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1 Introduction

We consider in this paper the iterative solution of linear systems of equations arising
from the discretization of the indefinite Helmholtz equation,

L u :=−(∆ + k2)u = f , (1)

with suitable boundary conditions in order to obtain a well-posed problem. For k > 0
solutions of the Helmholtz equation, also known as the reduced wave equation,
describe the variation in space of linear propagating waves with wave number k.
The performance of standard iterative methods is much worse for such problems
than for the deceivingly similar looking equation

−(∆ −η)u = f , η > 0, (2)

which describes stationary reaction-diffusion phenomena but is often also called
Helmholtz equation in certain communities. For example in meteorology, the early
seminal papers [48, 56] led an entire community to call equations of the form (2)
Helmholtz equations, see for example [14]. Even standard texts in applied mathe-
matics now sometimes use the term Helmholtz equation for both (1) and (2), see
for example [66]. The subject of this paper is exclusively the indefinite Helmholtz
equation (1), which is much harder to solve with classical iterative methods than
equation (2).
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Discretizations of the indefinite Helmholtz equation (1) using, e.g., finite dif-
ferences or a finite element or spectral element method and appropriate boundary
conditions result in a linear system of equations

Au = f, (3)

which, for k sufficiently large, possesses an indefinite coefficient matrix A.
Often an approximation of the Sommerfeld radiation condition

∂ru− iku = o
(

r
1−d

2

)
, r→ ∞,

where r is the radial variable, which specifies that wave motion should be outgoing
on physically open boundaries, is imposed on part of the boundary. The Sommerfeld
condition prescribes the asymptotic behavior of the solution, and its representation
on finite boundaries leads to nonlocal operators. For this reason localized approxi-
mations of the Sommerfeld condition are used, the simplest of which is the Robin
condition ∂nu− iku = 0. As a result, the linear system (3) has a complex-symmetric,
but non-Hermitian coefficient matrix as well as a complex-valued solution. The it-
erative solution of the discrete Helmholtz problem (3) is difficult, even for con-
stant wave number k, and we will illustrate this in the first part of this paper, for
Krylov methods, preconditioned Krylov methods, domain decomposition methods
and multigrid. We then try to explain where these difficulties come from, and show
what types of remedies have been developed over the last two decades in the litera-
ture. We will conclude the paper with some more recent ideas.

2 Problems of Classical Iterative Methods

2.1 Krylov Subspace Methods

Krylov subspace methods search for an approximate solution of the linear system
(3) in the Krylov space

Km(A, f) = span{f,Af,A2f, . . . ,Am−1f}= span{q0,q1,q2, . . . ,qm−1}, (4)

where we have made the common choice of a zero initial guess for the solution,
as is recommended in the absence of any additional information, see for example
[50]. We show in Figure 1 how the wave number k fundamentally influences the
solution of the Helmholtz equation. We have set homogeneous Dirichlet conditions
on all boundaries, except on the left, where the Robin condition ∂nu− iku = 0 was
imposed, and used a point source in the corner. In the case of Laplace’s equation
(k = 0) the solution is large only near the point source in the corner, whereas for
k = 25, the solution is large throughout the domain. The Krylov space constructed
in (4), however, is very similar for both problems: due to the local connectivity
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Fig. 1 Solution of Laplace’s equation on the left, with a point source on the boundary, and on the
right the solution of the Helmholtz equation, with the same boundary conditions.

(we used a five-point finite difference discretization for the Laplacian), the vector
f is zero everywhere, except for the grid point connected to the boundary, and thus
the Arnoldi vector q0 is just a canonical basis vector (1,0, . . . ,0)T . The next vector
in the Krylov space, Af, is then non-zero only for the points connected with the
first point, and the corresponding Arnoldi vector q1 will have only two non-zero
entries, and so on. In the case of Laplace’s equation we see that the first Arnoldi
vectors are precisely non-zero where the solution is large, and thus it can be well
approximated in the Krylov space. By contrast, in the indefinite Helmholtz case,
where the solution is of the same size throughout the domain, these vectors do not
have an appropriate support to approximate the solution. We show in Figure 2 how
this influences the convergence of GMRES. While the residual decreases well in
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Fig. 2 Evolution of the residual for GMRES, on the left for the case of Laplace’s equation, k = 0,
and on the right for the Helmholtz equation, k = 25.

the Laplace case over the first 2×n iterations, where n is the number of grid points
in one direction, convergence stagnates in the Helmholtz case. For a more precise
quantitative analysis of this phenomenon, see [35]. Similar effects are also observed
in the advection dominated case of advection diffusion equations, see [23, 50]. It
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is therefore important to have a preconditioner, a Krylov method alone is not an
effective iterative solver.

2.2 Algebraic Preconditioners Based on Factorization

The idea of preconditioning is as follows: instead of solving the original discretized
system

Au = f,

we solve the preconditioned system

M−1Au = M−1f, (5)

where M is the so-called preconditioner. Preconditioners often arise from a station-
ary iterative method

Muk+1 = Nuk + f (6)

derived from a matrix splitting A = M−N with M nonsingular. It is well known that
this method converges asymptotically rapidly, if the spectral radius of the iteration
matrix M−1N is small. This implies that the preconditioned matrix in (5),

M−1A = M−1(M−N) = I−M−1N

has a spectrum clustered around 1 in the complex plane, which leads to fast asymp-
totic convergence also for a Krylov method applied to the preconditioned system
(5). Clearly the best preconditioner would be A−1, since this makes the spectral
radius of M−1N vanish, since M−1N=A−10 = 0, and all the eigenvalues of the pre-
conditioned system M−1A = I equal 1. But then one could directly solve the system
without iteration.

