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Abstract

A new implementation of restarted Krylov subspace methods for evaluating f(A)b for a function f, a
matrix A and a vector b is proposed. In contrast to an implementation proposed previously, it requires constant
work and constant storage space per restart cycle. The convergence behavior of this scheme is discussed
and a new stopping criterion based on an error indicator is given. The performance of the implementation is
illustrated for three parabolic initial value problems, requiring the evaluation of exp(A)b.
© 2008 Elsevier Inc. All rights reserved.

Keywords: Matrix function; Krylov subspace approximation; Restarted Arnoldi/Lanczos method; Stopping criterion
based on error indicator; Polynomial interpolation; Rational approximation

1. Introduction

The interplay of complex approximation theory and matrix computations has long been, and
still is, a recurring theme in the work of Richard Varga. The subject of this paper is an instance
where this interplay is fundamental, namely the computation of the vector

f(A)b (1)
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givenamatrix A € C"*", avector b € C" of unit norm and a function f analytic in a neighborhood
of the spectrum A(A) of A. In particular, we shall find that the successful implementation of a
technique which two of the authors recently proposed [6] rests on pioneering work of Richard
Varga [3] from the late 1960s.

The evaluation of f(A)b is a common task in scientific computing, and the most familiar case
is surely that of the exponential function f(A) = exp(A), which occurs, e.g., in connection with
the linear initial value problem

u'(t) = Au(t), >0, u0) =u, 2)

with solution exp(z A)u,. Initial value problems such as (2) result naturally from the method of
lines discretization of parabolic partial differential operators. Such discretizations as well as the
construction of time-stepping schemes based on Padé or Chebyshev rational approximation were
among the subjects of Richard Varga’s earlier work [26].

We are concerned with the situation where A is large and either sparse or structured, such
that matrix—vector products with A can be carried out inexpensively, whereas first forming f(A)
and then multiplying with b cannot. Here Krylov subspace approximations of (1) have become
popular (cf. [4,9,14]) and, with regard to solving initial value problems, have had a large impact
on so-called exponential integrators, in which evaluations of the exponential function applied to
the Jacobian are incorporated directly into time-stepping schemes (cf. [15]).

Krylov subspace approximations of (1) are based on an Arnoldi-like decomposition

AV, = m+lﬁm = VnHy + 77m+1,mvm+lez; 3)
of the matrix A in which the columns of V,,, form an ascending basis of the Krylov space
A m(A, b):=span{b, Ab, ..., A" b},

I:im :=[n;,j]isan (m + 1) x m upper Hessenberg matrix, Hy, :=[1, O]ﬁm and e,, denotes the mth
unit coordinate vector in R™. In the most common situation, (3) is a proper Arnoldi decomposition,
i.e., the basis sequence {v,,} consists of orthonormal vectors, as generated by the Arnoldi process,
which reduces to the Hermitian Lanczos process when A is Hermitian. In this case H,, is Hermitian
tridiagonal. More general Arnoldi-like decompositions arise in restarted Arnoldi schemes, in
which the basis vectors are only block orthogonal, or when non-orthogonalizing basis generation
schemes are used (see the discussion in [6]). For an orthonormal basis sequence the Arnoldi
approximation of (1) is then given by

L=V f(H)VED =V, f (Hp)ey, “)

where ¢, denotes the first unit coordinate vectorin R™ . There are (at least) three ways of motivating
the approximation (4) (see [13]). One is as a subspace approximation of (1), since for a proper
Arnoldi decomposition (3) the Hessenberg matrix H,, = V,,f] AV, represents the orthogonal sec-
tion of A onto /), (A, b), and in this sense f(H,,) an approximation of the action of f(A) on
this space. Alternatively, if I” is a contour containing A(A) in its interior int I" and if f is analytic
in the closure int I', we have

1
L =V f(H)VEb= — / FOYV I — Hy)"'VEBdx
271 Jr

xi./ FOVRT — A)'bdi = F(A)B,
271 Jr
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which characterizes f,, as the Galerkin approximation of the resolvent integral representation of
(1). Finally, and this is the interpretation closest in spirit to the method proposed below, it can be
shown that (4) can be written as

S =a(A)b,
where g € 2,1 is the polynomial of degree m — 1 which interpolates f in the Hermite sense at
the eigenvalues of H,,, i.e., at the Ritz values of A with respect to #,,(A, b).

The evaluation of (4) requires that the complete basis of #",, (A, b) be available, which can be
prohibitive for large A and large values of m. One remedy restricted to the Hermitian case, in which
the v,, can be generated by the three-term Lanczos-recurrence, is to compute the matrix H,, in a
first pass to subsequently determine the coefficient vector f(H,,)e,, followed by a regeneration
of the basis vectors v{, v2, ..., v, in a second pass to form the linear combination (4), which,
while feasible, seems nonetheless unelegant.

Reducing storage and computational requirements was the motivation behind the restarting
algorithm proposed in [6], which involves Arnoldi decompositions of a fixed length m and gener-
ates a sequence of approximations { f kHeen With f t € X km(A, b). The implementation proposed
in [6], however, suffered from the deficiency that, although not requiring the storage of more than
m basis vectors at a time, the coordinate calculations required the evaluation of f for a block
Hessenberg matrix of size km, resulting in computational work which grows with k. In what
follows, we introduce a new implementation for which the computational expense as well as the
storage requirements are the same for each cycle. In addition, we propose a stopping criterion
based on an error indicator, discuss the convergence behavior of the new implementation vs. that
proposed in [6], and illustrate their performance in some numerical examples.

