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Abstract

We provide an overview of existing strategies which compensate for the deterioration of convergence of minimum
residual (MR) Krylov subspace methods due to restarting. We evaluate the popular practice of using nearly invariant
subspaces to either augment Krylov subspaces or to construct preconditioners which invert on these subspaces. In the case
where these spaces are exactly invariant, the augmentation approach is shown to be superior. We further show how a
strategy recently introduced by de Sturler for truncating the approximation space of an MR method can be interpreted as
a controlled loosening of the condition for global MR approximation based on the canonical angles between subspaces.
For the special case of Krylov subspace methods, we give a concise derivation of the role of Ritz and harmonic Ritz
values and vectors in the polynomial description of Krylov spaces as well as of the use of the implicitly updated Arnoldi
method for manipulating Krylov spaces. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

When Krylov subspace methods are employed for approximating the solution of large sparse or
structured linear systems of equations

Ax= b; A nonsingular; (1)

their stable implementation requires the construction of orthonormal bases of spaces which increase
in dimension with each iteration step.
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If the operator A is Hermitian, or if the notion of orthogonality is suitably modi�ed (see [3]), then
these bases can be generated by short recurrence formulas, and this is the key to the e�ciency of
such widely used methods as CG, MINRES, BCG and QMR (see the monographs of Saad [18] and
Greenbaum [9] for an exposition of these methods). For non-Hermitian A, however, a result of Faber
and Manteu�el [6] implies that the construction of such bases which are orthonormal with respect to
a given inner product generally involves orthogonalization against all previously generated vectors,
as in algorithms such as FOM, GCR and GMRES. When the resulting storage and computation
requirements make these methods impractical, they are often modi�ed to compute an approximation
with respect to a space of a�ordable size, after which the algorithm is restarted using the current
approximation as the initial guess. Since restarting usually results in slower convergence (or the loss
thereof altogether), much recent work has been devoted to compensating for the loss of informa-
tion that occurs upon restarting by retaining a judiciously chosen part of the previously generated
space.
We distinguish two fundamental strategies in existing work: One lies in identifying a subspace U

which slows convergence, approximating this space and eliminating its in
uence from the iteration
process. We shall refer to such a procedure as de
ation. Such “problematic” subspaces are often
identi�ed as eigenspaces of A associated with eigenvalues of small magnitude, but other spaces
may sometimes be better suited. Examples of this approach are the augmentation method introduced
by Morgan [13,14] and analyzed by Saad [19,20] and Chapman and Saad [2]. Another device for
eliminating U from the iteration is to introduce a preconditioner which inverts the orthogonal section
of A onto U, as proposed by Erhel et al. [5], Baglama et al. [1] and, with certain modi�cations, by
Kharchenko and Yeremin [10]. The second fundamental strategy consists of identifying the essential
orthogonality constraints by comparing angles between subspaces and maintaining orthogonality only
against the most important subspace of a given dimension. Such a strategy is proposed by de Sturler
[26].
The main intent of this paper is to provide an abstract framework which permits a uniform

presentation as well as a comparison of these methods. Although proposed originally in association
with Krylov subspace methods, these approaches can all be applied in the case of completely general
correction spaces, as we show in Sections 2.3 and 2.4. In the Krylov subspace case, much emphasis
has been placed on the approximation properties of invariant or nearly invariant correction spaces,
particularly so in connection with augmentation strategies. We present several results which attempt to
shed light on exactly when nearly invariant subspaces are useful. We also show that Krylov spaces
can never contain invariant subspaces without being themselves invariant; similarly, an invariant
space cannot contain a Krylov space without also containing the associated smallest invariant Krylov
space. However, we show that augmenting by invariant subspaces does eliminate the components of
the resulting residual in this space.
Since none of the results we shall derive are restricted to the �nite-dimensional case, the setting

of a separable Hilbert space H with inner product (·; ·) and associated norm ‖·‖ is the most natural,
and we assume that A in (1) is a bounded linear operator.
Section 2 reviews the basic theory of iterative subspace correction methods for solving (1), which

are based on the minimal residual (MR) and orthogonal residual (OR) approaches. We highlight
the fundamental role of the angles between correction and approximation spaces as introduced in
[3]. In addition, the necessary orthogonality relations are described, which must hold for the MR
approximation with respect to two arbitrary subspaces to yield the MR approximation with respect
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to the sum of these spaces, and it is shown how these orthogonality relations may be relaxed in an
optimal way.
Section 3 reviews the implications of using Krylov spaces with regard to the simpli�cation of the

algorithms and the advantages of the polynomial representation of the residuals. We include new,
much simpli�ed derivations of the role of Ritz and harmonic Ritz values and vectors of A as well
as how the recently developed implicitly restarted Arnoldi method can be used to restart the Arnoldi
process without additional matrix–vector multiplications.
Section 4 discusses possible strategies for augmenting Krylov spaces and derives some results

showing the limitations for augmenting Krylov spaces to obtain A-invariant subspaces. The remainder
of Section 4 gives an overview of the most popular restart algorithms, beginning with restarted
GMRES itself, for which we give a surprising example for which GMRES with longer restart
lengths actually displays slower convergence than for shorter restart lengths. Next, the augmentation
algorithm of Morgan is presented, and a new, much simpli�ed proof is given that the augmented
Krylov spaces are themselves Krylov spaces. In addition, we show that, at least in the case of
exactly invariant subspaces, the augmentation approach is superior to the preconditioning algorithms
of Erhel et al. [5] and Baglama et al. [1]. Finally, the optimal truncation algorithm of de Sturler is
presented as an implementation of the selective orthogonalization strategy of Section 2.4.

2. Minimal and orthogonal residual methods

2.1. De�nitions and basic theory

Given an initial guess x0 for the solution of (1) together with the associated residual vector
r0 = b− Ax0 and a sequence of nested correction spaces in H,

{0}= C0⊂C1⊂C2⊂ · · ·⊂Cm⊂Cm+1⊂ · · ·
(for notational convenience, we assume that dimCm = m), all methods we shall consider lead to
iterates of the form xm=x0 +cm with cm ∈ Cm. They di�er in the way the corrections cm are selected
from Cm.
For the mth MR iterate xMRm = x0 + cMRm , the correction cMRm is chosen from Cm to satisfy

‖b− AxMRm ‖= ‖r0 − AcMRm ‖=min
c∈Cm

‖r0 − Ac‖; (2)

or equivalently, such that AcMRm is the best approximation to r0 from the mth approximation space
Wm :=ACm. As A is invertible, cMRm and xMRm are uniquely de�ned; speci�cally, they are characterized
by

rMRm = b− AxMRm = r0 − AcMRm ⊥Wm: (3)

To de�ne the OR iterates we introduce the residual spaces

Vm+1 := span{r0}+Wm; m¿0; (4)

the name of which derives from the fact that the residual b−Ax lies in the space span{r0}+ACm=Vm+1
whenever x= x0 + c; c ∈ Cm. We now set xORm = x0 + cORm with cORm ∈ Cm such that

rORm = b− AxORm = r0 − AcORm ⊥Vm: (5)
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In contrast to the MR approximation, the OR iterate may not exist for every m; when it does exist,
which is the case if and only if H =Wm ⊕ V⊥

m (see [3, Proposition 2:2]), then it is uniquely
determined.
Clearly, the mth MR approximant xMRm as well as the mth OR approximation xORm coincide with

the exact solution of (1) if and only if A−1r0 ∈ Cm or equivalently, if and only if r0 ∈ Wm. If such
an index m exists we de�ne

L :=min{m :xMRm = A−1b}=min{m :xORm = A−1b} (6)

and otherwise set L :=∞. Alternative characterizations of the termination index L are
L=min{m : r0 ∈ Wm}=min{m :Wm =Vm}=min{m :Vm =Vm+1}: (7)

The most popular implementations of both MR and OR methods rely on orthonormal bases
{C1; : : : ; Cm+1} of the residual spaces Vm+1 generated inductively by orthonormalizing Acm against
a (previously constructed) orthonormal basis {C1; : : : ; Cm} of Vm using the (modi�ed) Gram–Schmidt
algorithm. Here cm is an arbitrary vector from Cm \ Cm−1 and C1 = r0=� with � := ‖r0‖. As long
as Acm 6∈ Vm, a new orthonormal vector Cm+1 is generated and we may proceed to the next step.
If, however, Acm ∈ Vm, which is equivalent to Acm ∈ span{r0; Ac1; : : : ; Acm−1}, then the algorithm
terminates in step m. Since Ac1; : : : ; Acm are linearly independent (because A is invertible), we see
from (6) that Acm ∈ Vm is equivalent to m = L. In summary: The Gram–Schmidt process is well
de�ned up to the last step, in which xMRL = xORL = A−1b.
With Cm := [c1c2 · · · cm] and Vm+1 := [C1C2 · · · Cm+1], the �rst m orthonormalization steps establish

the following Arnoldi-type decomposition of A:

ACm = Vm+1H̃m = VmHm + �m+1;mCm+1uTm; (8)

(for m= L, we have ACL=VLHL), where H̃m= [�j;k] ∈ C(m+1)×m is an upper Hessenberg matrix and
Hm := [Im 0]H̃m ∈ Cm×m is the square matrix obtained by deleting the last row of H̃m. The entries
of H̃m are given by �j;k = (Ack ; Cj); 16k6j6m, and �k+1; k = ‖Ack −∑k

j=1 �j;kCj‖¿0, with equality
holding if and only if k = L. In other words, H̃m is an unreduced upper Hessenberg matrix (and
hence of full rank m) as long as m¡L. For m = L; ACL = VLHL implies that HL is nonsingular
because A is invertible and both CL and VL have rank L.
With respect to the orthonormal basis 1 Vm+1 of Vm+1, the vector r0 = �C1 = Vm+1�u(m+1)1 has the

coordinates �u(m+1)1 (u(m+1)1 ∈ Cm+1 denotes the �rst unit vector), while the approximation space
Wm = ACm is represented by the column space of H̃m. Consequently,

min
c=Cmy∈Cm

‖r0 − Ac‖ and min
y∈Cm

‖�u(m+1)1 − H̃my‖2
are equivalent problems (‖ · ‖2 denotes the Euclidean norm in Cm+1).
For xMRm = x0 + CmyMRm , condition (2) therefore leads to the least-squares problem

‖�u(m+1)1 − H̃myMRm ‖2 = miny∈Cm
‖�u(m+1)1 − H̃my‖2: (9)

Representing the OR iterate as xORm =x0+Cmy
OR
m , the Galerkin condition r

OR
m ⊥Vm (cf. (5)) similarly

leads to the linear system

0= [Im 0](�u(m+1)1 − H̃myORm ) = �u
(m)
1 − HmyORm :