The idea of factorization preconditioners is to use an approximation of A−1 by
computing an approximate LU factorization of the matrix A, A ≈ LU , and then in
each iteration step of (5), a forward and a backward substitution need to be per-
formed. Two popular algebraic variants are the ILU(0) and ILU(tol) precondition-
ers, see [57]. For ILU(0), one computes an approximate LU factorization, keeping
entries in the LU factors only if the corresponding entry in the underlying matrix A
is non-zero. In the ILU(tol) variant, elements are kept, provided they are bigger than
the tolerance tol. We compare in Table 1 the performance of this type of precondi-
tioner when applied to the Helmholtz equation, for the case of growing wave number
k. We solve an open cavity problem as in the previous example in Section 2.1, but
now with a point source in the center. For this experiment, we keep the number
of points per wavelength (more precisely, the ratio of wavelength to mesh spacing)
constant, which means that the grid is refined with increasing wave number. We ob-
serve that the ILU preconditioners are quite effective for small wave numbers, but
their performance deteriorates when k becomes larger: the situation with ILU(’0’) is
worse than without preconditioning, and even ILU(tol) with a small drop tolerance
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QMR ILU(’0’) ILU(1e-2)
k it Mflops it Mflops it Mflops
5 197 120.1 60 60.4 22 28.3

10 737 1858.2 370 1489.3 80 421.4
15 1775 10185.2 > 2000 > 18133.2 220 2615.1
20 > 2000 > 20335.1 — — > 2000 > 42320.1

Table 1 Iteration counts for QMR with and without preconditoner, applied to an indefinite
Helmholtz equation with increasing wave number.

does not permit the solution of the problem. Similar results are also observed when
using GMRES and other Krylov methods, see [36].

2.3 Domain Decomposition Methods

The oldest and simplest domain decomposition method is due to Schwarz [59]. He
invented his alternating method in order to prove the Dirichlet principle, on which
Riemann had based his theory of analytic functions of a complex variable (See [37]
for a historical overview, and also [31] for an overview over the different continuous
and discrete variants of the Schwarz method). The idea of the alternating Schwarz
method is illustrated in Figure 3. One simply solves the original partial differential

O1 r1 O2

dO

r2

Fig. 3 Original drawing of a domain decomposition by Schwarz on the left, and on the right using
the notation in the text

.

equation alternatingly in overlapping subdomains, and uses as interface condition
the trace of the previously computed solution in the neighboring subdomain. For
the case of the Helmholtz equation and the two subdomain decomposition in Figure
3, the algorithm is

−(∆ + k2)un+1
1 = 0 in Ω1, −(∆ + k2)un+1

2 = 0 in Ω2,

un+1
1 = un

2 on Γ1, un+1
2 = un+1

1 on Γ2.
(7)

We show in Table 2 numerical experiments for growing wave number k for the
case of a cavity open both on the left and on the right. We used the alternating
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k Overlap 10π 20π 40π 80π 160π

Iterative h div div div div div
Preconditioner h 20 33 45 69 110

Iterative fixed div div div div div
Preconditioner fixed 16 23 43 86 155

Table 2 Performance of a classical Schwarz domain decomposition method for a discretized
Helmholtz equation

Schwarz method both as an iterative solver, as in (6), and as a preconditioner, as
in (5), for GMRES. We see that the alternating Schwarz method is not convergent
for the indefinite Helmholtz equation. Used as a preconditioner, we obtain a con-
vergent method, but iteration numbers grow with increasing wave number k. For
diffusive problems, the alternating Schwarz method converges better, if the overlap
is increased, which is also intuitively understandable. This is, however, not the case
for the Helmholtz equation, as we see comparing the case with overlap h, the mesh
size, and with fixed overlap, equal to 2h on the coarsest grid, and then 4h, 8h etc
when the mesh is refined: at the beginning, for small wave numbers, overlap seems
to help, but later, bigger overlap is detrimental to the performance of the Schwarz
preconditioner when applied to the Helmholtz equation.

2.4 Fictitious Domain Methods

While domain decomposition methods arrive at more manageable subproblems by
dividing a given problem region into smaller subregions, fictitious domain methods
are based on imbedding the former in a larger domain for which a more efficient
solver may be available. The first such techniques [44, 58, 11, 55], also known as
domain imbedding or capacitance matrix methods, were developed to extend the
efficiency of fast Poisson solvers based on the Fast Fourier Transform or cyclic re-
duction also to problems for which these methods are not directly applicable, as
they require some form of separation of variables. In [21] (see also [22]) this idea
was applied to exterior boundary value problems for the Helmholtz equation in two
dimensions, and it was shown how the Sommerfeld radiation condition can be in-
corporated into a fast Poisson solver. Large-scale scattering calculations using this
approach can be found in [43].