2. The restarted Krylov subspace algorithm for matrix functions

The restarted Krylov subspace algorithm proposed in [6] proceeds by repeatedly generating a
basis of Krylov spaces of fixed dimension m, updating the most recent approximation to (1), and
then discarding all but the last basis vector, which is subsequently used as the initial vector for
the next Krylov space. Although any procedure which generates a nested basis of a Krylov space
can be used, we restrict ourselves to the Arnoldi process in the following.! We recall the basic
restart step using two Arnoldi decompositions

AVI=ViH\ + mvmiie), (52)
AVa=VaHy + 30218, (5b)
in which the columns of V| and V; are orthonormal bases of /", (A, v1) and 4, (A, Vi+1),
respectively, and H; and H> are unreduced upper Hessenberg matrices. The columns of

Vo:=[Vy V3] thus form a basis of ", (A, v1), and we combine the two decompositions in
(5) as

AVy = Vo Hy + n3vompiel,. 6)
where

5. |H O ._ T

H .= |:E2 H2i| , Ey:=mnee,,.

1 When we use terminology such as Arnoldi decomposition, Arnoldi approximation, and Arnoldi algorithm in the
context of a Hermitian matrix A, we tacitly assume that computations are carried out with the Hermitian Lanczos process.
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Note that, since the columns of Vz are only blockwise orthonormal, we refer to (6) as an
Arnoldi-like decomposition. The restarting scheme computes the Krylov subspace approxima-
tion

fr=Vaf(Hye,
associated with the decomposition (6).2
Due to the block lower triangular structure of H, the approximation f, has the form

fz =Vif(H)e + Vol e = f1 + Wk e

in which f 1 denotes the approximation associated with the first decomposition (5a) and the m x m
matrix F3  is defined by

5 _ | f(HD o
f(H) = |: Fa f(Hz)} '

If F> 1, or rather its first column, can be computed, then only f 1 needs to be stored from the first
cycle of the algorithm, and V] can be discarded after computing f 1-

The result of k cycles of this restarting scheme is the Krylov subspace approximation associated
with the decomposition

AV, = ViHi + M1Vt 1€ 5 @)
where Vi :=[V; Vo -+ Vi] € CVkm,
H;
~ E, H
Hk;= . . ECkakm, Ej2=77jelez;l€Rmxm, j=2,...,k,
Er Hy

in which we have collected the quantities of the k Arnoldi decompositions

AV =ViHj +1j410jmiiey, j=1,2,... k.

Setting
Fi
- ~ o Fap
Fe:=f(Hy) = . , where F; ;= f(Hj), j=1,2,...,k,
Fei Feo o0 Frx
the approximation after k restart cycles is given by
k
fr=Vif(Hoe, = (Vi Va---VilFre, = Y VjFjie; =fi_y + ViFr.1en. ®)

j=1
3. Implementation

In this section we discuss possible implementations of the basic restarting scheme (8). The
crucial issue is the fast and stable computation of the coefficient vector Fy je;.

2 From now on ¢; denotes a first unit coordinate vector whose dimension is dictated by the context, whereas, for
j=2e j € R/ shall denote the jth unit coordinate vector.
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3.1. Previously explored strategies

There are several possible ways of computing the update (8). In view of the interpolation
properties of the Krylov subspace approximation, each additional restart cycle interpolates the
function f at m additional nodes, which are the Ritz values of A with respect to the most recent
Krylov space. A natural approach would therefore be a block Newton type interpolation scheme,
which can be carried out by evaluating matrix polynomials of m x m matrices: It was shown in
([6], Theorem 2.6) that the error of a Krylov subspace approximation (4) with respectto ¢, (A, b)
and an Arnoldi-like decomposition (3) has the representation

FAb—f,, = f(A)vms 9)

with a “restart function” f :=yAM,, f,in which w, denotes the characteristic polynomial of
H,,, y is the product of the subdiagonal elements of H,, and 1n,,+1,,, and the function Awm fis
defined as

Aw"lf:w, (10)
Wm

where I, f denotes the polynomial of degree m — 1 which interpolates f in the Hermite sense
at the zeros of the polynomial w,,, i.e., at the Ritz values of A with respect to %", (A, b). Since
the error (9) has exactly the same form as f(A)b with f in place of f, one can proceed by
computing corrections to f | =f,, in the form of Arnoldi approxunatlons to f(A)vy1. In view
of (9) and (10), this results in a corrected approximation f 5 = q(A)b, where now g € P,
interpolates f in the Ritz values of A with respect to %", (A, b) as well as those with respect to
H m (A, v,41). We note that an alternative expression for the restarted approximations fAm based
on block Newton interpolation for Hermitian A was given in [16].

In [6], the approach based on repeated block Newton interpolation was found to be unstable,
and instead it was proposed to evaluate the matrix f (ﬁk) in each cycle by standard algorithms such
as MATLAB’s function funm, from which the entries required for the update (8) can be extracted.
The resulting scheme is summarized below as Algorithm 1.

Algorithm 1. Restarted Arnoldi approximation for f (A)b proposed in [6]

Given: A, b, |b]| =1, f

v = b7 f() =0

for £k =1,2,... until convergence do

Compute Arnoldi decomposition AV, = Vi Hy + k11 Vkm+1 e,,T1
of Ji/m(A, v(kfl)m+1)-

if k=1 then
L Hk = H1
else

o Hy 4 0)
H;, =
L ¥ |:77k’ e G(Tk_l)m Hy,

Update the approximation fi, := fi_1 + Vk[f(ﬁk)el](k,l)erl:km.
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Although it allows discarding the basis vectors of previous cycles, Algorithm 1 has the short-
coming that it requires in the kth cycle the evaluation of f for a matrix of size km. Despite the
fact that, typically, km < n, this can represent substantial computational effort as k gets large.
Moreover, it appears wasteful to compute f(Hy) when only the last m entries of its first column
are needed. R

An alternative approach for computing f (Hj) which promises less work per cycle is to use a
recursive scheme [20]: Comparing blocks in the identity

FyHy = HcFy
shows that, for j > £,
FijeHy— HjFjo=EjFj_1¢— Fjer1Eeq1.

