in the complex plane. Since L−1

is a compact operator, its spectrum consists only of eigenvalues and these accumulate
at zero. To determine W (L), we thus proceed similarly as in the finite-dimensional
case. We consider the rotated operators Lθ = eiθL, θ ∈ (−π/2, π/2) and determine
the minimal eigenvalues of their Hermitian parts

Hθ =
1

2
(Lθ + L∗

θ),

where the L2-adjoint operator is characterized by

(Lθu, v) = (u, L∗
θv) ∀u, v ∈ V.

Integration by parts yields L∗
θv = e−iθ[−(κv′)′ − av′], which results in

Hθu = − cos(θ)κu′′ + i sin(θ)au′

for the Hermitian part. The eigenvalues of Hθ are determined by those values of
λ = λ(θ) for which the boundary value problem

Hθu = − cos(θ)κu′′ + i sin(θ)au′ = λu, x ∈ (0, 1),

u(0) = u(1) = 0

possesses nontrivial solutions. Solutions of the form u(x) = eµx are determined by
the solutions µ± of the characteristic equation

− cos(θ)κµ2 + ia sin(θ)µ− λ = 0.

After imposing the homogeneous boundary condition, this results in

λk(θ) = k2π2κ cos(θ)− a2 sin2(θ)

4κ cos(θ)
, k ∈ Z.

Since k = 0 results in a constant (zero) eigenfunction, and cos(θ) > 0 for θ ∈
(−π/2, π/2), the smallest eigenvalue of Hθ is thus obtained for k = 1 as

λmin(θ) = π2κ cos(θ)− a2 sin2(θ)

4κ cos(θ)
.

We obtain the field of values W (L) as the intersection of all half-planes

Sθ = {z ∈ C : λmin(θ) ≤ Re(eiθz)}, θ ∈ (−π/2, π/2).
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By intersecting the boundaries of two half-planes Hθ1 and Hθ2 and taking the limit
θ2 → θ1, we obtain a parametrization of the boundary of W (L), which turns out to
be the parabola

x = κ

(
π2 +

y2

a2

)
.

The eigenvalues of the operator L itself may be obtained analogously and are
given by

λk = κ

[( a

2κ

)2

+ k2π2

]
, k = 1, 2, . . . .
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