Computationally, fictitious-domain methods represent the original discrete prob-
lem as a low-rank modification of a larger problem amenable to fast methods. The
fast solver plays the role of a discrete Green’s function much in the same way
its continuous counterpart is used in the integral equation method for solving the
Helmholtz equation using layer potentials [13]. In fact, fictitious domain methods
require the solution of an auxiliary system of equations which is a discretization of
an integral operator on the boundary of the problem (scattering) domain. If a suit-
able formulation is chosen these operators are often compact perturbations of the
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identity, which can be exploited to obtain mesh-independent convergence for itera-
tive solution methods. The dependence on the wave number, however, is typically
linear. Convergence independent of the wave number and mesh size would require
more efficient preconditioning schemes for the discrete integral operator, which are
currently not available. Recent developments on the spectral analysis of such oper-
ators necessary for the design of effective preconditioners can be found in [7].

2.5 Multigrid Methods

Two fundamental observations led to the invention of multigrid methods:

• When applied to the Poisson equation, classical stationary iterative methods such
as Gauss-Seidel or damped Jacobi iteration effectively remove high-frequency
components of the error, but are very ineffective for low-frequency components.
Stiefel points this out very vividly in his 1952 paper [61] on precursors of the
conjugate gradient method, remarking that, after a few iterations of one of such
basic iterative methods, in which the residual is reduced significantly, subsequent
iteration steps decrease the residual only by very little, as if the approximation
were confined to a “cage” 1.

• The remaining low-frequency components in the error can be well represented
on a coarser grid,2 as Federenko points out in his 1961 paper presenting the first
complete multigrid method [28]:

We shall speak of the eigenfunctions as “good” and “bad”; the good ones include those
that are smooth on the net and have few changes of sign in the domain; the bad ones
often change sign and oscillate rapidly [...] After a fairly small number of iterations, the
error will consist of “good” eigenfunctions [...] We shall use the following method to
annihilate the “good” components of the error. We introduce into the domain an auxiliary
net, the step of which is q times greater than the step of the original net.

The simplest multigrid scheme to which these developments led is the classical ‘V-
cycle’, which, applied to the system Au = f, reads:

1 “Das Auftreten von Käfigen ist eine allgemeine Erscheinung bei Relaxationsverfahren und sehr
unerwünscht. Es bewirkt, dass eine Relaxation am Anfang flott vorwärts geht, aber dann immer
weniger ausgiebig wird . . . ”
2 The idea of beginning the iteration on a coarse grid with a subsequent “advance to a finer net”,
not unlike the modern full multigrid approach, was in use already in the early days of “relaxation
methods”, as evidenced, e.g., in the book of Southwell [60, Section 52] from 1946.
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function u=Multigrid(A,f,u0);
if isSmall(A) then u=A\f else

u=DampedJacobi(nu,A,f,u0);
r=Restrict(f-Au);
e=Multigrid(Ac,r,0);
u=u+Extend(e);
u=DampedJacobi(nu,A,f,u);

end;

We show in Table 3 the performance of the multigrid algorithm when applied to a
discretized Helmholtz equation, in our example a closed cavity without resonance
for the discretized problem3. We observe that the multigrid method is not converging

k Smoothing steps 2.5π 5π 10π 20π

Iterative ν = 2 7 div div div
Preconditioner ν = 2 6 12 41 127

Iterative ν = 5 7 stag div div
Preconditioner ν = 5 5 13 41 223

Iterative ν = 10 8 div div div
Preconditioner ν = 10 5 10 14 87

Table 3 Performance of a classical geometric multigrid method with optimally damped Jacobi
smoother applied to a discretized Helmholtz equation

as an iterative solver except for a very small wave number. When multigrid is used
as a preconditioner, we obtain a convergent method, like in the case of the Schwarz
domain decomposition method, but again the iteration numbers grow substantially
when the wave number increases. We used again about 10 points per wavelength
in these experiments. Often one increases the number of smoothing steps in the
multigrid method, to improve the performance, and we see in Table 3 that for small
wave numbers, this seems to help the preconditioned version, but for large wave
numbers, adding more smoothing steps can both increase and decrease performance.
Again, we observe that the Helmholtz operator is not suitable to be solved with
standard multigrid.

3 In a closed cavity, i.e., with homogeneous Dirichlet conditions imposed on all sides, it is impor-
tant to ensure that k2 is not an eigenvalue of the discrete Laplacian, since otherwise one obtains a
singular matrix. In the case of a multigrid solver then, one must be careful that k2 is not an eigen-
value of the discrete Laplacian on each of the grids used in the multigrid hierarchy, which we did
for this experiment (see also subsection 3.4)
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3 Iterative Methods for Helmholtz Problems

We now describe several iterative methods and preconditioners which have been
developed especially for solving discrete Helmholtz problems. In each case we first
give an explanation of why the classical iterative method or preconditioner fails, and
then show possible remedies.

3.1 Analytic Incomplete LU

The incomplete LU (ILU) preconditioners are based on the fact that the linear sys-
tem (3) could be solved by a direct factorization, the so called LU factorization

A = LU, L lower triangular, U upper triangular. (8)

The solution of the linear system Au = LUu = f is then obtained by solving

Lv = f by forward substitution,
Uu = v by backward substitution.

If the matrix A is a discretization of the Helmholtz operator−(∆ +k2) in two dimen-
sions, and we use the lexicographic ordering of the unknowns indicated in Figure 4,
we can interpret the forward and backward substitutions geometrically: the forward

x

y

u1

un

Fig. 4 Ordering of the unknowns in the discretization of the Helmholtz operator

substitution process Lv = f determines first the variables in the leftmost column of
the domain, see Figure 4, then in the second leftmost, and so on, until the last column
on the right. The process is sequential, and could be interpreted as a time-stepping
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in the positive x-direction, solving some type of evolution problem. The backward
substitution process Uu = v, on the other hand, starts with the variables in the right-
most column in Figure 4, and then computes the second rightmost column, and so
on, until the first column on the left is determined. Again the process is sequential,
and could be interpreted as a time-stepping, but this time in the negative x-direction.