Since the dlagonal blocks are obtained as F x = f(Hx), this relation allows us to compute the
last block row of Fk recursively by solving the Sylvester equations

XHi_j—H X =EFroip—j— Frp—jr1Er—jr1, j=12,...,k—1 (11

for X = Fj x— . The Sylvester equation (11) is easy to solve since 1ts coefficients Hy_; and Hy
are upper Hessenberg (see [11]). We still, however, have to store Hk, i.e., Hy, Hy, ..., H; and
n2, M3, - .., Nk. In addition, we need Fy_1 x_;, more precisely, Ex Fr_1—j, i.e., only the last
row of Fx_1x—; (j=0,1,...,k—1) has to be saved in the previous cycle. Note further that
only the first column of Fy ;41 enters the equation determining Fy x— ;, but we still compute
Fi j(j =k, k—1,...,1),although only Fj 1e, is needed, and, most importantly, the above Syl-
vester equation (11) tends to be severely ill-conditioned since H j and Hy represent compressions
of the same matrix A and thus their spectra are by no means well separated.

3.2. Implementation based on a rational approximation of f

Our new implementation of restarting Krylov subspace algorithms for approximating (1) is
based on evaluating r (Hy)e; ~ f(Hy)e, using a rational approximation (cf. [9,23])

N
oy
A)~r(A) =pR)+
fO)~rG)=pk) ;wg_k
of f in partial fraction form with polynomial part p, coefficients ¢y and poles w; which we assume
to be simple and not contained in the field of values of A. In other words, we compute
N
r(Hoe, = p(Hoe, + Y ap(wel — H) ey (12)
=1
We note that in the most common application f (1) = exp(}), Rer < 0, a polynomial p of degree
zero or one usually suffices.
Evaluating p(Hj)e, for a polynomial p of low degree is straightforward: Letting p(A) =
1A + 1o, for example, yields

(m Hy +mol)e;
w1 Eze
ro:=p(Hpe, = 0
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and for higher degrees one can proceed analogously. Evaluating the second expression in (12)
consists of summing the vectors oy (wel — ﬁk)_lel, £=1,2,..., N, ie., solving the linear
systems of equations (w¢l — Hy )F¢ = e,. Due to the sparsity pattern of the right hand side e, and
the block lower triangular form of Hj., this can be carried out recursively as

(wel —Hl)re’] =e;, (ol _Hj)"'e,j = Ej"e,jflv j=2,...,k,

where we have partitioned 7, = [rzT_ 1> rsz, R reT k]T conformingly with ﬁk. Note that these are
k Hessenberg systems of size m and thus inexpensive to solve. Moreover, in view of (8), we only
require the last block of 7 (Hy)e;, which is obtained as

N
[0.....0. ITr(H)e, =ro, + Y aury.
=1
where r, ; denotes the last block of ro.

The résulting algorithm is summarized below as Algorithm 2. (For simplicity, we assume that
the polynomial part p of r is the zero polynomial.)

Algorithm 2. Restarted Arnoldi approximation for f(A)b based on rational approximation

Given: A, b, ||b|| = 1, coefficients and poles (ay,w,)); of a rational function
raf

v = b7 fo =0

for £k =1,2,... until convergence do

Compute Arnoldi decomposition AVy = Vi Hy + Ny 10kmt1 €L,
of (4, v(kfl)erl)'
if k =1 then
for {=1,2,...,N do
| Solve (weI — Hy)re1 = €1

else
for {=1,2,...,N do
L Solve (wel — Hy)rep = nk(erT,LrM_l)el
hk = Zé\r:lozg’l’g,k
Update the approximation fk = fk,l + Vihy.

In many applications both A and b are real and f has the property that (1) = f(1). In this
case f(A)b is also real and it is natural to approximate this vector using real arithmetic.

The rational approximation to f is usually also real for real arguments, but its poles w; and
coefficients oy appear in complex conjugate pairs, say wy4+1 = w¢ and ogy] = a¢. Since all
other quantities in the equations (w¢l — ﬁk)fg = e, are real, we have Foal = f_g and therefore
rey1,j =rgj forall j =1,2,..., k. For the quantities entering the update offk_l, we thus
have

Qply 01l = el H ek = 2Re(ozgre’k)

. o . R, (D
and there is no need to solve (w¢4+11 — Hk)"u],k = Ek’(+1,k71~ Setting P =T + ir, and

wp = wéR) + iwé” , a straightforward calculation shows that
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R)
(10?1 =200y + ) 1) = (01 = H) ey,
05 1 (R) (R)
Vo1 = %) <|:C()e I— Hl]r€,1 _el) >
w
4

while for j = 2,3, ...k,

p ® 1. D R (R)
(|wg|21 — 20" H; + Hf) ) = oV Ejrg )+ (cufZ T - Hj) Ejry i,

) 1 (R) (R) (R)
Fo = _a)(l) ([a)g I— Hj] Foj— Ejr[,j_l) .
pé

Finally, agry ; + ote+17py 1 = 2Re(aer, ;) =2 [Re(ag)rﬁ) - Im(ag)rgli:l and we have avoided
complex arithmetic.

To summarize, the two main ingredients of Algorithm 2 for computing f(A)b are the Arnoldi
process (there is no difference to Algorithm 1) and (the partial fraction decomposition of) arational
function r such that r(ﬁk) ~ f (I:ik). In the following we restrict our attention to the important
special case that f is the exponential function and always choose r as its best uniform rational
approximation on (—o0, 0] of type 16 as derived by Richard Varga and co-workers in [3] and [2].
Alternative rational approximations are described in [25].