1 For convenience we shall identify a basis {C1; : : : ; Cm} with its representation as the row vector Vm = [C1 · · · Cm].
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It can be shown (see [3, Remark 4:2]) that nonsingularity of Hm is equivalent to the existence of
the OR approximation xORm .
The orthonormal basis {C1; : : : ; Cm; Cm+1} of the residual space Vm+1 is the key to a simple repre-

sentation of the quantities related to the OR approximation. For instance, rORm is a scalar multiple
of Cm+1, as follows immediately from Vm+1 3 rORm ⊥Vm = span{C1; : : : ; Cm}. Since rMRm ⊥Wm (see (3)),
an orthonormal basis {Ĉ1; : : : ; Ĉm; C̃m+1} of Vm+1 with the analogous property with regard to the MR
approximation should ful�ll the condition span{Ĉ1; : : : ; Ĉm}=Wm.
It was already noted by Paige and Saunders [16] that the construction of such a basis derives

from the computation of a QR decomposition of H̃m. Indeed, if

QmH̃m =
[
Rm
0

]
(10)

with Qm ∈ C(m+1)×(m+1) unitary and Rm ∈ Cm×m upper triangular (and nonsingular since H̃m has full
rank), then

[V̂m C̃m+1] = [Ĉ1 · · · Ĉm C̃m+1] :=Vm+1QHm (11)

forms an orthonormal basis of Vm+1. Moreover,

ACm = Vm+1H̃m = Vm+1QHm

[
Rm
0

]
= [V̂m C̃m+1]

[
Rm
0

]
= V̂mRm (12)

shows that V̂m constitutes a basis of Wm = ACm.
On the other hand, using the QR factorization (10) the least-squares problem (9) can be rewritten

as

min
y∈Cm

‖�u(m+1)1 − H̃my‖2 = miny∈Cm

∥∥∥∥QHm
(
�Qmu

(m+1)
1 −

[
Rm
0

]
y
)∥∥∥∥

2

= min
y∈Cm

∥∥∥∥�Qmu(m+1)1 −
[
Rm
0

]
y
∥∥∥∥
2

= min
y∈Cm

∥∥∥∥∥
[
�qm − Rmy
�q(m)m+1;1

]∥∥∥∥∥
2

;

where [qTm q
(m)
m+1;1]

T = Qmu
(m+1)
1 (qm ∈ Cm) denotes the �rst column of Qm. The unique solution of

the above least-squares problem is yMRm = �R−1
m qm and the associated least-squares error is given by

‖rMRm ‖= �|q(m)m+1;1|.
A QR factorization of H̃m (and simultaneously the basis [V̂m C̃m+1]) can be computed inductively.

The matrices Qm; m= 1; 2; : : : ; L− 1, are usually constructed as products of Givens rotations
Qm = Gm

[
Qm−1 0
0 1

]
= Gm

[
Gm−1 0
0 1

] [
Gm−2 O
O I2

]
· · ·
[
G1 O
O Im−1

]
(13)

where, for k = 1; 2; : : : ; m,

Gk :=


 Ik−1 0 0
0 ck ske−i�k

0 −skei�k ck


 (ck ; sk¿0; c2k + s

2
k = 1; �k ∈ R)

(for the choice of ck ; sk and �k see, e.g., [3]).
In view of (11) we have

[V̂m C̃m+1] =Vm+1QHm = [Vm Cm+1]
[
QHm−1 0
0 1

]
GHm = [V̂m−1 C̃m Cm+1]GHm;



266 M. Eiermann et al. / Journal of Computational and Applied Mathematics 123 (2000) 261–292

i.e., with C̃1 = C1,

Ĉm = cmC̃m + sme−i�mCm+1;
C̃m+1 =−smei�m C̃m + cmCm+1

for m= 1; 2; : : : ; L− 1. For ease of notation, we further set ĈL := C̃L.
Expressions for the entries of the unitary matrices Qm=[q

(m)
k; j ]16k; j6m+1 can be obtained by forming

the products of the Givens matrices in (13). For the �rst column, this yields

q(m)k;1 = ck
k−1∏
j=1

[− sjei�j ] (16k6m); q(m)m+1;1 =
m∏
j=1

[− sjei�j ];

which immediately leads to the following result (cf. [3, Proposition 4.7]):

Proposition 2.1. For the MR and OR residual vectors of index m= 1; 2; : : : ; L− 1 there holds:

rMRm = �q(m)m+1;1C̃m+1 = �
m∏
j=1

[− sjei�j ]C̃m+1;

rORm =−� sm
cm
ei�mq(m−1)m;1 Cm+1 =

�
cm

m∏
j=1

[− sjei�j ]Cm+1;

rMRm−1 − rORm =
�
cm
q(m−1)m;1 Ĉm =

�
cm

m−1∏
j=1

[− sjei�j ]Ĉm:

Proposition 2.1 shows that the convergence history of an MR method (and, in essence, also of
an OR method) is completely determined by the entries in the �rst column of the matrices Qm. To
emphasize this point we assume a �nite termination index L and note that the matrix HL possesses the
QR factorization QL−1HL=RL. Now r0 ∈ WL (cf. (6)) can be represented as a linear combination of
the orthonormal basis {Ĉ1; Ĉ2; : : : ; ĈL} ofWL; r0=�VLu1=�VLQHL−1QL−1u1=�V̂LQL−1u1, or equivalently,
r0 = �

∑L
j=1 q

(L−1)
j;1 Ĉj = �

∑L
j=1 q

( j)
j;1 Ĉj (where we set q

(L)
L;1 := q

(L−1)
L;1 ). This equation states that, up to the

factor �, the �rst column of the matrix QL−1 contains the Fourier coe�cients of the expansion of r0
with respect to the basis V̂L of WL. The MR correction cMRm is selected such that AcMRm is the best
approximation to r0 from Wm, i.e.,

AcMRm = �
m∑
j=1

q( j)j;1 Ĉj and rMRm = r0 − AcMRm = �
L∑

j=m+1

q( j)j;1 Ĉj:

2.2. The angle connection

We saw in Proposition 2.1 that the sines and cosines of the Givens rotations used to construct the
QR decomposition of H̃m completely determine the residuals of both the MR and the OR approach.
In this section, we recall that these sines and cosines are not merely artifacts of the computational
scheme but are the sines and cosines of the angles between Wm and Vm, i.e., between the mth
approximation and the mth residual space.
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By

’m :=“(rMRm−1; ACm) =“(r
MR
m−1;Wm) (m= 1; 2; : : : ; L);

we denote the angle between rMRm−1 and ACm =Wm. 2 Note that 0¡’m6�=2 for m= 1; 2; : : : ; L− 1,
but ’L = 0 because rMRL−1 ∈ VL =WL.
The following relations are fundamental for our later investigations (for a proof, see [3, Section

2]).

Theorem 2.2. For m= 2; 3; : : : ; L; there holds

sin’m =
sin“(r0;Wm)
sin“(r0;Wm−1)

= sin“(Vm;Wm);

where “(Vm;Wm) denotes the largest canonical angle between the spaces Vm and Wm. 3 For the
case of m= 1; we have V1 = span{r0} and thus sin’1 = sin“(V1;W1). In addition; there holds

sin“(r0;Wm) = sin’1 sin’2 · · · sin’m (m= 1; 2; : : : ; L):

Moreover; the quantities cm and sm which de�ne the Givens rotations Gm of (13) are given by

cm = cos’m and sm = sin’m (m= 1; 2; : : : ; L− 1):

As a consequence of these assertions, we cite from [3, Section 3] how the vectors involved in the
MR and OR approximations are related.

Theorem 2.3. With sm=sin“(rMRm−1; ACm) and cm=cos“(r
MR
m−1; ACm) the MR and OR approxima-

tions with respect to the correction spaces Cm satisfy

‖rMRm ‖= sm‖rMRm−1‖= s1s2 : : : sm‖r0‖; (14)

‖rMRm ‖= cm‖rORm ‖; (15)

xMRm = s2mx
MR
m−1 + c

2
mx

OR
m and rMRm = s2mr

MR
m−1 + c

2
mr
OR
m : (16)

2 For the reader’s convenience, we recall that the angle between a nonzero vector x ∈ H and a subspace U⊂H; U 6=
{0}, is de�ned by

cos“(x;U) = sup
06=u∈U

cos“(x; u) = sup
06=u∈U

|(x; u)|
‖x‖ ‖u‖ :

If U is �nite dimensional this angle is also given by cos“(x;U)=‖PUx‖=‖x‖, where PU denotes the orthogonal projection
onto U, and consequently, “(x;U)=0 if and only if x ∈ U. Moreover, sin“(x;U)=‖(I−PU)x‖=‖x‖, and consequently,
“(x;U) = �=2 if and only if x⊥U.

3 Given orthonormal bases {Cj}mj=1 and {wj}mj=1 of two m-dimensional subspaces V and W, then the cosines of the
canonical angles between V and W are the singular values of the matrix of inner products [(Cj ;wk)] ∈ Cm×m. For later
use, we remark that the sine of the largest canonical angle between the spaces V and W of equal dimension is given by
‖(I − PV)PW‖ (cf. [23, Theorem 4:37]).
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For later use, we mention another important relation

‖rMRm ‖= sin“(r0; ACm)‖r0‖; (17)

which follows from (14) and Theorem 2.2.

In view of sm= ‖rMRm ‖=‖rMRm−1‖, i.e., cm=
√
1− ‖rMRm ‖2=‖rMRm−1‖2, (15) and (16) are easily rewritten

as

‖rMRm ‖=
√√√√1− ‖rMRm ‖2

‖rMRm−1‖2
‖rORm ‖;

xORm =
‖rMRm−1‖2

‖rMRm−1‖2 − ‖rMRm ‖2x
MR
m − ‖rMRm ‖2

‖rMRm−1‖2 − ‖rMRm ‖2x
MR
m−1:

As can be seen from the last two equations, the OR approximation and residual can easily be
computed from the corresponding MR quantities. Moreover, since the latter can always be computed
in a stable fashion, this is the preferable way of computing these quantities. (An exception is, of
course, the Hermitian positive-de�nite case, in which the OR quantities may be computed stably and
at lower expense than their MR counterparts by the classical method of conjugate gradients.)