From the explanation of the convergence of Krylov methods without precon-
ditioning given in Section 2, we see that efficient transport of information in the
preconditioner is important for Helmholtz problems. We have, however, also seen
that the classical ILU preconditioners do not seem to bring about this transport ef-
fectively enough: even the quite accurate approximate ILU(1e-2) factorization does
not suffice.

In order to find what the evolution problems described by the LU factorization
could correspond to for the underlying Helmholtz equation, we looked in [36] for a
factorization of the Helmholtz operator in the x direction,

−(∆ + k2) =−(∂x +Λ1)(∂x−Λ2), (9)

where Λ1 and Λ2 are (non-local) operators to be determined such that the factoriza-
tion in (9) holds. If we have such a factorization at the continuous level, then we can
solve −(∆ + k2)u =−(∂x +Λ1)(∂x−Λ2)u = f by solving two evolution problems:

−(∂x +Λ1)v = f evolution problem in the forward x direction,
(∂x−Λ2)u = v evolution problem in the backward x direction.

Taking a Fourier transform in the y-direction with Fourier variable ξ , we obtain

Fy(−(∆ + k2)) =−∂xx +ξ
2− k2 =−(∂x +

√
ξ 2− k2)(∂x−

√
ξ 2− k2), (10)

and thus we have the continuous analytic factorization of the Helmholtz operator

−(∆ + k2) =−(∂x +Λ1)(∂x−Λ2), (11)

where Λ1 = Λ2 = F−1
y (
√

ξ 2− k2). Note that the Λ j, j = 1,2, are non local opera-
tors in y, because of the square root in their symbol

√
ξ 2− k2.

The discrete analog of this factorization at the continuous level is the block LDLT

factorization of the discrete Helmholtz matrix A. In the case of a five point finite
difference discretization, this matrix has the block structure

A =
1
h2


A1 −I

−I A2
. . .

. . . . . .

 , A j =


4− kh2 −1

−1 4− kh2 . . .
. . . . . .

 .
A direct calculation shows that the block LDLT factorization of A is given by
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L =
1
h


I

−T−1
1 I

−T−1
2

. . .

. . . . . .

 , D =

T1
T2

. . .

 ,
where the matrices Tj satisfy the recurrence relation

Tj+1 = A j+1−T−1
j , T1 = A1, (12)

it suffices to multiply the matrices in order to verify. We observe that in this exact
factorization, the matrices Tj are no longer sparse, since the recurrence relation (12)
which determines them involves an inverse. This fill in at the discrete level corre-
sponds to the non-local nature of the operators Λ j. Using a local approximation of
the matrices Tj with tridiagonal structure only gives an approximate LDLT factor-
ization of A which we call AILU(’0’) (Analytic Incomplete LU). In order to obtain
a good approximation, the relation to the continuous factorization was used in [36],
and the spectral radius of the corresponding iteration matrix was minimized. The
performance of this preconditioner, which is now tuned for the Helmholtz nature of
the problem, is shown in Table 4, for the same open cavity problem as before. We

QMR ILU(’0’) ILU(1e-2) AILU(’0’)
k it Mflops it Mflops it Mflops it Mflops
5 197 120.1 60 60.4 22 28.3 23 28.3

10 737 1858.2 370 1489.3 80 421.4 36 176.2
15 1775 10185.2 2000 18133.2 220 2615.1 43 475.9
20 2000 20335.1 — — 2000 42320.1 64 1260.2
30 – – – – – – 90 3984.1
40 – – – – – – 135 10625.0
50 – – – – – – 285 24000.4

Table 4 Performance comparison of the specialized AILU(’0’) preconditioner, compared to the
other ILU variants

clearly see that this approximate factorization contains much more of the physics of
the underlying Helmholtz equation, and leads to a better preconditioner. Neverthe-
less, the iteration number is still growing with growing wave number k.

The AILU preconditioner goes back to the analytic factorization idea, see [53]
and references therein. It is very much related to the Frequency Filtering Decom-
position, as proposed by Wittum in [64, 65] and analyzed for symmetric positive
problems in [62], and for non-symmetric problems in [63]. There was substantial re-
search activity for these kinds for preconditioners around the turn of the century, see
[40], [12], [29], [1], and for Helmholtz problems this is one of the best incomplete
factorization preconditioners available. For more recent work, see [2], [54], and for
Helmholtz problems in particular [18] and [19], where this type of preconditioner
is called a ’sweeping preconditioner’, and an optimal approximation is proposed in
the sense that iteration numbers do not depend on the wave number k any more.
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3.2 Domain Decomposition Methods for Helmholtz Problems

In the late 1980s researchers realized that classical domain decomposition methods
were not effective for Helmholtz problems, and the search for specialized methods
began. In his PhD thesis [15], Bruno Després summarizes this situation precisely:

L’objectif de ce travail est, après construction d’une méthode de décomposition de domaine
adaptée au problème de Helmholtz, d’en démontrer la convergence4.