Finally, we note that the rational function r could be used right away to approximate

N
FAb~r(A)b=pA)b+ Y arwd —A) b
=1
(see [18]). The evaluation of this approximation requires the solution of N systems of linear
equations

(el —A)x,=b, £=12,...,N

with shifted coefficient matrices (with complex shifts) and constant right-hand side. If A is large
and sparse these systems are usually solved by an iterative method, e.g., by a Krylov subspace
method. It is well known (cf. [17]) that, due to the shift invariance of Krylov subspaces, it is
sufficient to construct only one basis of ¢, (A, b) to solve all these N systems. In particular,
if we use FOM(m) (restarted full orthogonalization method with restart length m) as a solver
this would lead to the same approximations as Algorithm 2. If A is Hermitian and positive (or
negative) definite one could solve the N linear systems simultaneously by the conjugate gradient
method (see [8,7]) where each vector x, can be computed by a short recurrence formula for which
in total 2N vectors of dimension n need to be stored. In other words, the storage requirements do
not grow with the dimension of the Krylov space and hence restarting is not required for reason of
limited storage. Note that the cost of generating a Krylov basis of dimension km is essentially the
same, both in the conjugate gradient method and in the restarted Hermitian case, where all the Hj
are tridiagonal. However, we have observed in many cases, that updating the 2N long vectors of
the conjugate gradient method (which is done after each matrix vector product, i.e., km times) is
more expensive than the update step in Algorithm 2, f X :=f x—1 + Vih,, which is executed only
once after m matrix-vector products. Although convergence generally slows down when restarts
are applied, i.e., more matrix-vector products are required, this extra cost is often compensated by
fewer operations on long vectors. Therefore restart algorithms should be considered as an option
even in the Hermitian case, if the delay in the convergence due to restarts is reasonable.
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4. A stopping criterion based on an error indicator

To obtain a practical stopping criterion for our restarting schemes, we develop an error indicator
using an extension of an idea described in [23, Theorem 5.1] (see also [21, Theorem 3.1]). The
approach relies on an interpolation expansion of the approximation error f(A)b — f « obtained
by adding a sequence of auxiliary nodes {6;} in addition to the km Ritz values on which the

restarted approximation f is based.
Given m complex numbers 61, 62, ..., 65 such that f(6;) is defined for each j and the asso-
ciated nodal polynomials

woM) =1, w;AN):=A—-6)A—=6)---(A—6)), j=1,2,...,m,
we denote the associated divided differences of f by

o) :=fN), @A) :=[Dy; FIN), j=1,2,... 00
From the interpolation identity

Ly f =T, f+w; Dy, f, j=0,1,...,m—1,
we see that these obey the recursion

dj—1(X) —@j—1(8;)

() = , j=12,...,m.
¢; (1) 6, j Z
Finally, for 1 < £ <mand0 < j < m — £ we define A,Z f to be the jth order divided difference
of f with respect to the nodes 6, O¢41, ..., O¢yj (see [27, Section 3.2]), i.e.,
j 1 J@)
Ajf=5—

2xi Jp (A —=0¢) -+ - (A — Opj)
Given the Arnoldi-like decomposition (7), we now consider the matrix
Wi 1= [wo (A)Vimt1, W1 (At 1, - - .y Wim1 (A)Vgms1] € T (13)
and the bidiagonal matrix

01
1 6> -
B; = ) ) e g

1 6
in terms of which there holds AW; = W; B + [0, ..., 0, w; (A)vg,+1]. Together with (7) we
obtain the Arnoldi-like decomposition
A [V Wil = [Vi WilHe + wi(A)vimriep, ;.

where

~ ﬁk 0 ~ ~ ~ T -
H,=|= e Qkmtm)xkm+m) 4049 Eig1 = Nks1€4€,, € R xkm
Ept1 | B
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If we now approximate f(A)b by f X :=[f/\k Wilf (ﬁk)el, then the associated error may be
represented as (see [6, Theorem 2.6])

FAb = fr = F(A) wi(A)vem+1, (14)

where f:=yA; f with © € Pkm+i the characteristic polynomial of Hy and y the product of
the subdiagonal entries of Hy.

Lemma 4.1. In terms of the notation introduced above, there holds

sy =700 (s)
where
ECD)
A} f(62) o
FBa=| R e C (16)
ATTUOATT o fEn)

and where fk’,;, € C™%™ pas the rows
el Fein = mipief, ¢ (H),  j=1.2,....0. (17)

Proof. The firstassertion (16) was proven in [19]. To show (17) we follow the proof of Proposition
3.21in [21]. Note first that comparing the (2, 1) blocks in the identity f(Hk) Hk Hk f (Hk) yields

Fonfl = BiFon = m [erel, £ (A0 = f(Beel,, | (18)
We obtain (17) by induction on j. For j = 1, multiplying by elT on both sides of (18) yields

ef Fii(He — 011) = nisef,, (f (H) = £ 0D,
or

el Fiin = ner1efy (fF (Ho) — fFODD (He — 017" = niyref,, d1 (H).
For j > 1, multiplying (18) from the left by eT leads to

e; ! Fen(Hi — 0 n=el | F- A ekm_nk+18km(¢j 1(H) — ¢ 10D,

from which (17) follows after multiplying by (Hk —6;1)” I, Note that we have tacitly assumed
that 0; ¢ A(Hk) for all j. The usual confluent d1v1ded difference calculus shows, however, that
the assertion is also valid without this restriction. [

With the expression for the columns of fk’ # given in Lemma 4.1 together with the definition
of Wy (13), we find that

m
fr=VefHoe, +nip1 Y _lef,d; (He w1 (Avimy1.
Jj=1

Together with the error representation (14) we have obtained
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Theorem 4.2. The error of the restarted Arnoldi approximation (8) can be expanded as

FA)b = Vi f(Hoe, = niy1 Y _lef, ¢ (HOe w1 (Aimi1 + f(A)w;i (A s1(19)
j=1

Remark 4.3. By an obvious modification to a result given in [23, Theorem 5.1] one can show
that the remainder term in (19) may also be written

AWz (A)Wns1 = wi (A)[di (A)b — Vi (Hi)e, 1.

The sum in (19) represents the leading m terms of an interpolation series (see [27, Chapter I11])
for the function f — I, f, where w € %y, denotes the nodal polynomial of the eigenvalues of
Hj.. Provided the series converges as m — oo — for f = exp it is sufficient to assume the nodes
are bounded — we obtain the expansion

F(A)b = Vi f (Hoey = nipr Y _lef,d; (Hoe w1 (A)vim1
j=1

of the error of the restarted Arnoldi approximation. We obtain an error indicator by truncating
the series after one or two terms, where we are free to choose the additional nodes {6 j};": 1

In the numerical experiments presented below, we choose 6; = min A(ﬁk) form =1 and 0, =
max A(Hy) with the same choice for #; when m = 2. Computationally, all that is required for eval-
uating these error estimates are the coefficients e,{m ¢;(Hy)e, and the vectors w1 (A)vgm41.The

former can be extracted from the first column of Fk i (cf. (17)) after applying f to Hk, a matrix
of size km + m only slightly larger than Hk, whose evaluation is called for in Algorithms 1 and 2.
The latter require m — 1 additional matrix—vector products of A with vg,,+1. We emphasize that
for m = 1 this means no additional matrix—vector products are necessary and that for m = 2 the
additional matrix—vector product A v+ can be reused in the generation of the Krylov space of
the (k + 1)st restart cycle.