2.3. Multiple subspace correction

Various recently developed enhancements of the basic MR and OR schemes presented above are
based on introducing additional subspace corrections aside from those associated with the stepwise
increasing correction spaces. Existing approaches include generating such auxiliary projections from
spectral information on the operator A gained during the iteration process or from additional in-
ner iteration or restart cycles. In addition, time and storage constraints often make it necessary to
form these projections only approximately, while at the same time keeping this approximation as
e�ective as possible. To better describe and compare these new developments, we �rst formulate
the basic projection steps required to combine two subspace corrections and then, in Section 2.4,
discuss how subspace information may be quanti�ed in order to construct e�ective approximate
projections.
Consider an initial approximation x0 to the solution of (1) for which we seek the MR approx-

imation x0 + c with c selected from the correction space C. We assume C to be the direct sum
C=C1⊕C2 of two spaces C1 and C2, and our goal is to obtain the MR approximation as the result
of two separate projection steps involving C1 and C2, respectively. This task is equivalent to �nding
the best approximation w= Ac ∈ W = AC =W1 ⊕W2 to r0, where Wj :=ACj, j = 1; 2.
If, in a �rst step, we obtain the best approximation w1 =PW1r0 in W1, then the best approximation

in W is obtained by introducing the orthogonal complement Z :=W∩W⊥
1 of W1 in W, in terms of

which W has the direct and orthogonal decomposition W=W1⊕Z. The global best approximation
is now given by

w :=PWr0 = (PW1 + PZ)r0 = PW1r0 + PZ(I − PW1)r0: (18)

The last expression shows that the contribution from the second projection consists of the orthogonal
projection onto Z of the error (I − PW1)r0 of the �rst approximation.
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Expressing all spaces in terms of C1 and C2 and noting that Z=(I −PAC1)AC2, we conclude that
the correction c associated with the residual approximation w satis�es

Ac = w= PAC1r0 + P(I−PAC1 )AC2 (I − PAC1)r0:
The global correction is thus of the form c = c1 + d , where

Ac1 = PAC1r0; (19)

Ad = P(I−PAC1 )AC2 (I − PAC1)r0: (20)

The solution c1 of (19) is simply the MR solution of the equation Ac = r0 with respect to the
correction space C1. To obtain a useful representation of d , we note that the right-hand side of (20)
may be viewed as the MR approximation with respect to C2 of the equation

(I − PAC1)Ac = (I − PAC1)r0: (21)

Lemma 2.4. The operator (I − PAC1)A restricted to C2 is a bijection from C2 to Z.

Proof. The assertion follows by showing that the operator in question is one-to-one: (I−PAC1)Ac̃=0
for c̃ ∈ C2 implies Ac̃ ∈ AC1 ∩ AC2 = {0}.

The solution d of (20) yielding the second component of the combined correction c may thus be
obtained by �rst determining the MR solution c2 of (21) and then evaluating

d = A−1(I − PAC1)Ac2 = c2 − A−1PAC1Ac2: (22)

Lemma 2.5. The operator P :=A−1(I−PAC1)A restricted to C2 is the oblique projection onto A−1Z
along C1.

Proof. The projection property follows immediately upon squaring P. Since A is nonsingular, null(P)=
A−1W1 = C1 and range(P) = A−1(AC1)⊥. Restricted to C2, the range reduces to the preimage under
A of the orthogonal complement of AC1 with respect to AC2, i.e., A−1Z.

At �rst glance, the evaluation of d as given in (22) appears to require a multiplication by A as
well as the solution of another equation involving A with a right-hand side from AC1, in addition
to the computation of the two projections. In fact, we show how d can be calculated inexpensively
using quantities generated in the course of the two MR approximation steps.
Assume C1 has dimension m and that C(1)m = [c(1)1 · · · c(1)m ] denotes a basis of C1. The MR ap-

proximation c1 has the coordinate representation c1 = C(1)m y1 with y1 ∈ Cm. We write the associated
Arnoldi-type decomposition (8) as AC(1)m =V

(1)
m+1H̃

(1)
m . The QR decomposition Q

(1)
m H̃

(1)
m =R

(1)
m (cf. (10))

makes available the Paige–Saunders basis V̂
(1)
m (cf. (11)), which forms an orthonormal basis of AC1.

Note also that, in view of relation (12), there holds

A−1V̂
(1)
m = C(1)m R

−1
m : (23)

The orthogonal projection PAC1 may be expressed in terms of V̂
(1)
m as V̂

(1)
m [V̂

(1)
m ]

∗, (for V =[C1 · · · Cm],
W=[w1 · · ·wm], we denote by VW ∗ the linear operator x 7→∑m

j=1 (x;wj)Cj) and, denoting the residual
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of the �rst MR approximation by r1 := r0 − Ac1, Eq. (21) may be written
(I − V̂ (1)m [V̂

(1)
m ]

∗)Ac = r1:

The Arnoldi-type decomposition associated with Eq. (21) in terms of the basis C(2)k = [c(2)1 · · · c(2)k ]
of the correction space C2 is given by

(I − V̂ (1)m [V̂
(1)
m ]

∗)AC(2)k = V (2)k+1H̃
(2)
k (24)

with the associated MR approximation c2 = C
(2)
k y2, for some y2 ∈ Ck . The solution d of (20) as

given in (22) can now be expressed as

d = c2 − A−1PAC1Ac2 = C
(2)
k y2 − A−1V̂

(1)
m [V̂

(1)
m ]

∗AC(2)k y2

=C(2)k y2 − C(1)m [R(1)m ]−1([V̂
(1)
m ]

∗AC(2)k )y2;

which shows that the action of A−1 in (22) is e�ected by the inverse of the (small) triangular matrix
R(1)m . We further observe that the evaluation of Ac2 in (22) is accomplished through the m×k matrix
[V̂

(1)
m ]

∗AC(2)k , which is available at no extra cost as a by-product of the orthogonalization process
carried out in the second MR step to obtain (24). In fact, (23) and (24) can be combined to yield
the global decomposition

A[C(1)m C(2)k ] = [ V̂
(1)
m V (2)k+1 ]


R(1)m [V̂

(1)
m ]

∗AC(2)k

O H̃
(2)
k


 (25)

with respect to C. We summarize the coordinate representation of these two successive projections
as

Theorem 2.6. The MR approximation of the solution of Ac = r0 with respect to the correction
space C = C1 ⊕ C2 is given by

c = C(1)m y1 + C
(2)
k y2 + C

(1)
m [R

(1)
m ]

−1([V̂
(1)
m ]

∗AC(2)k )y2;

where the coe�cient vectors y1 ∈ Cm and y2 ∈ Ck solve the least-squares problems
‖ ‖r0‖u(m+1)1 − H̃ (1)

m y1‖2 → min
y1∈Cm

; ‖ ‖r1‖u(k+1)1 − H̃ (2)
k y2‖2 → min

y2∈Ck

and the matrices C(1)m ; C
(2)
k ; V̂

(1)
m ; R

(1)
m ; H̃

(1)
m ; and H̃

(2)
k as well as the vector r1 are de�ned above.

2.4. Incomplete orthogonalization

The MR approximation applied to Eq. (21) in e�ect maintains orthogonality of the basis vectors
of the residual space V2 against W1 = AC1. Computationally, this is manifested in the generation of
the m×k matrix (V̂ (1)m )

∗AC(2)k during the orthonormalization process (cf. (25)). In order to reduce the

cost of both the storage of V̂
(1)
m and the work involved in the orthogonalization, we now consider

performing the MR approximation to the solution of (21) only approximately in the sense that
orthogonality is maintained only against a subspace of W1 of �xed dimension. When faced with
the choice of such a subspace against which one can a�ord to maintain orthogonality, one possible
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criterion is to select that space which results in the greatest reduction of the residual norm after the
second MR approximation. Such an approach was proposed by de Sturler [25], and will be further
described in Section 4.5.
As in Section 2.3, consider the MR approximation with respect to the correction space C=C1⊕C2.

The global MR approximation (18) consists of an MR approximation with respect to C1 followed
by a second projection involving the orthogonal complement Z := (I − PW1)W2 of W1 = AC1 with
respect to W2 = AC2. The simplest approach of completely omitting the orthogonalization involved
in constructing PZ results in the combined approximation

w̃ :=PW1r0 + PW2 (I − PW1)r0;

in place of (18). This is the standard way of restarting an MR algorithm. Besides the two extremes
of complete orthogonalization against W1 or none at all, it is also possible to orthogonalize against
only a subspace W̃1⊂W1 of dimension ‘¡m, which brings up the problem of determining W̃1 such
that, if orthogonality of the residual space V2 of the second MR approximation is maintained against
W̃1, this results in the smallest residual norm over all ‘-dimensional subspaces of W1.
The solution of this problem is greatly facilitated by a judicious choice of bases: Let W (1)

m =
[w(1)1 · · ·w(1)m ] and W (2)

k = [w(2)1 · · ·w(2)k ] denote biorthogonal orthonormal bases of W1 and W2 or-
dered such that the (diagonal) m× k matrix � := [W (1)

m ]
∗W (2)

k has nonincreasing nonnegative entries

1; : : : ; 
min{m;k}. The numbers 
j are the cosines of the canonical angles between the spaces W1 and
W2 (cf. [23, Chapter 4.5]) and therefore lie between zero and one. In addition, the assumption
C1 ∩ C2 = {0} along with the nonsingularity of A implies W1 ∩W2 = {0} and therefore each 
j is
strictly less than one.
An orthogonal basis of Z is given by Ẑ k := (I −W (1)

m [W
(1)
m ]

∗)W (2)
k , and we set Ẑ

∗
k Ẑ k = I −�H�=:

�2 ∈ Ck×k , where �= diag(�1; : : : ; �k) with

�j =

{√
1− 
2j ; 16j6min{k; m};

1; otherwise;

in view of which Zk := Ẑ k�−1 is an orthonormal basis of Z. Denoting Zk = [z1 · · · zk], the following
theorem expresses the e�ect of complete orthogonalization versus none at all:

Theorem 2.7. In the notation introduced above and with r1 := (I − PW1)r0; there holds

(PW2 − PZ)r1 =
min{k;m}∑
j=1

(r1; zj)
j(�jw
(1)
j − 
jzj); (26)

‖(PW2 − PZ)r1‖2 =
min{k;m}∑
j=1


2j |(r1; zj)|2: (27)

Proof. Taking note of r1⊥W1 and W
(2)
k = Zk�+W (1)

m �, we obtain

(PW2 − PZ)r1 = (W
(2)
k [W

(2)
k ]

∗ − ZkZ∗
k )r1

= ((Zk�+W (1)
m �)(Zk�+W

(1)
m �)

∗ − ZkZ∗
k )r1

= (W (1)
m ��− Zk�H�)Z∗

k r1;
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which is a reformulation of (26). Taking norms and noting W1⊥Z as well as 
2j + �
2
j = 1 yields

(27):

‖(PW2 − PZ)r1‖2 = (Z∗
k r1)

∗(��H��+ (�H�)2)(Z∗
k r1) = ‖�Z∗

k r1‖22:

We see that the di�erence between the two projections depends on the Z-components of the
approximation error r1 remaining after the �rst projection weighted by the corresponding cosines 
j
of the canonical angles between W1 and W2. Whenever 
j=0, the projection onto W2 would already
have produced the correct component in the direction zj, whereas in case 
j=1 the associated basis
vectors w(1)j and w(2)j are collinear and PW2 would have yielded no component in direction zj.
To consider the case of incomplete orthogonalization, let W̃1⊂W1 with dim W̃1 = ‘¡m. By

orthogonalizing the basis of W2 against W̃1, we construct the orthogonal projection onto Z̃ := (W̃1⊕
W2) ∩ W̃

⊥
1 , which, applied to r1, yields the di�erence between PW1r0 and the best approximation of

r0 in W̃1 ⊕W2.