The fundamental new ingredient for such an algorithm turned out to be the trans-
mission condition between subdomains, as in the non-overlapping variant of the
Schwarz algorithm proposed by Lions [51]. The algorithm proposed by Bruno De-
sprès is

−(∆ + k2)un+1
j = f , in Ω j

(∂n j − ik)un+1
j = (∂n j − ik)un

l , on interface Γjl ,
(13)

and, on comparing with the classical alternating Schwarz algorithm in (7), we see
that now a Robin transmission condition is used at the interfaces. The algorithm was
considered by Després for many subdomains, but only without overlap, so that its
convergence can be proved using energy estimates.

In order to get more insight why the transmission conditions are important, we
show in Figure 5 the convergence factor of the algorithm for the simple model prob-
lem of a square decomposed into two rectangles. In this case, we can use Fourier
series in the direction of the interface to explicitly compute how each Fourier mode
converges, see for example [34]. We see on the left for the classical alternating

Fig. 5 Comparison of how each Fourier mode in the error converges, on the left for the classical al-
ternating Schwarz method with overlap, and on the right for the variant designed for the Helmholtz
equation, without overlap

Schwarz method that low frequency modes are not converging at all, their conver-

4 The goal of this work is to design a special domain decomposition method for Helmholtz prob-
lems, and to prove that it converges



Helmholtz Problems and Iterative Methods 13

gence factor equals one. These modes correspond to the oscillatory, or propagat-
ing modes in the solution of the Helmholtz equation, as are clearly visible, e.g., in
the example in Figure 1 on the right. High-frequency components, however, con-
verge well in the classical alternating Schwarz method. These modes correspond to
evanescent modes, usually only well visible for diffusive problems, as in Figure 1
on the left. The situation for the non-overlapping method of Després on the right
is reversed: the new transmission conditions lead to a rapidly converging method
for the propagating modes in the low-frequency part of the spectrum, but now high
frequency components are not converging.

Després wanted to prove convergence of the algorithm, and the technique of en-
ergy estimates generally works only for the non-overlapping variants of the algo-
rithm. But Figure 5 suggests that one could use the overlap for the high-frequency
modes, and the transmission condition for the low-frequency modes, in order to ob-
tain a method effective for all modes in a Helmholtz problem. In addition, it might
be possible to choose an even better transmission condition, as indicated toward the
end in Lions’ work [51], and also by Hagström et al. in [42]. All these observations
and further developments led at the turn of the century to the invention of the new
class of optimized Schwarz methods [33], with specialized variants for Helmholtz
problems [34, 32]. For an overview for symmetric coercive problems, see [30].

Using optimized transmission conditions of zeroth order, which means choosing
the best complex constant instead of ik in the Robin condition, we obtain for the
same model problem as in Figure 5 the contraction factors shown in Figure 6 on
the left. We can see that all modes, except for the resonance mode, now converge

k 40302010

0.8

0.6

0.4

0.2

k
40302010

0.8

0.6

0.4

0.2

0

Fig. 6 Comparison of how each Fourier mode in the error converges, on the left for an optimized
Schwarz method of order zero (OO0), and on the right for a second order optimized Schwarz
method (OO2), both with overlap

well. On the right in the same figure, we show a second-order optimized Schwarz
method, in which one also uses the Laplace-Beltrami operator at the interface to
obtain an even more effective transmission condition. Using this operator does in
no way increases the sparsity pattern of the subdomain solver, since second order
derivatives are already present in the underlying discretization of the Laplacian.
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A general convergence analysis of optimized Schwarz methods for Helmholtz
problems currently only exists for the non-overlapping case, using energy estimates.
This approach however does not allow us to obtain convergence factor estimates. In
addition, to prove convergence for the general overlapping case is an open problem.
For the model situation of two subdomains however, one can quantify precisely
the dependence of the convergence factor on the wave number k, and the mesh
parameter h. We show in Table 5 the resulting convergence factors from [32]. We

k fixed kγ h const

Overlap 0 1−O(h
1
4 ) 1−O(k

1−2γ

8 )

Overlap CLh 1−O(h
1
5 )

{
1−O(k−

1
8 ) 1≤ γ ≤ 9

8

1−O(k
1−2γ

10 ) γ > 9
8

Overlap const 1− const 1−O(k−
1
8 )

Table 5 Asymptotic convergence factors obtained for a model problem

see that for a fixed wave number k, and a constant overlap, independent of the mesh
size h, the algorithm converges with a contraction factor independent of the mesh
size h. In the important case where the wave number k scales with the mesh size h
like kγ h in order to avoid the pollution effect, see [45, 46], we see that the contraction
factor only depends very weakly on the growing wave number: for example if the
overlap is held constant, all Fourier modes of the error contract at least with a factor
1−O(k−

1
8 ).

In Table 6, we show a numerical experiment for a square cavity open on two
sides, and the non-overlapping optimized Schwarz method in order to illustrate the
asymptotic results from Table 5. We used a fixed wave number k on the left, and a
growing wave number k on the right, while again keeping ten points per wavelength.
We show in the leftmost column the iterative version of the algorithm, in order to

Iterative Krylov Krylov
h Optimized Deprés Optimized k Deprés Optimized

1/50 322 26 14 10π 24 13
1/100 70 34 17 20π 33 18
1/200 75 44 20 40π 43 20
1/400 91 57 23 80π 53 21
1/800 112 72 27 160π 83 32

Table 6 Numerical experiment for a two-subdomain decomposition

illustrate the sensitivity of the algorithm with respect to the peak of the convergence
factor at the resonance frequency. Since the discretization modifies the continuous
spectrum, a discretization with insufficient resolution may have eigenvalues close
to the resonance frequency, which are not taken into account by the continuous
optimization based on Fourier analysis, which in turn can result in an arbitrarily
large iteration count, as we see for example for h = 1

50 . Such problems, however,



Helmholtz Problems and Iterative Methods 15

disappear once the mesh is fine enough, or when Krylov acceleration is added, as
one can observe in Table 6. This issue is therefore not of practical concern. We
also see that it clearly pays to use optimized parameters, as the iteration count is
substantially lower than with the first choice of ik in the transmission conditions.