Note that the choices for 6] and 6, given above for m = 1, 2 correspond to a Gauss—Radau and
a Gauss—Lobatto quadrature formula for the error (cf. [10]). For certain functions, among these the
exponential, it can be shown that these choices result in lower and upper bounds, respectively, for
the error. A rigorous derivation of quadrature-based a-posteriori error bounds will be the subject
of future work.

5. Convergence issues: a case study

With Algorithms 1 and 2, we have described two techniques for implementing a restarted
Krylov subspace method for the evaluation of f(A)b. These differ in the way the function f is
applied to the compressions ﬁk of A. Considering specifically the exponential function f = exp,
in Algorithm 1 a standard routine such as the built-in MATLAB function expm is applied. For
the current implementation® of expm, this means that we approximate exp(Hk) by a rational

3 Release 2007a.
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Fig. 1. Absolute errors of the approximations of f(A)b computed with Algorithms 1 and 2 for restart lengths m = 1, 3
and 10.

expression of the form rl(ﬁk) :=r(ﬁk/2x)2s, where r is a [¢/t] Padé fraction with r < 13 for
the exponential function and s € Ny depends on ||ﬁk||1 (see [12]). Note that s and r, and thus
r1, depend on the argument. Therefore, r| is by no means a rational function — but rather it
represents a family of rational functions from which one member is chosen depending on the
current argument: If this is a scalar A then | (1) is an accurate approximation to exp(A) regardless
of where in the complex plane A is located. In floating point arithmetic, r; is for all practical
purposes indistinguishable from exp; in particular, r; has no finite poles.

By contrast, Algorithm 2 approximates exp(ﬁk) by ro (ﬁk), where r; is a fixed rational function,
namely the best uniform rational approximation of type 16 to the exponential function on (—oo, 0].
In sharp contrast to r; above, r approximates exp well only in a neighborhood of the negative
real axis and therefore lacks the universal approximation property of ;. Moreover, r; has finite
poles. When approximating exp(A) for matrices with real nonpositive eigenvalues, as arise e.g. in
connection with parabolic initial value problems, this may appear as a somewhat academic issue;
but, as we shall see, this leads to a tremendous difference in numerical behavior between the two
approaches if the restart length m is sufficiently small. The main distinction is that a restarted
Krylov approximation to f(A)b converges superlinearly if f is an entire function (such as exp,
see [6, Theorem 4.2]), whereas only a linear asymptotic rate of convergence results if f has finite
singularities (such as 7).

We demonstrate this using the following model problem. Let

A = diag(—100, =99, ...,0) € R0 and b =11,1,..., 117 /101 € RO,
(We choose such a simple example in order that the quantities entering our analysis be explicitly
known.) Applying Algorithms 1 and 2 yields approximations to exp(A)b which we shall denote
A A2
byf ,E : andf ,(( ), respectively. We consider restart cycles consisting of m = 1, m =3 and m = 10

steps. Fig. 1 shows the corresponding absolute errors |Jf,({m — exp(A)b|| in the Euclidian norm
(w=12).

For restart length m = 1, we observe that Algorithm 1 converges while Algorithm 2 does
not. To explain why we recall that both algorithms are based on interpolation processes. The
interpolation nodes are the eigenvalues of the Hessenberg matrices Hy. which, for restart length
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m =1, are bidiag\onal. It can be shown® that, in our example, the diagonal entries (and thus the

eigenvalues) of Hy are all equal to 9 = —50. Thus for restart length m = 1, both algorithms are
based on (truncated) Taylor expansions of f = exp and f = rp, respectively, about ¥ = —50:
We have

k—
50
£ = Viexp(Hoe, = ¢ (A=Y M(A +501)7b and
J!
j=0
5 (J)
£ = Vers(Hoe, = ¢ (A)b = Z 20 4 4 sonys,

The Taylor polynomials {qlgl_) 1 Jk=1 converge (albeit slowly) to exp uniformly on compact subsets

of C. Fig. 2 shows the errors ||q,£1_)l — €XP |loo, A(A) := MaX;.e4(A) |q,£1_)1()\) —exp(A)| of these
Taylor polynomials, and these are seen to agree perfectly with the errors of Algorithm 1. The
Taylor polynomials {q,g)1 }k>1, on the other hand, converge to r; in a disk with center ¢+ = —50
and radius miny, | + 50|, where w runs over all poles of r;, and they diverge outside this disk.
The poles of r» closestto ¥ = —50 are & —11 £ 191 with |w — ¥ = 44 < 50. In other words,
the Taylor series of r (with expansion point ¢+ = —50) has T & 44 as its radius of convergence.