Theorem 2.8. Of all ‘-dimensional subspaces W̃1⊂W1; that which minimizes ‖(PZ̃−PZ)(I−PW1)r0‖
over all r0 ∈ H is given by W̃1 = span{w(1)1 ; : : : ;w(1)‘ }; and results in

‖(PZ̃ − PZ)(I − PW1)r0‖= ‖(PZ̃ − PZ)r1‖=
min{k;m}∑
j=‘+1


2j |(r1; zj)|2:

Proof. Any orthonormal basis W̃
(1)
‘ = [w̃1 · · · w̃‘] of W̃1 has the form W̃

(1)
‘ =W (1)

m Q1 with a matrix
Q1 ∈ Cm×‘ consisting of the �rst ‘ columns of a unitary m × m matrix Q = [Q1Q2]. We obtain a
basis of Z̃ by orthogonalizing W (2)

k against W̃
(1)
‘ :

Ẑ‘ := (I − W̃ (1)
‘ [W̃

(1)
‘ ]

∗)W (2)
k =W (2)

k −W (1)
m Q1Q

H
1 �

= (Zk�+W
(2)
k �)−W (1)

m Q1Q
H
1 � = Zk�+W

(1)
m (I − Q1QH1 )�

= Zk�+W (1)
m Q2Q

H
2 �:

Because of 06
j ¡ 1 the Hermitian matrix

Ẑ
∗
‘ Ẑ‘ = �

2 + �HQ2QH2 � = I − �HQ1QH1 �=: S2
is positive de�nite and therefore possesses a square root S, by means of which we obtain an or-
thonormal basis of Z̃ as Z‘ := Ẑ‘S−1. Again recalling r1⊥W1, we obtain for the di�erence of the
two projections

(PZ̃ − PZ)r1 = (Z‘Z∗
‘ − ZkZ∗

k )r1
= (Zk(�S−2�− I) +W (1)

m (Q2Q
H
2 �S

−2�))Z∗
k r1: (28)

From the de�nition of S2, we have

�S−2�= (�−1S2�−1)−1 = (I + �−1�HQ2QH2 ��
−1)−1 =: (I +MMH)−1

with M = �−1�HQ2. We thus obtain

�S−2�− I = (I +MMH)−1 − I =−MMH(I +MMH)−1
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as well as Q2QH2 �S
−2�= Q2MH(I +MMH)−1, which we insert in (18) to obtain

‖(PZ̃ − PZ)r1‖2 = (Z∗
k r1)[(I +MM

H)−1MMH](Z∗
k r1): (29)

This expression is minimized for all r1 – hence also for all r0 – by choosing Q1 to minimize the
largest eigenvalue of the Hermitian matrix (I + MMH)−1MMH or, equivalently, that of MMH =
�−1�H(I − Q1QH1 )��−1. The entries 
j=�j of the m × k diagonal matrix ��−1 are nonincreasing,
hence the minimum occurs for

Q1 =
[
I‘
O

]

and the assertion follows by inserting the resulting choice of M in (29).

3. Corrections selected from Krylov spaces

The overwhelming majority of subspace correction methods for solving linear systems of equations
employ correction spaces of a particularly simple structure known as Krylov spaces (or Krylov
subspaces), which are de�ned by

Km :=Km(A; r0) := span{r0; Ar0; : : : ; Am−1r0}: (30)

In this section we survey some of the rami�cations of this choice. Section 3.1 discusses the advan-
tages of using Krylov spaces, recalls their description in terms of polynomial spaces and states some
technical lemmata. In Sections 3.2 and 3.3 we derive the polynomial counterparts of the OR and MR
residual vectors and express their zeros as Ritz and harmonic Ritz values of A, respectively. Finally,
we describe the implicitly restarted Arnoldi process of Sorensen [22] for later use as a technique
for manipulating Krylov spaces.

3.1. Why Krylov subspaces?

One regard in which (30) is a reasonable choice for a correction space is that it enables the suc-
cessive generation of the sequence {Cm} using only matrix–vector multiplication by A, an operation
which is inexpensive for sparse or structured matrices. Moreover, note that Cm =Km(A; r0) results
in the residual space (cf. (4))

Vm+1 = span {r0}+ ACm = span {r0}+ AKm =Km+1;

i.e., the residual space Vm+1 of index m+1 coincides with the correction space Cm+1 of the next iter-
ation, obviating the need to store two separate bases. This e�ectively halves the storage requirements
of algorithms which are based on orthonormal bases of the residual spaces. As another consequence,
the Arnoldi-type decomposition (8) now becomes a proper Arnoldi decomposition

AVm = Vm+1H̃m = VmHm + �m+1;mCm+1uTm;
which identi�es Hm as the orthogonal section of A onto Km, i.e., it represents the linear map
AKm :=PKmA|Km :Km → Km with respect to the basis Vm.
Whether or not Krylov spaces are well suited as correction spaces will, as shown before, depend

on the behavior of the angles “(Km; AKm) as m approaches ∞. There are classes of problems
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for which this behavior is very favorable. An example where the angles actually tend to zero,
which, in view of (14), implies superlinear convergence of the MR and OR approximants, is given
by second-kind Fredholm equations (cf. [3, Theorem 6:12]). On the other hand, there are matrix
problems of dimension n for which “(Km; AKm)=�=2 (m=1; 2; : : : ; n−1), i.e., no Krylov subspace
method is able to improve the initial residual until the very last step.
Finally, the theoretical investigation of Krylov subspace methods is greatly facilitated by the

intimate connection between a Krylov space and an associated space of polynomials, as can be seen
from the representation

Km(A; r0) = {q(A)r0 : q ∈ Pm−1} (m= 1; 2; : : :);

where Pm denotes the space of all complex polynomials of degree at most m. The linear map

Pm−1 3 q 7→ q(A)r0 ∈ Km(A; r0)

is thus always surjective, but fails to be an isomorphism if and only if there exists a nonzero
polynomial q ∈ Pm−1 with q(A)r0 = 0. If such a polynomial exists (e.g., if A has �nite rank) then
there also exists a (unique) monic polynomial c = cA; r0 of minimal degree for which c(A)r0 = 0,
which is usually called the minimal polynomial of r0 with respect to A. It is easy to see that the
degree of c equals the smallest integer m for which Km =Km+1 and thus coincides with the index
L introduced in (6) (cf. also (7)),

L=min{m ∈ N0 :Km =Km+1}=min{m ∈ N0 :A−1r0 ∈ Km}
=min{deg q : q monic and q(A)r0 = 0}: (31)

In other words, Pm−1 and Km are isomorphic linear spaces if and only if m6L.
The positive-semide�nite sesquilinear form

(p; q) := (p(A)r0; q(A)r0)

(
p; q ∈ P∞ :=

⋃
m¿0

Pm

)
(32)

is therefore positive de�nite when restricted to PL−1 and hence de�nes an inner product on this
space. We will use the same notation (·; ·) for this inner product as for its counterpart on H,
as well as for derived quantities such as its induced norm ‖ · ‖ := (·; ·)1=2 and the orthogonality
relation ⊥.
Since every vector x ∈ x0 +Km is of the form x = x0 + qm−1(A)r0 for some qm−1 ∈ Pm−1, the

corresponding residual r = b− Ax can be written
r = r0 − Aqm−1(A)r0 = pm(A)r0; where pm(�) := 1− �qm−1(�) ∈ Pm:

Note that the residual polynomial pm satis�es the normalization condition pm(0) = 1. Later in this
section we will characterize the residual polynomials which belong to the OR and MR iterates as
well as their zeros.
First, however, we provide three lemmata for later use. The �rst recalls a well-known (see, e.g.,

[15]) consequence of the Arnoldi decomposition AVm = VmHm + �m+1;mCm+1uTm of A (see (8)), the
second states the conditions under which a Krylov space can have A-invariant subspaces. The third
lemma shows that the orthogonal complement of a Krylov space with respect to an A-invariant
subspace is itself a Krylov space.
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Lemma 3.1. For every polynomial q(�) = �m�m + · · ·+ �1�+ �0 ∈ Pm; there holds

q(A)r0 = �Vmq(Hm)u1 + �m�
m∏
j=1

�j+1; jCm+1;

where u1 ∈ Cm denotes the �rst unit vector. In particular; q(A)r0=�Vmq(Hm)u1 for every q ∈ Pm−1.

Lemma 3.2. A Krylov space Km(A; r0) contains an A-invariant subspace if and only if it is itself
A-invariant.

Proof. If U⊂Km(A; r0) is A-invariant, it must contain an eigenvector z of A. As an element of
Km, z has a representation z = qm−1(A)r0 in terms of a nonzero polynomial qm−1 of degree at most
m − 1. Moreover, if � denotes the eigenvalue of A associated with z and p(�) := (� − �)qm−1(�),
then p(A)r0 = 0 and hence the degree of the minimal polynomial cA; r0 of r0 with respect to A is at
most m. Consequently L= degcA; r06m and Km is A-invariant (cf. (31)).

Lemma 3.3. Let U be an A-invariant subspace; T = U⊥ its orthogonal complement and set
AT :=PTAPT. Then there holds for m= 1; 2; : : :

PTKm(A; r0) =Km(PTA; PTr0) =Km(AT; PTr0)

and

PTAKm(A; r0) = PTAKm(PTA; PTr0) = ATKm(AT; PTr0):

Proof. We have PTAPU = O, because U is A-invariant, and therefore

PTA= PTAPU + PTAPT = PTAPT:

An obvious induction now shows that for k = 1; 2; : : :

PTAkr0 = [PTA]
kr0 = [PTAPT]

kr0;

which proves the assertions.

With regard to the notation used in Lemma 3.3, we remark that so far in this paper AT has
denoted the orthogonal section PTA|T of A onto T. We henceforth identify PTAPT with AT since
PTAPT = PTA|T on T and PTAPT = O on T⊥.