We finally show two numerical experiments from [34] and [32], in order to il-
lustrate that optimized Schwarz methods for Helmholtz equations also work well in
more practical situations. In Figure 7, we simulated the approach of an Airbus A340

Fig. 7 Airbus A340 in approach over a city

over the silhouette of a city, with a decomposition into 16 subdomains. In this case,
using a Robin transmission condition with ik as parameter required 172 iterations,
whereas the optimized Schwarz method needed only 58 iterations to converge to the
same tolerance. The second example is the interior of a Twingo car from Renault,
shown in Figure 8. Here, the Robin transmission condition with ik as parameter took

Fig. 8 Simulation of the noise in the passenger cabin of a Twingo car from Renault

105 iterations, and the optimized Schwarz method 34.
There is a second type of domain decomposition methods for Helmholtz prob-

lems, from the FETI class of methods (Finite Element Tearing and Interconnect, see
[27]). These methods are based on a dual Schur complement formulation, which
means that interior variables in the subdomains are eliminated, assuming that Neu-
mann traces are continuous across interfaces, and then a substructured system is
obtained by requiring that Dirichlet traces along interfaces match. A primal Schur
formulation would do the opposite: eliminate interior unknowns of subomains, as-
suming that Dirichlet traces are continuous across interfaces, and then impose con-
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tinuity of the Neumann traces along interfaces in order to obtain a substructured
formulation. These methods usually need an additional preconditioner, in order to
obtain convergence rates independent (or only weakly dependent) on the mesh pa-
rameter h. An optimal choice is to use the primal Schur complement method for
the dual Schur complement formulation, and vice versa. In order to scale with the
number of subdomains, also a coarse grid is needed. For the case of Laplace’s equa-
tion, the classical coarse grid is to use a constant per subdomain, since if FETI is
used to solve Laplace’s equation, interior subdomain problems containing Neumann
conditions all around have precisely the constant as a kernel. This idea transformed
an inconvenience of the original FETI idea, namely that interior subdomains are
singular, into a benefit: a natural coarse grid.

In order to adapt this class of methods to Helmholtz problems, the first variant
was the FETI-H method (for FETI-Helmholtz), see [26]. Instead of using Neumann
transmission conditions in the dual Schur complement formulation, Robin condi-
tions ∂n− ik are used, but then still Dirichlet traces are matched in order to obtain a
substructured formulation. This approach is thus very much related to an optimized
Schwarz method without overlap; however, only one type of Robin conditions can
be imposed, since the other one is Dirichlet. This means that always on one side of
the interface, a Robin condition with the good sign is used, whereas on the other
side, a Robin condition with the bad sign is imposed. For checkerboard type par-
titions, one can ensure that subdomains have only Robin conditions with constant
sign all around. Otherwise, an algorithm was proposed to generate a choice of sign
which guarantees that subdomain problems are not singular. The original formula-
tion has no additional preconditioner, but a coarse grid in form of plane waves.

The second algorithm in the FETI class specialized for Helmholtz problems is
FETI-DPH, see [24]. This is a FETI-DP formulation, which means that some inter-
face unknowns are kept as primal variables, where continuity is enforced, and which
serve at the same time as coarse space components. These are usually cross points,
and in FETI-DPH additional primal constraints are enforced at the interfaces, using
planar waves. Furthermore, a Dirichlet preconditioner is used on top, like in the clas-
sical FETI formulation. A convergence analysis exists for this algorithm, see [25],
but it needs the assumption that subdomains are small enough. A systematic com-
parison of all currently existing domain decomposition algorithms for Helmholtz
problems is in preparation, see [38].

3.3 Multigrid for Helmholtz Problems

We will see in this section that neither of the two fundamental observations made by
Stiefel and Federenko, see Section 2, hold for the case of the Helmholtz equation.
In an early theoretical paper about multigrid methods [5], Bakhvalov first advertises
the method also for indefinite problems:
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For instance it is used in the case of the equation ∆u+λu = f with large positive λ (x1,x2).
Previously no methods of solving this equation with good asymptotics for the number of
operations were known

but then later in the paper he discovers potential problems:

In the case of the equation ∆u+λu = f with large positive λ we do not exclude the possi-
bility that the evaluation of (3.21) may be attained in order. Then the increase in the number
m in comparison with that calculated can lead to a deterioration in the discrepancy of the
approximation.

It took more than three decades, before Brandt and Livshits [9] took on the difficult
Helmholtz case again, and they try to explain the origin of the difficulties of the
multigrid algorithm:

On the fine grids, where [the characteristic components] are accurately approximated by the
discrete equations, they are invisible to any local relaxation, since their errors can have very
small residuals. On the other hand, on coarser grids such components cannot be approxi-
mated, because the grid does not resolve their oscillations.