Since some of the eigenvalues of A lie outside the convergence disk, the sequence { f ,({2)}/01
must ultimately diverge like [max;.ca) [A + 50|/441F = (50/44)% ~ 1.14K (cf. the dotted line
in Fig. 2). Moreover, Fig. 2 shows that also ||q,§2_)1 — €XP |loo, A(A) 18 in perfect agreement with the
errors of Algorithm 2. (Note that this error curve cannot be distinguished from ||g 152—)1 — 12 l00, A(A)
because |12 — exp [loo,a(4) < 10713))

The matrices Hy are highly nonnormal (¢ = —50 is their only eigenvalue, with algebraic
multiplicity k£ but geometric multiplicity 1). This raises the question of whether it is justified
to base our analysis on this eigenvalue of Hy., which is extremely sensitive to perturbations, or
whether an approach using pseudo-eigenvalues would not be more appropriate. Our answer is
that it does not matter. This is a consequence of a theorem due to Walsh [27, Theorem 7.1] on
the overconvergence of differences of interpolating polynomials (which by the way, is another
area where Richard Varga has made significant contributions). As mentioned above, the diagonal
entries of Hj are all equal to —50. We observe that its subdiagonal entries 7, j—1 converge to 50
(see [1] for a proof), i.e., asymptotically Hj, resembles a Toeplitz matrix with symbol 50(A — 1),
and thus its pseudo-spectra (asymptotically) are disks with center —50 (cf. [22]). In Fig. 2, the
eigenvalues of Hyo + E are shown for 10 random perturbations of norm || E|| = & = 2752, The
large majority of these pseudo-ei genvalues lies on a circle with center —50 and some radius § > 0

(here § ~ 32).If we now consider f = q(3) (A)b, where g1 interpolates r at the nodes —50 +

4 Let pr(A) = ke Py denote the kth monomial and define the vectors w; = [px(—=50), pr(—49), ..., pk G017,
Then Y0 im0 =2500G — Npc? =0  and  therefore,  p = (w] Awg)/Owy w) =

(Z](L—SO(/ —50)pr ()2 )/(ZJ__50 pr()?) = —50. Consider the vector Aw; — pgw, whose jth component

(indexed by j € {—=50, —49, ..., 50}) is (j = 50)pr (j) + 50p () = jpi(J) = Pk+1(J), L.e., AWy — ppwy = Wy 1.
Since for the first Arnoldi vector vj, there holds vy = b = wy/|lwyll and since the Arnoldi vectors satisfy
the recursion wviy) = (Avg — (”k Avpvg) /|| Avg — (vaAvk)ka we see that vg = wy/|lwi|l for all k. Thus,
vy Avk = (wk Awk)/(wk w;) = —50, but these are the diagonal entries of Hk
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=272

ofexp (u=1)and rp (n =2).

Right: eigenvalues of H] 00 + E for 10 random matrices of norm || E ||

sexp(2rij/k) (j=0,1,. — 1), then Walsh’s overconvergence result tells us that, as long as
8 < 44, the difference of the mterpolatmg polynomials |q (A) q,?) | Q)] tends to zero for |4 +

50| < 44%/8. This convergence is linear, more precisely lim SUPy, _s oo MAX|3450|<7 |qk 1()L)

(3)1(A)|1/k (81)/442 We set § = 32 and observe that lim sup,_, o, ||q,§2)1 — ‘1153)1 Hzx/)kA(A)

(50 -32)/(44%) ~ 0.83. In other words, ||fk —fk || tends to zero like 0.83 which is negligible

compared to the size of ||fk —exp(A)b|.

The behavior of Algorithms 1 and 2 for the restart lengths m = 3 and m = 10 (cf. Fig. 1)
can be explained along the same lines: Algorithm 1 relies on an interpolation process for the
exponential function whereas in Algorithm 2 its uniform best rational approximation r; is inter-
polated. The nodes are again the eigenvalues 91, ¥, . . . of the block bidiagonal matrices ﬁk, i.e.,
the eigenvalues of its diagonal blocks Hi, H>, ..., H; which are symmetric tridiagonal matrices
of dimension m = 3 and m = 10, respectively. Now the following observation is crucial: There
holds

lim Hj | =: ﬁl and lim H; = ﬁ

j—00 j—o0
(see [1] for a theoretical justification). The nodal sequence 1, ¥», U3, . . . therefore has the prop-
erty

Lim o0 =: Oy, forv=1,2,...,2m.
J—>00
Asymptotically, we interpolate exp and r» at 2m nodes which are repeated cyclically. In our
example, these nodes are given by
|~ =87, Ury=-50, ~—13, Us4~-92, 0U5=-50, V¢~ —8

if m = 3. The convergence properties of the corresponding interpolation polynomials can be
described in terms of the lemniscates
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Fig. 3. Lemniscates L; for 7 = 7y and T = 74 governing the convergence rate of Algorithm 2 for restart lengths m = 3
(left) and m = 10 (right). The squares mark the nodes ¥, the dots the poles of the rational approximation r5.

2m
Le=(r€CtlwamWI ="}, ©>0,  w@) =[]0—d).
v=1
From a theorem of Walsh [27, Theorem 3.6] it follows that
A2 T
lim sup ||f,({ ) exp(A)b||1/km = —A,
k— o0 K
where
7, = max{t : rp is analytic in the interior of L.},
i.e., L, is the largest lemniscate with foci 5‘,) (v =1,2,...,2m) such that r; is analytic in the

interior of L., and where
74 = min{t : A(A) is contained in the closed interior of L.},

i.e., L, is the smallest lemniscate with foci 5‘,) such that all eigenvalues of A are contained in the
closed interior of L, . Fig. 3 shows these lemniscates for our example.

To summarize, if we replace the exponential function by its rational best approximation then
the convergence of the restarted Lanczos method shows two phases. Initially, we observe the error
behavior of a polynomial approximation to an entire function, i.e., after a start-up phase, where the
error is not reduced, the polynomial converges superlinearly. But there is a point from where on the
poles become visible and then we have slower linear convergence or even linear divergence. This
point is fairly independent of the restart length, whereas the linear rate of convergence/divergence
depends on it (of course, it also depends on the eigenvalues of A). The aim is to choose the restart
length large enough such that at the point of transition the desired accuracy is reached or nearly
reached.