3.2. OR residual polynomials

We �rst investigate the residual polynomials associated with the OR approach: rORm = pORm (A)r0.
The condition rORm ⊥Km translates to pORm ⊥Pm−1, i.e., pORm is an orthogonal polynomial of degree m
(normalized to satisfy pORm (0) = 1). This also follows from the fact that rORm is a scalar multiple of
Cm+1, the last element of the orthonormal basis {C1; : : : ; Cm; Cm+1} of Km+1 (cf. Section 2.1): The basis
vector Cm+1 ∈ Km+1\Km has the form Cm+1=vm(A)r0 for some polynomial vm of exact degree m, and
pORm must be a scalar multiple of vm. Next, Cm+1⊥Km, i.e., vm⊥Pm−1, and ‖Cm+1‖= ‖vm‖= 1 show
that vm is an orthonormal polynomial of degree m. We arrive at pORm = vm=vm(0), a normalization
which is, of course, only possible if vm does not vanish at the origin.
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The close relation of vm to the characteristic polynomial of the Hessenberg matrix Hm will
show that vm(0) = 0 is equivalent to Hm being singular: We know that vm+1 = vm(A)r0 spans the
one-dimensional space Km+1 ∩K⊥

m . If, on the other hand, hm(�) := det(�I − Hm) ∈ Pm denotes the
characteristic polynomial of Hm, then by Lemma 3.1 and the Cayley–Hamilton theorem

(hm(A)r0; Ck) = �(Vmhm(Hm)u1; Ck) + �
m∏
j=1

�j+1; j(Cm+1; Ck) = 0 (33)

(k=1; 2; : : : ; m). In other words, C=hm(A)r0 belongs to Km+1∩K⊥
m and is therefore a scalar multiple

of Cm+1. We have thus shown that the polynomials vm and hm can di�er only by a scalar factor. We
summarize these observations in

Proposition 3.4. The characteristic polynomial hm of the Hessenberg matrix Hm is the (unique)
monic orthogonal polynomial of degree m with respect to the inner product (32). The mth OR
iterate exists if and only if hm(0) 6= 0 and; in this case; the corresponding residual polynomial is
given by pORm = hm=hm(0).

We next consider the zeros of pORm or, equivalently, the eigenvalues of Hm=V ∗
mAVm, the orthogonal

section AKm of A onto Km. Its eigenvalues �j, where

Hmyj = �jyj with yj ∈ Cm; ‖yj‖2 = 1 (34)

are called the Ritz values of A (with respect to Km), while zj :=Vmyj are the associated Ritz vectors.
As the eigenvalues of the nonderogatory matrix Hm, Ritz values have geometric multiplicity one.

In case �j has algebraic multiplicity kj ¿ 1, we denote by y(0)j =yj; y
(1)
j ; : : : ; y

(kj−1)
j the principal vectors

of Hm which belong to the eigenvalue �j, so that

Hmy
(‘)
j = �jy

(‘)
j + y(‘−1)j (‘ = 1; : : : ; kj − 1)

and de�ne z(0)j :=Vmy
(0)
j and z(‘)j :=Vmy

(‘)
j as the associated Ritz vectors.

Although all our conclusions remain valid in this more general case, we will assume in the
remaining sections that Hm has m distinct eigenvalues to avoid the (notational) complication of
requiring principal vectors.
The Ritz vectors constitute a basis of Km, and their residual vectors with regard to the eigenvalue

problem (34) are given by

Azj − �jzj = AVmyj − �jVmyj =VmHmyj + �m+1;mCm+1uTmyj − �jVmyj
= �m+1(uTmyj)Cm+1: (35)

This implies Azj−�jzj⊥Km; which is the commonly used de�nition of Ritz values and Ritz vectors.
We also observe that (A−�jI)zj ∈ span{Cm+1}=span{hm(A)r0} for every eigenvalue �j of Hm. As an
element of Km, each Ritz vector zj can be represented as zj = zj(A)r0 with a polynomial zj ∈ Pm−1.
Eq. (35) now implies (�− �j)zj(�) = �jhm(�) with �j ∈ C \ {0}, which we express as

zj(�) = �j
h(�)
�− �j :
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Proposition 3.5. Let

hm(�) =
J∏
j=1

(�− �j)kj (�i 6= �j for i 6= j)

denote the characteristic polynomial of Hm. The Ritz vectors z
(‘)
j (‘=0; : : : ; kj−1) of A with respect

to Km(A; r0) have the form

z(‘)j = z(‘)j (A)r0; where z(‘)j (�) = hm(�)
‘∑
i=0

�j; i
(�− �j)i+1

is a polynomial of exact degree m− 1. Moreover; there holds
(A− �jI)‘+1z(‘)j ∈ span{Cm+1}= span{hm(A)r0}= span{rORm };

where the last equality assumes that the mth OR iterate is de�ned.

3.3. MR residual polynomials

We now turn to the investigation of the residual polynomials pMRm associated with the MR residuals
rMRm = pMRm (A)r0. Obviously, these polynomials possess the following minimization property:

‖pMRm ‖=min{‖p‖ : degp6m;p(0) = 1}:
The condition rMRm ⊥AKm translates to pMRm ⊥�Pm−1, from which we deduce the reproducing property
(36) of the MR residual polynomials: For any q(�) = q(0) +

∑m
j=1 �j�

j ∈ Pm, there holds

(q; pMRm ) = (q(0); pMRm ) +


 m∑
j=1

�j�j; pMRm


= q(0)(1; pMRm )

and because this identity is valid in particular for q = pMRm yielding ‖pMRm ‖2 = pMRm (0)(1; pMRm ) =
(1; pMRm ), we obtain

(q; pMRm ) = q(0)‖pMRm ‖2 for all q ∈ Pm: (36)

The coe�cients of pMRm with respect to the orthonormal basis {v0; v1; : : : ; vm} of Pm are thus given
by

(pMRm ; vj) = vj(0)‖pMRm ‖2

which, in view of ‖pMRm ‖2 =∑m
j=0 |vj(0)|2‖pMRm ‖4, results in the expansion

pMRm (�) =

∑m
j=0 vj(0)vj(�)∑m
j=0 |vj(0)|2

(37)

(note that the denominator
∑m

j=0 |vj(0)|2¿|v0(0)|2 is always positive since v0 is a nonzero constant).
Furthermore, this representation shows that, since the polynomials vj are of exact degree j, pMRm will
have degree m if and only if vm(0) 6= 0, i.e., if the OR polynomial of degree m exists. Otherwise
pMRm =pMRm−1 = · · ·=pMRk and degpMRm = k, if k is the largest index less than m for which vk(0) 6= 0.
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To characterize the zeros of the MR residual polynomials in an analogous manner as for the OR
residual polynomials, we begin by identifying them as the eigenvalues of an orthogonal section of
A−1 onto the Krylov space

Km(A−1; Amr0) = span{Amr0; Am−1r0; : : : ; Ar0}= AKm(A; r0):

We denote the associated Arnoldi decomposition by

A−1Wm =Wm+1G̃m =WmGm + 
m+1;mwm+1uTm;

in which G̃m=[
j; k] ∈ C(m+1)×m is an upper Hessenberg matrix, Gm the associated square Hessenberg
matrix obtained by deleting the last row of G̃m and Wm+1 = [w1 : : : wm+1] is an orthonormal basis
of Km+1(A−1; Amr0) =Km+1(A; r0). If we invoke Lemma 3.1 applied to this Arnoldi decomposition,
we obtain

q(A−1)Amr0 =Wmq(Gm)�muT1 + �m�m
m∏
j=1


j+1; jwm+1

for any polynomial q(�) = �m�m + · · · + �1� + �0 ∈ Pm, where �m = ‖Amr0‖. Denoting by gm the
characteristic polynomial of Gm, we conclude just as in (33) that

(gm(A−1)Amr0;wk) = 0; k = 1; : : : ; m

and that w := gm(A−1)Amr0 belongs to

Km+1(A−1; Amr0) ∩Km(A−1; Amr0)⊥ =Km+1(A; r0) ∩ (AKm(A; r0))
⊥ :

By virtue of its inclusion in the latter space, we conclude that the vector w is a scalar multiple
of the MR residual vector rMRm . Moreover, we observe that ĝm(�) := gm(�

−1)�m is a polynomial in
� of degree at most m, which is sometimes denoted as the reversed polynomial of gm since it is
obtained from gm by reversing the order of the coe�cients. Since w= ĝm(A)r0 and r

MR
m = pMRm (A)r0

are collinear, the same is true for the associated polynomials. Furthermore, since the characteristic
polynomial gm is monic, it follows that ĝm has value one at zero, and therefore that ĝm coincides
with pMRm . The desired zeros of pMRm thus coincide with those of ĝm, which are easily seen to be
the reciprocals of the zeros of gm, which in turn are the eigenvalues of Gm. Since this matrix is
not readily available, we instead derive a matrix which is similar to Gm and therefore has the same
characteristic polynomial.
Departing from AVm= V̂mRm (cf. (12)), where V̂m denotes the Paige–Saunders basis of AKm(A; r0)

and Rm is the triangular factor in the QR-factorization of H̃m, we obtain

A−1V̂m=VmR−1
m = Vm+1

[
R−1
m

0

]
= Vm+1QHmQm

[
R−1
m

0

]

= [V̂m C̃m+1]Qm
[
R−1
m

0

]
=: [V̂m C̃m+1]F̃m

= V̂mFm + C̃m+1f Tm with F̃m partitioned as F̃m =
[
Fm
f Tm

]
: (38)

We note that both V̂m and Wm are orthonormal bases of the same space AKm, which implies a
relation of the form V̂m =WmT with a unitary matrix T ∈ Cm×m. Therefore,

Fm = V̂
∗
mA

−1V̂m = THGmT
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and Fm is similar to Gm. The zeros �̃j of pMRm are therefore the reciprocals of the eigenvalues of Fm,
determined by

1

�̃j
ŷj = Fmŷj = [Im 0]Qm

[
R−1
m

0

]
ŷj = [Im 0]Qm

[
Im
0

]
R−1
m ŷj = :Q̂mR

−1
m ŷj;

or equivalently, as solution of the generalized eigenvalue problem

Rmỹj = �̃jQ̂mỹj; ỹj :=R
−1
m ŷj:

The matrix Q̂m is obtained by deleting the last row and column of Qm, which, by (13), yields

Q̂m =
[
Im−1 0
0 cm

]
Gm−1

[
Gm−2 0
0 1

]
· · ·
[
G1 O
O Im−2

]
:

Eq. (38) shows that Fm represents the orthogonal section of A−1 onto AKm with respect to V̂m.
Its eigenvalues 1=�̃j are therefore the Ritz values of A−1 with respect to this space, and thus satisfy

0= V̂
∗
m

(
A−1V̂mŷj −

1

�̃j
V̂mŷj

)
= V̂

∗
m

(
A−1ẑj − 1

�̃j
ẑj

)

with Ritz vectors ẑj := V̂mŷj, which, upon multiplication by �̃j, substituting A
−1V̂m = VmR−1

m and
multiplication by RHm, becomes

0= RHmV̂
∗
m (AVmR

−1
m ŷj − �̃jVmR−1

m ŷj) = (AVm)
∗(Az̃j − �̃jz̃j); (39)

where z̃j :=Vmỹj=VmR
−1
m ŷj=A

−1ẑj. Vectors z̃j and numbers �̃j which satisfy (39) are called harmonic
Ritz vectors and values with respect to A and Km (cf. [15]). A better known characterization of
these quantities is

(AVm)∗Vmỹj =
1

�̃j
(AVm)∗AVmỹj; i:e:; HH

m ỹj =
1

�̃j
H̃
H
mH̃mỹj:

That this formulation gives rise to the same set of eigenvalues can be seen from the similarity
transformation

(H̃
H
mH̃m)−1HH

m = [R
−1
m 0]Qm

[
Im
0

]
= R−1

m [Im 0]Qm

[
R−1
m

0

]
Rm = R−1

m FmRm:

The harmonic Ritz vectors lie in Km and, in view of (39), satisfy

(A− �̃jI)z̃j⊥AKm:

In other words, (A−�̃jI)z̃j ∈ Km+1∩(AKm)⊥=span{rMRm } and therefore, if the polynomials z̃j ∈ Pm−1
are de�ned by z̃j = z̃j(A)r0; there holds

z̃j(�) = �j
pMRm (�)

�− �̃j
= �j

ĝm(�)

�− �̃j
(40)

for some normalization factor �j 6= 0.