Similarly, Lee, Manteuffel, McCormick and Ruge [4] explain the problem as fol-
lows:

Helmholtz problems tax multigrid methods by admitting certain highly oscillatory error
components that yield relatively small residuals. Because these components are oscillatory,
standard coarse grids cannot represent them well, so coarsening cannot eliminate them ef-
fectively. Because they yield small residuals, standard relaxation methods cannot effectively
reduce them.

In order to more precisely illustrate the problems of the multigrid algorithm when
applied to the Helmholtz equation, we consider now the Helmholtz equation in two
dimensions on the unit square,

−(∆ + k2)u = f , in Ω := (0,1)× (0,1). (14)

We show two numerical experiments, following the strategy of Boris Diskin [16],
that in order to investigate the behavior of multigrid methods, one should replace
one of the two components (smoother or coarse grid correction) by a component
which one knows to be effective (even if it is not feasible to use this component in
practice), to test the other one. In a first experiment, we use a Fourier smoother in
order to remove explicitly the high frequency components of the error, and try to
compute the solution shown in Figure 9, in the top left graph, which corresponds to
the choice of parameters f = − 1

20 , k2 = 19.7 and fine grid parameter h = 1
32 . We

use a random initial guess u0, and a two grid cycle. The result is shown in Figure 9.
We clearly observe the following in this experiment: while the error on the coarse

grid is well resolved, the correction calculated on the coarse grid is 100% incorrect,
it has the wrong sign! Hence the problem does not seem to be that certain high
frequency components in the error are left to the coarse grid and cannot be approx-
imated accurately there: the mesh is largely fine enough to represent them. But the
correction calculated is incorrect: it is the operator itself which is not well approxi-
mated. This had already been discovered in an earlier paper by Brandt and Ta’asan
[8] on slightly indefinite problems:
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Fig. 9 Problem of the coarse grid correction when multigrid is used for the Helmholtz equation.
From top left to bottom right: solution we want to calculate, and then initial error, error after pres-
moothing, coarse grid correction that needs to be subtracted, error after coarse grid correction, error
after postsmoothing, error after presmoothing, coarse grid correction that needs to be subtracted,
error before postsmoothing.

Usual multigrid for indefinite problems is sometimes found to be very inefficient. A strong
limitation exists on the coarsest grid to be used in the process. The limitation is not so much
a result of the indefiniteness itself, but of the nearness to singularity, that is, the existence
of nearly zero eigenvalues. These eigenvalues are badly approximated (e.g. they may even
have a different sign) on coarse grids, hence the corresponding eigenfunctions, which are
usually smooth ones, cannot efficiently converge.

For our second numerical experiment, we now use a damped Jacobi smoother,
and compute the exact coarse grid correction, by computing it on the fine grid, then
restricting it to the coarse grid and prolongating it again to the fine grid, in order to
guarantee that the coarse grid correction is working properly (this would not make
sense obviously in a real multigrid code, but allows us to illustrate the reason why
the smoother fails). We try to compute the solution shown in Figure 10, in the top
left graph, which corresponds to the parameters f =−1000, k2 = 400 and fine mesh
size h = 1

32 , and we use again a random initial guess u0, and a two grid cycle. Its
behavior is shown in Figure 10 in the remaining graphs. We clearly see that even
though the coarse grid correction is very effective, the smoother is responsible for
a growing low frequency mode, and the two grid method does not converge. We
explain these two observation in the next section with a detailed two-grid analysis.
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Fig. 10 Problem of the smoother when multigrid is used for the Helmholtz equation. From top
left to bottom right: solution we want to calculate, and then initial error, error after presmoothing,
coarse grid correction that needs to be subtracted, error after coarse grid correction, error after
postsmoothing, error after presmoothing, coarse grid correction that needs to be subtracted, error
before postsmoothing, etc



20 Oliver G. Ernst and Martin J. Gander

3.4 Two-Grid Analysis for the 1D Model Problem

To explain the difficulties of multigrid applied to the Helmholtz equation, we con-
sider the simplest possible case of the one-dimensional problem

−u′′− k2u = f in Ω = (0,1), u(0) = u(1) = 0, (15)

with constant wave number k and peform a spectral analysis, much along the lines
of [41, Chapter 2] and [10, Chapter 5].

We assume that k2 is not an eigenvalue of the Dirichlet-Laplacian for this domain
and therefore the continuous problem possesses a unique solution, as do sufficiently
accurate discrete approximations. When multigrid is applied to cavity problems like
(15) one must always be careful that all coarse-grid problems are nonsingular. This
is, however, no longer an issue when damping is present, either in the form of an
absorbing medium or radiation boundary conditions.

Using the standard three-point centered finite-difference approximation of the
second derivative on a uniform mesh with N interior grid points and mesh width
h = 1/(N + 1), (15) is approximated by the linear system of equations Au = f for
the function values u(x j)≈ u j, j = 1, . . . ,N, at the grid points x j = jh, where

A =
1
h2 tridiag(−1,2− k2h2,−1) ∈ RN×N . (16)

The matrix A is symmetric and has the complete set of orthogonal eigenvectors

v j = [sin j`πh]N`=1, j = 1, . . . ,N. (17)

When it is necessary to rescale these eigenvectors to have unit Euclidean norm this
is achieved by the factor

√
2h (for all j). The associated eigenvalues are given by

λ j =
2(1− cos jπh)

h2 − k2 =
4
h2 sin2 jπh

2
− k2, j = 1, . . . ,N.