6. Numerical examples

In this section we illustrate the performance of the two restart algorithms for some initial-
boundary value problems. All computations were carried out in MATLAB Release 2007a on an
Intel Xeon 5160 at 3 GHz with 16 GB RAM running SuSE Linux Enterprise Server (SLES)
Version 10.
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Table 1 Execution times, number of matrix—vector products and final accuracy for the solution of the heat equation
(n = 50) for different restart lengths m

m Algorithm 1 Algorithm 2
Time (s) Mvp Acc. Time (s) Mvp Acc.

oo (1) 5.6 282 Se-14 39 282 Se-12
oo (I1) 9.7 564 Se-14 7.6 564 Se-12
50 4.8 350 3e-14 4.1 300 6e—12
30 7.9 360 2e-14 6.0 330 Se-12
20 9.5 380 Se-15 7.2 400 6e—12
10 17.4 430 9e-15 - - -

Here, m = oo (1) refers to the standard (unrestarted) Lanczos method, while m = oo (I1) stands for the (unrestarted)
two-pass Lanczos algorithm.

6.1. The heat equation

Our first numerical experiment is based on a standard example in this area (see, e.g. [9,6]): We
consider the initial-boundary value problem

du—Au=0 inQ=(0,13 >0, (20a)
ux,nH=0 onl'=0Q, >0, (20b)
u(x,0) =up(x) in Q. (20c)

When the Laplacian is discretized by the usual seven-point stencil on a uniform grid involving n
interior grid points in each Cartesian direction, problem (20) reduces to the initial value problem

u'(t) = Au(t), t >0,
u(0) = u,

withann x n matrix A (n = n?) and an initial vector u, consisting of the values u((x) at the grid
points x, the solution of which is given by

u(t) = exp(tAuy. 21

As in [9], we give the initial vector in terms of its expansion in eigenfunctions of the discrete
Laplacian as
ugj’k = Z ﬁ sin(ii’mwh) sin(jj'mh) sin(kk'mh).
i j kK

Here h = 1/(n1 + 1) is the mesh size and the triple indexing is relative to the lexicographic
ordering of the mesh points in the unit cube.

We consider this problem for a discretization with n; = 50, resulting in a matrix of dimension
n = 125,000. We apply the restarted Lanczos approximation with restart lengths m = 10, 20, 30,
and 50 as well as the full Lanczos algorithm (m = oo (I)) and the two-pass Lanczos method
(m = oo (II)). Each iteration is run until the accuracy no longer improves. Note that, in the full
methods (m = 00), the evaluation of exp(Hy) is only performed once, when final accuracy is
reached. The resulting execution times are shown in Table 1.

For m = 10, Algorithm 2 converges so slowly that the final accuracy was not reached even
after 2000 matrix—vector multiplications. The fastest method is clearly the full Lanczos algorithm
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Fig. 4. The error indicators described in Section 4 applied to the heat equation for the restart lengths m = 20 (left) and
m = 50 (right) and for Algorithm 1 (dashed line) and 2 (dotted line).

(m = oo (1)), but note that it requires storing 282 vectors of dimension n = 125,000 (282 MB).
To our surprise, the restarted method (for m = 30 and m = 50) is faster than the two-pass Lanczos
algorithm. One also observes that Algorithm 2 is generally faster than Algorithm 1, but that the
final accuracy of Algorithm 1 is higher. This loss of accuracy for Algorithm 2 stems from the
eight linear systems we have to solve in each cycle. For m = 50 the condition numbers of their
coefficient matrices vary between 2 x 10% and 4 x 102 (see Table 2).

‘We conclude this example by applying the error indicators described in Section 4 for the restart
lengths m = 20 and m = 50 (see Fig. 4). We obtain lower (m = 1) and upper (m = 2) bounds
for our two restart algorithms. By their construction it is clear that the error indicators cannot
detect when the method begins to stagnate because final accuracy has been reached (but this can
easily be detected by other means). However, for Algorithm 2 the point where the convergence
behavior changes from superlinear to linear is located precisely (even in cases where this occurs
long after final accuracy is reached).

6.2. Maxwell’s equations

We next consider a problem which occurs in geoelectrical exploration and for which Lanczos-
based Krylov subspace approximations have been very successful, see [5] and the references
given there. In the absence of impressed source currents the time-evolution of an electric field
E = E(x,t) from a given initial state E, = E(x) at time #) is the solution of the initial value
problem

HWE)+Vx(u 'VxE =0 inQ, 1>r1, (22a)
nx E=0 on0dQ, (22b)
E(x,19) = Ey(x) inQ (22¢)

for the quasi-static Maxwell’s equations. Here the domain is a cube Q = (—L, L)3, where L =
2000 and the magnetic permeability u and electric conductivity o are taken to have the constant
values . = 4 x 1077 and o = 0.1. The initial data E,, is the field at time 1) = 10 of a vertical
magnetic dipole of unit strength located at the origin for which an analytic expression is known

(see [28]).
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Fig. 6. Absolute errors of the approximations of f(A)b for different restart lengths m in the case of Maxwell’s equations.

We discretize the operator o "'V x (1~ 'V x -) in space using the Yee finite difference scheme
[29] on a graded tensor product mesh (see Fig. 5). After symmetrization (cf. [5]) this yields a
symmetric matrix A € R"*" and a vector e, € R" which is a sampled version of the initial
electric field. The semi-discretized system (22) thus reduces to a linear linear system of ordinary
differential equations with constant coefficients

e'(1) = —Aet), e(ty) = e,
with solution
e(t) = exp(—(t —19)A)e.

The eigenvalues of A are contained in [0, Amax], Amax < 13/ (hrznino W), where hpi, is the minimal
distance of two adjacent grid-points.

In our example (cf. Table 2 and Fig. 6) the matrix A is of size n = 565, 326 and Ap,x ~ 108. We
approximate E(r1), r; = 1073, using the Lanczos algorithm (I), the two-pass Lanczos algorithm
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Table 2 Performance comparison of several variants of Lanczos and restarted Lanczos methods for Maxwell’s equations

m Algorithm 1 Algorithm 2

Time (s) Mvp Acc. Time (s) Mvp Acc.
oo (I) 118 1072 9.93e-13 86 1072 9.93e-13
oo (I1) 176 2144 9.93e-13 144 2144 9.93e-13
90 273 1350 1.92e-13 118 1350 2.0le-13
70 339 1400 3.28e-13 112 1400 9.13e-13
50 613 1600 2.10e-13 Slow convergence
30 2014 2040 5.64e-13 Divergence

(II), as well as Algorithm 1 and Algorithm 2 given above. As a reference solution e(¢1) we used
the approximation obtained by the Lanczos method when it stagnates at final accuracy.