Remark. Polynomials which possess the reproducing property (36) are called kernel polynomials.
Their role in Krylov subspace methods was �rst explored by Stiefel [24] in the Hermitian case and
later extended to the non-Hermitian case by Freund [8,7] (see also [11]).
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3.4. The implicitly restarted Arnoldi process

When manipulating Krylov subspaces, the following fundamental task often arises: given a Krylov
space Km(A; C1) which is not A-invariant, along with the associated Arnoldi factorization

AVm = VmHm + �m+1;mCm+1uTm (�m+1;m 6= 0) (41)

and given an arbitrary vector C ∈ Km−1(A; C1), generate the Arnoldi factorization associated with
Kp(A; C), i.e., using v as the initial vector, with p as large as possible without performing addi-
tional multiplications with A. The technique which accomplishes this task is known as the implicitly
restarted Arnoldi (IRA) process and is due to Sorensen [22].
As a member of Km−1, C has the representation C = qk−1(A)C1 with qk−1 of exact degree k − 1,

16k ¡m. In other words, C ∈ Kk \Kk−1. We will show that p=m−k is maximal and the resulting
Arnoldi factorization has the form

A �Vp = �Vp �Hp + ��p+1;p �Cp+1uTp (42)

with �C1 = C=‖C‖. That p = m − k holds should not come as a surprise because the construction
of factorization (41) requires m multiplications by A, whereas C can be computed by only k − 1
matrix–vector products. Exactly p+1=m−k+1, i.e., the number of the ‘remaining’ multiplications
by A are needed to construct (42) in the conventional way.
We assume the polynomial qk−1 is given in factored form qk−1(�)=

∏k−1
j=1 (�−�j), as this is how it

is used in the IRA method. The arguments that follow remain valid upon multiplying by a nonzero
factor, so we may, without loss of generality, assume qk−1 to be monic. It is obviously su�cient to
show how decomposition (42) can be established in the case k=2, i.e., if C=(A−�I)C1. Polynomials
of higher degree can then be handled by repeated application of the procedure below.
Each step of the IRA method is based on one step of the shifted QR algorithm. Following Sorensen

[22, p. 363], we begin by subtracting �Vm on both sides of the Arnoldi decomposition (41)

(A− �I)Vm = Vm(Hm − �I) + �m+1;mCm+1uTm;
then form the QR factorization of Hm − �I ,

(A− �I)Vm = VmQR+ �m+1;mCm+1uTm; (43)

multiply by Q from the right,

(A− �I)VmQ = (VmQ)(RQ) + �m+1;mCm+1uTmQ;
and add �VmQ on both sides to obtain

A(VmQ) = (VmQ)(RQ + �I) + �m+1;mCm+1uTmQ: (44)

We rewrite (44) to introduce some extra notation:

A[ �C1 : : : �Cm−1 C+m] = [ �C1 : : : �Cm−1 C+m]
[
�Hm−1 ∗
�+uTm−1 ∗

]

+ �m+1;mCm+1[0 : : : 0 qm;m−1 qm;m];

where we have made use of the fact that

RQ + �I =

[
�Hm−1 ∗
�+uTm−1 ∗

]
∈ Cm×m
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is again an upper Hessenberg matrix due to the upper Hessenberg form of Q. We note in passing
that, in case � happens to be an eigenvalue of Hm (and only then), the last row of R is zero (and
only the last row since Hm is nonderogatory) and therefore �+ = 0.
We now omit the last column in (44), giving

A[ �C1 : : : �Cm−1] = [ �C1 : : : �Cm−1] �Hm−1 + (�+C+m + �m+1;mqm;m−1Cm+1)uTm−1;
which, setting ��m;m−1 := ‖�+C+m + �m+1;mqm;m−1Cm+1‖; becomes

A �Vm−1 = �Vm−1 �Hm−1 + ��m;m−1 �CmuTm−1: (45)

Theorem 3.6. With the notation introduced above; the decomposition (45) is an Arnoldi factoriza-
tion of A with respect to the Krylov space Km−1(A; (A− �I)C1).

Proof. Since Q is unitary, it follows that the elements of �Vm−1 = [ �C1 : : : �Cm−1] are orthonormal
as the �rst m− 1 elements of VmQ. Next, the vector

�Cm = (�+C+m + �m+1;mqm;m−1Cm+1)= ��m;m−1
has unit norm and is orthogonal to �C1; : : : ; �Cm−1 since C+m , as the last element VmQ, is orthogonal to
the previous elements �C1; : : : ; �Cm−1 and since Cm+1 is orthogonal to Vm and hence also to VmQ. That
the new �rst basis vector �C1 is a multiple of (A− �I)C1 follows by equating the �rst vector on both
sides of (43). It remains to show that the Hessenberg matrix �Hm−1 is unreduced. If ��k+1; k = 0 for
some k ¡m, then this would imply that Kk(A; �C1) is a proper A-invariant subspace of Km(A; C1),
which, in view of Lemma 3.2, contradicts the assumption �m+1;m 6= 0.

As mentioned previously, decomposition (42) involving a new starting vector �C1 = qk−1(A)C1 is
e�ected by k − 1 steps of the procedure outlined above. For later use, we note that the associated
Krylov space is given by

Kp(A; �C1) = {r(A)qk−1(A)C1 : r ∈ Pp−1}⊂Kp+k−1(A; C1):

4. Augmentation strategies and some algorithmic realizations

Up to this point we have not yet considered the question of how to construct suitable correction
spaces Cm for a given initial approximation x0 to the solution of a linear system (1). In practice,
this task usually arises in the following form. Given a correction space C, select vectors a1; : : : ; ak
such that the augmented correction space C̃ :=C+ span{a1; : : : ; ak} has better correction properties.
We �rst specify the (obvious) meaning of phrases such as ‘well-suited correction space’, ‘better

correction properties’, etc. Let C⊂H be a �nite-dimensional subspace and denote by rMR the
residual vector of the MR approximation with respect to the correction space C. Whether or not C
is well suited as a correction space, i.e., whether or not AC contains an acceptable approximation
to r0, depends, in view of ‖rMR‖ = sin“(r0; AC)‖r0‖ (cf. (17)), only on the size of the angle
’ :=“(r0; AC). C is optimal, i.e., rMR = 0 if and only if ’=0. The worst case is that in which the
optimal correction from C is the null vector (i.e., rMR = r0), and this occurs precisely for ’= �=2,
or equivalently, for r0⊥AC.
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In Section 4.1 we comment on two general strategies for augmenting correction spaces, the �rst
of which adds nearly A-invariant subspaces to the correction space, whereas the second adds ap-
proximate solution of residual equations. Subsequently we survey and compare existing algorithms
in which the ideas and strategies developed in the previous sections have been realized.

4.1. General augmentation strategies

It has often been suggested, primarily in the context of Krylov subspace methods, that it is a
desirable goal that the correction space C be either nearly A-invariant or contain a nearly A-invariant
subspace, usually spanned by a few approximate eigenvectors of A. Clearly, if a given correction
space C which contains the initial residual r0 – as do e.g. all Krylov spaces – is exactly A-invariant,
then ’=0 and the MR approximation with respect to C yields the exact solution. If only a subspace
U of C is A-invariant, or nearly so in the sense that it lies at a small angle to its image under A,
Proposition 4.1 shows that the MR residual with respect to C then has a small component in the
direction of U.

Proposition 4.1. Given a correction space C; let U⊂C denote a subspace such that sin“(AU;U)6
�. Then the MR residual rMR with respect to C satis�es ‖PUrMR‖6�‖r0‖.

Proof. The assertion follows from PUrMR = PU(I − PAC)r0 and ‖PU(I − PAC)‖6‖PU(I − PAU)‖ =
sin“(AU;U)6�.

In particular, if C contains an exactly invariant subspace U, then the MR approximation removes
the components of the initial residual in the direction of U completely. Of course, this may only be
of limited use if ‖(I − PU)r0‖=‖r0‖ is large, i.e., if U does not contain a good approximation of r0.
In short, the existence of A-invariant subspaces of C per se need not be bene�cial.
In Lemma 3.2 we already proved that if C=Km(A; r0) is a Krylov space, then it cannot contain an

A-invariant subspace U unless Km(A; r0) is itself A-invariant, i.e., Km(A; r0) =KL(A; r0). Obviously,
augmenting Km(A; r0) by span{Amr0; : : : ; AL−1r0} leads to the new correction space KL(A; r0) which
is A-invariant. We now show that there is no ‘faster’ way to augment Km(A; r0) to an A-invariant
space.

Proposition 4.2. Let C̃ be an A-invariant subspace containingKm(A; r0). Then C̃ containsKL(A; r0).

Proof. By U0 :=∩{U :U is an A-invariant subspace with Km⊆U} we denote the smallest A-invariant
subspace containing Km. By de�nition, U0⊆KL. On the other hand, since U0 contains r0 and is
invariant under A, it must contain also Amr0 for very m= 0; 1; : : : ; i.e., KL⊆U0.

Proposition 4.2 should not lead to the conclusion that it is useless to augment a Krylov subspace
C =Km by an A-invariant subspace U. After all, by Proposition 4.1 the MR residual with respect
to C̃ = C +U contains no component in the direction of U. We show next that the MR approach
with respect to the augmented space C̃ yields an MR approximation with respect to another Krylov
subspace, associated with a ‘smaller’ linear system.
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Lemma 4.3. Let r̃MR denote the MR residual with respect to C̃ =Km(A; r0) + U; where U is an
A-invariant subspace. Set further T :=U⊥; AT :=PTAPT and; �nally; let rMR be the residual of
the MR approximation for ATx = PTr0 with respect to the correction space Km(AT; PTr0). Then
there holds

r̃MR = rMR or; equivalently PUr̃
MR = 0 and PTr̃

MR = rMR :

Proof. As in Section 2.3 we split the computation of r̃MR into two subtasks and write (using that
U is A-invariant)

r̃MR = (I − PU)r0 − PZ(I − PU)r0 = (I − PZ)PTr0;

where Z=(I −PU)AKm(A; r0)=AKm(A; r0)∩T⊆T, whereby PUPZ=O. This implies PUr̃
MR = 0

(a fact we could also have deduced directly from Proposition 4.1).
Since PTAKm(A; r0) = ATKm(AT; PTr0) (cf. Lemma 3.3),

r̃MR = (I − PPTAKm(A;r0))PTr0 = (I − PATKm(AT ;PTr0))PTr0;

identifying r̃MR as the residual of the MR approximation for ATx=PTr0 with respect to the Krylov
space Km(AT; PTr0).

A di�erent strategy for enriching correction spaces is common for many inner–outer iteration
schemes and based on the following trivial observation: Suppose that, for a given correction space
C and associated residual space V= span{r0}+ AC, we are able to solve Ac = r for some r ∈ V.
Such an r has a representation r = r0 − Ac̃ with c̃ ∈ C, and therefore, by virtue of

Ac = r = r0 − Ac̃; i:e:; r0 = A(c + c̃);

we see that the augmented correction space C̃=C+span{c} contains the exact correction. In practice,
since solving Ac = r is generally as di�cult as the original problem, one applies an inexpensive
approximate solution method to this auxiliary problem, yielding a vector c satisfying Ac= r+ h and
consequently, ‖r̃MR‖6‖h‖ for the MR residual with respect to C̃.
The FGMRES algorithm of Saad [17], which is the natural generalization of GMRES to the case

of an arbitrary correction space, was originally introduced as a technique that enlarges the correction
space at each step by an approximate solution of such a residual equation. In [17], this is achieved
by selecting the new correction direction cm+1 as the result of a preconditioning step applied to the
most recent basis vector Cm+1 of the residual space Vm+1, which may be viewed as an approximate
solution of the equation Ac = Cm+1.
A similar approach is taken in the GMRESR (which stands for GMRES Recursive) method of

van der Vorst and Vuik [27]. In each step of GMRESR, the new correction vector cm+1 is chosen
as the approximate solution of the equation Ac = rm obtained by a given number of GMRES steps,
where rm is the residual of the MR approximation using the current correction space Cm. This
method was improved upon by de Sturler [25], who observed that, by enforcing orthogonality of the
approximation space of the inner GMRES iteration, one can obtain as a result of the inner GMRES
iteration the best approximation of r0 from the sum of the inner and outer approximation spaces as
described in Section 2.3. In other words, the inner iteration consists of GMRES applied to Eq. (21).
The resulting inner–outer iteration scheme is called GCRO.
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4.2. Restarted GMRES

In general, the implementation of OR and MR methods require computing and storing at least
one orthonormal basis of a space which grows in dimension with each step. A result of Faber and
Manteu�el [6] shows that this considerable computational e�ort can be avoided essentially only for
self-adjoint A. It is therefore not surprising that the necessity of truncating or restarting in practical
implementations of MR and OR methods is as old as these methods themselves (cf. [21,4]). The
most widely used algorithm is GMRES(m), the restarted version of GMRES, which uses a Krylov
space of dimension m. One cycle of GMRES(m) for solving (1) with initial residual r0 consists of
generating the Krylov space Km(A; r0), forming the MR approximation with respect to the correction
space C=Km(A; r0) and repeating this process using the resulting residual as the initial residual for
the next cycle until a stopping criterion is satis�ed.
In the terminology of Section 2, two consecutive cycles of GMRES(m) consist of two MR ap-

proximations with respect to the correction spaces

C1 =Km(A; r0) and C2 =Km(A; rm);

where rm denotes the residual of the MR approximation computed in the �rst cycle. No orthogo-
nalization of the residual space V2 against the approximation space AC1 is performed in the second
cycle, and thus, in general, the approximation after the second cycle is no longer the MR approx-
imation with respect to C1 + C2. Besides this inexact approximation, it may also happen that the
sum is not direct. In the extreme case there holds rm = r0 after the �rst cycle, so that the second
cycle constructs the identical Krylov space (as do all subsequent cycles) and no progress is made,
a phenomenon known as stalling.

Proposition 4.4. For two consecutive cycles of GMRES(m) with initial residual r0; there holds

Km(A; r0)⊕Km(A; rm) =K2m(A; r0) (46)

if and only if no stagnation occurs in the last step of the �rst cycle.

Proof. By de�nition,Km(A; rm)={q(A)pMRm (A)r0 : q ∈ Pm−1}; where pMRm denotes the MR polynomial
of the last step of the �rst cycle, and this shows that (46) holds if and only if pMRm has degree m.
Representation (37) of pMRm shows that this is equivalent with vm(0) 6= 0, which is equivalent to
stagnation at step m.

One of the more common misconceptions regarding GMRES(m) is that a method with larger
restart length m applied to the same problem will converge at least as fast as the method with
smaller m. A simple counterexample 4 is provided by the 3× 3 system

Ax= b; A=


 1 0 01 1 0
0 1 1


 ; b=


−11
1




4 The authors would like to thank E. de Sturler for pointing out this phenomenon reporting a similar observation in the
context of a discrete convection–di�usion problem.
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with initial guess x0=0. Two cycles of GMRES(2) applied to this example result in a residual norm
of ‖r(2)4 ‖ = 4=15 = 0:26 : : :, whereas four cycles of GMRES(1), which involve the same number of
matrix–vector multiplications, yields ‖r(1)4 ‖=0:057 : : : . The gap between GMRES(1) and GMRES(2)
widens further in subsequent iteration steps, e.g., ‖r(1)18 ‖2 =1:6 : : : 10−12, whereas ‖r(2)18 ‖2 =3:9 : : : 10−5.
Even more surprising in this example is that ‖r(1)10 ‖2¡ ‖r(2)20 ‖2, showing that ten cycles of GMRES(1)
have reduced the residual further than ten cycles of GMRES(2). By expanding this example to the
analogous matrix for higher dimensions n one can observe that GMRES(m) is ultimately slower for
this system than GMRES(m− 1) for m= 2; : : : ; n− 1.

4.3. De
ation by augmentation

The �rst algorithm which attempts to improve the restarted GMRES method by augmenting the
Krylov space is due to Morgan [14]. This approach selects a �xed number of approximate eigenvec-
tors of A to add to the Krylov space of the following cycle, as motivated, e.g., by Lemma 4.3. Since
the emphasis of [13] is on cases in which the eigenvalues close to the origin limit the convergence
rate the most – as is the case, e.g., for the so-called model problem of the discrete Laplacian on the
unit cube – harmonic Ritz vectors are chosen as the eigenvector approximations, since, as argued
in [12], harmonic Ritz values tend to approximate eigenvalues close to zero more accurately than
classical Ritz values.
Each step except the �rst consists of forming the MR approximation with respect to a cor-

rection space C = C1 + C2 with C1 =Km(A; r0) and C2 = span{z̃1; : : : ; z̃k}. The vectors z̃1; : : : ; z̃k
are the harmonic Ritz vectors associated with the k harmonic Ritz values �̃1; : : : ; �̃k of A with
respect to the previous correction space which are closest to the origin. Since no eigenvector
information is available in the �rst cycle, the �rst correction space is chosen simply as C =
Km+k(A; r0).
As subsequently shown by Morgan [14], there is a less expensive implementation of this approach.

Consider the MR approximation with initial residual r0 with respect to the (m+k)-dimensional Krylov
space Km+k(A; r0). As shown in Section 3.3, the associated residual vector has the
representation

rMRm+k = p
MR
m+k(A)r0; where pMRm+k(�) =

m+k∏
j=1

(
1− �

�̃j

)
:

We denote by qm the polynomial whose zeros are the harmonic Ritz values �̃k+1; : : : ; �̃k+m, i.e., those
largest in modulus.

Theorem 4.5. The correction space C of Morgan’s method is itself a Krylov space; namely

C =Km(A; rm+k) + span{z̃1; : : : ; z̃k}=Km+k(A; qm(A)r0): (47)

Proof. The rightmost member of (47) can be represented as

Km+k(A; qm(A)r0) = {r(A)qm(A)r0 : r ∈ Pm+k−1}:
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On the other hand, by (40), the harmonic Ritz vectors may be represented in terms of polynomials
as z̃j = z̃j(A)r0 with

z̃j(�) =
pMRm+k(�)

�− �̃j
= qm(�)

k∏
‘=1
‘ 6=j

(
1− �

�̃‘

)
;

whereas rMRm+k = p
MR
m+k(A)r0, with

pMRm+k(�) = qm(�)
k∏
‘=1

(
1− �

�̃‘

)
:

Therefore, the correction space of Morgan’s method may be characterized as

C = {qm(A)q(A)r0 : q ∈ Q};
where the polynomial space Q is given by

Q :=
k∏
‘=1

(
1− �

�̃‘

)
Pm−1 + span




k∏
‘=1
‘ 6=j

(
1− �

�̃‘

)
: j = 1 : : : ; k




=
k∏
‘=1

(
1− �

�̃‘

)
Pm−1 +Pk−1 =Pm+k−1;

where the middle equality follows from the fact that �̃1; : : : ; �̃k are distinct.

Eq. (47) shows that C can be generated by applying the IRA method to Km+k(A; r0), using
�̃k+1; : : : ; �̃m+k as shifts, to obtain Kk(A; qm(A)r0). The space C is then obtained after m further steps
of the Arnoldi process. This approach is computationally less expensive in that k fewer matrix–vector
multiplications with A are required.
As also noted by Morgan, an analogous method can be used to augment the Krylov space in

conjunction with an OR iteration. In this case, however, Ritz values and vectors must be used in
place of harmonic Ritz values=vectors, as the Ritz values are the zeros of the OR residual polynomial.

4.4. De
ation by preconditioning

The methods of the next class also attempt to utilize spectral information gained during the course
of the iteration to accelerate convergence. Instead of augmenting the Krylov space, however, these
methods use this information to construct preconditioners which can be improved as more accurate
spectral information becomes available. Such an approach was proposed by Erhel et al. [5].
To motivate this approach, assume U is an A-invariant subspace of dimension k with orthonormal

basis U , i.e.,

AU =:UAU ; AU ∈ Ck×k :
Note that AU is the speci�c representation of the orthogonal section AU with respect to the basis U .
Denoting by T an orthonormal basis of the orthogonal complement T =U⊥, we can represent the
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action of A as

A[U T ] = [U T ]
[
AU U ∗AT
O T ∗AT

]
:

Under the assumption that k is small, it is feasible to solve systems involving AU directly, and thus
to precondition by M de�ned as

M [U T ] = [U T ]
[
AU O
O I

]
(48)

at each step of the iteration. The resulting right-preconditioned operator is then

AM−1[U T ] = [U T ]
[
I U ∗AT
O T ∗AT

]
; i:e:; AM−1 = PU + APT: (49)

We want to compare this approach with Morgan’s method of augmenting the Krylov space
Km(A; r0) by the A-invariant subspace U.

Theorem 4.6. Let rMm denote the MR residual with respect to the correction space U+Km(A; r0);
where U is an A-invariant subspace; and let rEm denote the MR residual with respect to the
correction space Km(AM−1; r0) resulting from preconditioning A from the right by M as de�ned
in (48). Then there holds

0 = ‖PUrMm ‖6‖PUrEm‖ and ‖PTrMm ‖6‖PTrEm‖; (50)

in particular; ‖rMm ‖6‖rEm‖. If; in addition; also T = U⊥ is A-invariant; then; PUr0 = 0 implies
rEm = r

M
m .