In Algorithm 2 we solve eight tridiagonal linear systems in each cycle instead of calling
MATLAB’s expm which is much more expensive. As a consequence the execution time of
Algorithm 2 is dominated by the number of matrix—vector products. This explains why the restarted
Krylov methods perform slightly faster than the full two-pass Lanczos method if Algorithm 2 is
applied. We terminated our timing measurements for all algorithms when the absolute error to
e()) fell below 10712,

6.3. The advection—diffusion equation

We consider the initial value problem

1
atu—P—Au—i—a'Vuzo inQ=(-1,1) x (0, 1), (23a)
e
u =1 —tanh(Pe) on I, (23b)
u =1+ tanh((2x 4+ 1)Pe) on I, (23¢)
0
B (23d)
on
u(x,0) =ug(x) inQ (23e)

for the advection—diffusion equation, which is a popular benchmark problem for discretizations
of advection-dominated problems, see [24]. The convective field is given as

2
awn =| BT wee

and the boundary I' = 0Q is divided into the inflow boundary Iy, :=[—1, 0] x {0}, the outflow
boundary I'gy :=10, 1] x {0} and the remaining portion Iy (cf. Fig. 7, left). The Péclet number
Pe is a nondimensional parameter describing the strength of advection relative to diffusion and
therefore also how far the discrete operators are from symmetric.

We discretize the advection—diffusion operator for Pe = 10 in space using linear finite elements
on a triangulation generated by the adaptive mesh generation facility in the COMSOL MULTIPHYSICS
finite element software (version 3.3a). In the resulting mesh, shown on the right of Fig. 7, one
can observe refinements near the sharp transition in the inflow profile and near the origin, around
which the advection field rotates. After multiplying from the left by the square root of the (lumped)
mass matrix,’ the semi-discretized problem is a system of ODEs

5 This makes the Euclidean norm of the transformed vectors coincide with the L2-norm on the finite element space.
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Fig. 8. Relative errors of the full and restarted Arnoldi approximation for the advection—diffusion problem.
u'(t) = Aut) +g, u0) = u,,

where A is of size n = 2157 and the constant inhomogeneous term g results from the inhomo-
geneous Dirichlet boundary condition. We then approximate the matrix exponential part of the
solution

u(t) =exp(tA)(wy+ A 'g) — A7 g

at time ¢ = 6, at which the flow hat reached a steady state, starting from rest u, = 0, using the
unrestarted Arnoldi approximation as well as the restarted schemes of Algorithms 1 and 2.

The error curves for restart lengths m = 30, 60 and 90 are shown in Fig. 8. We observe that,
despite the rather small system size, even the unrestarted Arnoldi method requires roughly 500
steps to reach an accuracy of around 10~!2. This slow convergence as well as the nonmonotonic,
somewhat more erratic convergence curve indicate that this is a harder problem than the preceding
two. We also observe that the methods of restart lengths m = 60 and m = 90 converge at nearly
the same rate, and it is noticeable that Algorithm 2 reaches a final accuracy of only around 10~12
in all cases. The main reason for this loss of accuracy lies in the fact that the spectrum of A
extends into the complex plane, and on the spectrum we have [|r2 — exp ||, 1(4) ~ 10~ for the
best uniform rational approximation r on (—o00, 0]. Moreover, since A is highly nonnormal, the
difference r(A) — exp(A) is not determined by the eigenvalues of A alone and on the field of
values W(A) of A we have ||r; — exp |loo,w(a) & 107°.

Table 3 gives execution times for this example. We observe that the efficiency of Algorithm
2 over Algorithm 1 is most pronounced here. The fact that both restarted variants took longer
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Table 3 Execution times, number of matrix—vector products and final accuracy for the solution of the advection—diffusion
problem for different restart lengths m

m Algorithm 1 Algorithm 2

Time (s) Mvp Acc. Time (s) Mvp Acc.
00 8.6 410 9e-13 6.7 420 9e-13
90 90.1 1170 8e-14 12.0 1170 3e-13
60 121.0 1140 6e-13 11.8 1140 8e-13
30 685.7 1560 4e-13 153 1560 6e-13

than the full versions is attributed to the small size of the problem. For large problems, where
the orthogonalization effort of full Arnoldi becomes more noticeable, we expect the timings to
increasingly favor the restarted versions. Note that the advantage of requiring less storage is
present also for these small problems.

7. Conclusions

Restarting Krylov subspace approximations of f(A)b is of interest because short recurrences
for Krylov basis vectors do not translate to short recurrences for the quantity being approximated.
We have introduced an efficient implementation for a restarted Krylov subspace approximation
and compared it against the approach introduced in [6], both in terms of execution time and
convergence properties. The new approach, Algorithm 2, is faster, as it solves a fixed number
of linear systems of equations the size of the restart length m instead of, as is the case with
Algorithm 1, evaluating a function of a matrix of increasing size km in the kth cycle.
Algorithm 2, while sometimes considerably faster, has the disadvantage that the restart length
may need to be chosen somewhat larger to ensure convergence. Moreover, the solution of the
linear equations in each cycle of Algorithm 2 can introduce some ill-conditioning which limits the
final attainable accuracy. For the examples considered here involving the exponential propagation
of semi-discretized partial differential operators subject to discretization errors, the requirements
on final accuracy are usually sufficiently low that this is not a severe limitation. We have further
introduced an error indicator which allows the termination of the iteration once sufficient or final
accuracy has been reached. Moreover, we have pointed out the fundamental limitations of using
a fixed rational approximation of f to evaluate f (ﬁk) when the poles of the former approach the
spectrum of A.

For the case of the exponential function, the new method was seen to be competitive with
established methods for two symmetric problems, and a viable solution approach for a difficult
non-Hermitian problem. In summary, Algorithm 2 is an attractive scheme, particularly when
memory is limited so that the unrestarted Arnoldi method is not an option.
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