Proof. The left set of inequalities in (50) follow from PUrMm = 0 which was proved in Lemma 4.3.
We next recall that AT=PTAPT is the orthogonal section of A onto T (cf. the remark following

Lemma 3.3). Since rEm = r0 − AM−1c; for some c ∈ Km(AM−1; r0) we obtain using (49)

PTrEm = PTr0 − PTAM−1c = PTr0 − PTAPTc = PTr0 − ATPTc:

Moreover, AM−1U=U together with Lemma 3.3 yield

PTc ∈ PTKm(AM−1; r0) =Km(PTAM−1; PTr0) =Km(AT; PTr0):

The last two statements show that PTrEm is of the form PTr0−ATc̃ with c̃ ∈ Km(AT; PTr0). On the
other hand, by Proposition 4:3 there holds

‖rMm ‖= min
c∈Km(AT ;PTr0)

‖PTr0 − ATc‖;

i.e., ‖rMm ‖ minimizes all expressions of this form, yielding the right inequality of (50).
Next, assuming AT =T; (49) implies AM−1r0 = ATr0 for r0 ∈ T, and thus Km(AM−1; r0) =

Km(AT; PTr0); which shows that in this case both methods minimize over the same space, hence
rEm = r

M
m .

We note that the assumption PUr0 = 0 is not restrictive, as the preconditioner is built upon the
premise that AU is easily invertible. Since PUr0 = 0 by no means implies that PUrEm = 0, it cannot
be guaranteed that ‖rEm‖= ‖rMm ‖ even for such a special choice of initial residual unless AT=T.
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The availability of an (exactly) A-invariant subspace U, on the other hand, is an assumption that
can rarely be satis�ed in practice. In such a case, one can nonetheless still de�ne the preconditioner
as above, where now AU :=U ∗AU represents the orthogonal section of A onto U, resulting in

AM−1[U T ] = [U T ]
[

I U ∗AT
T ∗AUA−1

U T ∗AT

]
;

based on the heuristic argument that T ∗AUA−1
U will be small whenever U is nearly A-invariant.

Such nearly A-invariant spaces are obtained as the span of selected Ritz or harmonic Ritz vectors
determined from Krylov spaces generated during previous cycles. In practice it is common to suitably
scale AU in the preconditioner M (see [7]).
Baglama et al. [1] propose a similar algorithm, which preconditions by (48) from the left, leading—

again under the assumption that U is exactly A-invariant—to the preconditioned operator

M−1A[U T ] = [U T ]

[
I A−1

U U
∗AT

O T ∗AT

]
;

M−1A= PU + APT + (A−1 − I)PUAPT:

The MR correction of the left-preconditioned system is the solution of the minimization problem

‖M−1rBm‖=min{‖M−1(r0 − AM−1c)‖ : c ∈ Km(AM−1; r0)}
(cf. [18, p. 255]).
From (48), it is evident that

M−1 = A−1PU + PT

and, consequently, if AU=U,

PTM−1C= PTC for all C:
These are the essential ingredients for showing that Proposition 4:6 holds in exactly the same way
with rEm in place of r

B
m.

The construction of an approximately invariant subspace U is accomplished in [1] by employing
the IRA process (cf. Section 3.4).
Kharchenko and Yeremin [10] suggest another adaptive right preconditioner M̃ constructed as

follows: After each GMRES cycle the Ritz values and the corresponding left 5 and right Ritz vectors
of A with respect Km are extracted. The aim is to obtain a preconditioner such that the extremal
eigenvalues of A, which are approximated by the Ritz values, are translated to one (or at least to a
small cluster around one).
The extremal Ritz values are partitioned into, say, k subsets �j of nearby Ritz values. For each

�j, a rank-one transformation of the form I+CjC̃∗j is constructed, where Cj and C̃j are linear combina-
tions of the associated right and left Ritz vectors. These linear combinations are chosen to translate
simultaneously all Ritz values of �j into a small cluster around one, while satisfying certain sta-
bility criteria. One preconditioning step now consists of successive multiplication by these rank-one
matrices, i.e.,

M̃
−1
= (I + C1C̃∗1) : : : (I + Ck C̃

∗
k ) = I + [C1 : : : Ck][C̃1 : : : C̃k]∗:

5 Left Ritz vectors are de�ned by A∗z̃j − ��j z̃j⊥Km and can be obtained from the left eigenvectors of Hm.
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For the last equality we have made use of the fact that C̃∗j Ci = 0 for i 6= j, since all eigenvalues
of Hm have geometric multiplicity one. Note that, if �j has a small diameter and the Ritz values
contained in �j are good approximations of eigenvalues of A, then Cj and C̃j are approximate right
and left eigenvectors of A. It can be shown that the statement made in Theorem 4.6 also holds for
this preconditioning approach.

4.5. Optimal truncation

The methods of the preceding sections were based on restarting an MR iteration once the correction
space has reached a given dimension m, and attempted to compensate for the attendant loss of
information by augmenting or preconditioning. The methods discussed in this section are related to
the former in that they also attempt to retain information contained in the current correction space
– in this case orthogonality constraints – which is deemed most useful for convergence.
In place of restarting, the basic scheme underlying this class of methods is a truncated MR

iteration, in which, as soon as the correction space has reached a maximal dimension m, only a
subset of the most recent m basis vectors of the correction space is retained, or equivalently, one or
more of these basis vectors is periodically discarded during the iteration. In [26] de Sturler proposes
a scheme for selectively discarding subspaces rather than individual basis vectors. This selection
process, however, does not rely on spectral or invariant subspace information, but rather on angles
between subspaces.
To discard a subspace of dimension ‘, the subspace selection scheme proposed by de Sturler

compares two approximation spaces W1 and W2 associated with correction spaces C1 and C2. It
assumes the availibility of an orthonormal basis W (1)

m = [w(1)1 ; : : : ;w
(1)
m ] of W1, an arbitrary basis

Ŵ
(2)
k = [ŵ(2)1 ; : : : ; ŵ

(2)
k ] of W2 as well as a factorization

(Ik −W (1)
m [W

(1)
m ]

∗)Ŵ
(2)
k = ZkR

with Zk =[z1; : : : ; zk], Z∗
k Zk = Ik and R ∈ Ck×k nonsingular and upper triangular. After computing the

singular value decomposition

([W (1)
m ]

∗Ŵ
(2)
k )(Z

∗
k Ŵ

(2)
k )

−1 = X�Ŷ
H
; (51)

the subspace of W1 to be retained is chosen as that spanned by the vectors W (1)
m [x1 · · · x‘], where the

vectors xj are the left singular vectors associated with the ‘ largest singular values. The following
proposition relates this choice to the results of Section 2.4.

Proposition 4.7. With the above notation under the assumption W1∩W2 ={0}; the singular values
appearing in (51) are the cotangents of the canonical angles between the spaces W1 and W2.

Proof. Let W (2)
k denote an orthonormal basis of W2 such that Ŵ

(2)
k =W

(2)
k S with a nonsingular matrix

S ∈ Ck×k . Then the cosines of the canonical angles between W1 and W2 are the singular values of
[W (1)

m ]
∗W (2)

k , and we write the associated singular value decomposition as [W
(1)
m ]

∗W (2)
k = X�Y H with

a diagonal matrix � ∈ Rm×k and the unitary matrices X ∈ Cm×m and Y ∈ Ck×k . From
ZkR= (Ik −W (1)

m [W
(1)
m ]

∗)Ŵ
(2)
k = (Ik − (W (1)

m X )(W
(1)
m X )

∗)(W (2)
k Y )Y

HS

= [(W (2)
k Y )− (W (1)

m X )�]Y
HS;
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we obtain Zk = [(W
(2)
k Y )− (W (1)

m X )�]Y
HSR−1 and therefore, de�ning the diagonal matrix � ∈ Rk×k

by Ik − �H� = �2, there results
Ik = Z∗

k Zk = (SR
−1)HY�2Y H(SR−1) = (�Y HSR−1)H�Y HSR−1

which reveals that the k × k matrix �Y HSR−1 is also unitary. Note that, in view of W1 ∩W2 = {0},
none of the cosines in � are one, hence � is nonsingular. Now, inserting

[W (1)
m ]

∗Ŵ
(2)
k = [W (1)

m ]
∗W (2)

k S = X�Y
HS;

Z∗
k Ŵ

(2)
k = (SR−1)HY [(W (2)

k Y )
∗ − �H(W (1)

m X )
∗]W (2)

k S = (SR
−1)HY�2Y HS

can express the singular value decomposition (51) as

([W (1)
m ]

∗Ŵ
(2)
k )(Z

∗
k Ŵ

(2)
k )

−1 = X (��−1)(�Y HSR−1);

which reveals that its singular values are indeed the cotangents of the angles between W1 and W2.

The proof also shows that the left singular vectors of (51) coincide with those of [W (1)
m ]

∗W (2)
k ,

hence the selection scheme discards that subspace of W1 which lies at the largest canonical angles
with W2. As shown in Section 2.4, this choice yields the greatest possible residual reduction when
replacing the approximation space W1 +W2 by W̃1 +W2 with W̃1 a subspace of W1 of dimension
dimW1 − k.
In [26] de Sturler applies this scheme to a GMRES cycle of length m in order to determine

which directions of the s-dimensional Krylov subspace Ks(A; r0), s¡m, are most important for
convergence in the sense that maintaining orthogonality against these directions upon restarting after
the �rst s steps results in the greatest residual reduction. The subspaces to be compared are thus
AKs(A; r0) and AKm−s(A; rs). The subspace comparison in this case is particularly inexpensive, as
both spaces lie in Km(A; r0), for which the Arnoldi process has computed an orthonormal basis.
Hence, the angle computations can be performed in the coordinate space with respect to this basis,
and therefore involve only small matrices. For details, we refer to [26].
This subspace selection scheme is further used in [26] to improve the inner-outer iteration algo-

rithm GCRO (see Section 4.1). The resulting method, named GCROT, uses the subspace selection
scheme specialized to GMRES to transfer several vectors from the inner to the outer approximation
space after each inner iteration cycle. In addition, once the outer approximation space exceeds a
maximal dimension, it is truncated by comparing it against the inner approximation space in the
manner outlined above.

5. Concluding remark

Having described all these improvements of restarted GMRES of course raises the question of
which method one should use in practice. Some of the theoretical statements we have made in this
paper required simplifying assumptions which seldom hold in practice. Our results can be viewed
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as a mathematical justi�cation of why and how these methods work, but need to be supplemented
by thorough numerical investigations for realistic applications to yield a complete comparison.
We can, however, make the following statement independently of any numerical evidence: None

of the techniques presented here can replace an e�ective preconditioning strategy, but can sometimes
dramatically improve the performance of restarted GMRES when applied to a properly preconditioned
linear system.
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