The form of the eigenvectors (17) reveals that these become more oscillatory with
increasing index j.

When N is odd, which we shall always assume for the pure Dirichlet problem, we
set n := (N−1)/2 and refer to the eigenpairs associated with the indices 1≤ j ≤ n
as the smooth part of the spectrum Ism and the remainder as the oscillatory part Iosc.
Note that the eigenvalue with index j = (N+1)/2 = n+1 lies exactly in the middle,
with an associated eigenvector with wavelength 4h.

3.4.1 Smoothing

The Jacobi smoother is based on the splitting A = D− (D−A) of the matrix A in
(16), where D = diag(A), resulting in the iteration
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um+1 = um +D−1(f−Aum).

For smoothing one usually introduces a damping factor ω for the update, giving

um+1 = um +ωD−1(f−Aum), (18)

which corresponds to the splitting A = 1
ω

D− ( 1
ω

D−A). The associated error prop-
agation operator is

Sω = I−ωD−1A. (19)

Noting that D = (2/h2− k2)I, we conclude that A and D are simultaneously diago-
nalizable, which gives for Sω the eigenvalues

σ j = σ j(ω) = 1−ω

(
1− 2cos jπh

2− k2h2

)
=: 1−ω

λ j

δ
, j = 1, . . . ,N, (20)

where we have introduced δ = δ (k,h) := (2−k2h2)/h2 to denote the diagonal entry
in the Jacobi splitting, which is constant for this model problem.

In multigrid methods the smoothing parameter ω is chosen to maximize damping
on the oscillatory half of the spectrum Iosc. For the Laplace operator (k = 0) the
eigenvalues of D−1A are given by λ j/δ = 1− cos( jπh), j = 1, . . . ,N, resulting in,
up to order h2, the spectral interval [0,2], with Iosc = [1,2]. Maximal damping on
Iosc = [1,2] thus translates to the requirement of equioscillation, i.e.,

1−ω =−(1−2ω), i.e. ω = ω0 :=
2
3
. (21)

For this optimal value of the damping parameter ω each eigenmode belonging to
the oscillatory modes span{vh

n+1, . . . ,v
h
N} is reduced by at least a factor of

σn+1(ω0) = 1−ω0 =
1
3

in each smoothing step, independently of the mesh size h. Figure 11 shows the
spectrum of Sω for the discrete 1D Laplacian on the unit interval with mesh width
h = 1/50 for the values ω = 0 (undamped) and the optimal value ω = 2/3 , plotted
against the eigenvalues λ j of A.

For the 1D Helmholtz operator (k > 0) the eigenvalues of D−1A are

λ j

δ
= 1− 2cos jπh

2− k2h2 , j = 1, . . . ,N,

and therefore, up to O(h2), these range between the extremal values

λ1

δ
=
−k2h2

2− k2h2 , and
λN

δ
=

4− k2h2

2− k2h2 .
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Fig. 11 Eigenvalues of the undamped and optimally damped Jacobi smoother plotted against those
of the associated diagonally scaled 1D Laplacian −∆h, h = 1/50, divided into smooth and oscilla-
tory parts Ism and Iosc. The dashed red lines indicate the spectral radius of Sω restricted to the space
of oscillatory eigenfunctions.

Assuming the midpoint (λ1 +λN)/2 is still positive, maximal smoothing of the os-
cillatory modes can again be obtained by equioscillation, which fixes ω by requiring

1−ω
λN

δ
=−

(
1−ω

λ1 +λN

2δ

)
,

and gives

ω = ωk :=
2− k2h2

3− k2h2 . (22)

Figure 12 shows the analogous quantities of Figure 11 for the Helmholtz equa-
tion with wave number k = 10π . In contrast with the Laplacian case, the spectrum
of A now extends into the negative real axis. By consequence, any choice of the
relaxation parameter ω will result in amplification of some modes, as we have seen
in our example in Figure 10. In the case shown, these are precisely the eigenmodes
of A associated with negative eigenvalues. If this only constitutes a small portion of
Λ(A), then the coarse grid correction, the second component of multigrid methods
which eliminates smooth error components, can be expected to compensate for this
amplification. It is clear, however, that the amplification will both grow too large
and extend over too large a portion of the spectrum for smaller and smaller wave
resolution, i.e., kh large.

Therefore, fundamentally different smoothing iterations are needed for Helmholtz
problems. For this reason Brandt and T’asan [8] proposed using the Kazmarcz re-
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Fig. 12 Eigenvalues of the Jacobi smoother plotted with ω =ωk, ω =ω1 and ω =ω0 against those
of the associated diagonally scaled 1D Helmholtz operator −∆h− k2, h = 1/50 with wavelength-
to-mesh ratio λ/h = 10.

laxation, which is essentially Gauss-Seidel iteration applied to the normal equations.
This smoother has the advantage of not amplifying any modes, but at the cost of very
weak smoothing. Elman, Ernst and O’Leary [17] proposed using Krylov subspace
methods as smoothers. The difficulty here is that different numbers of smoothing
steps are necessary at different grid levels, and their optimal determination is chal-
lenging.

3.4.2 Coarse Grid Correction

In addition to the finite difference discretization on the mesh

Ω
h := {x j = jh : j = 0, . . . ,N +1}

we consider the 1D model problem (15) discretized on a coarser grid

Ω
H := {x j = jH : j = 0, . . . ,n+1}

with twice the mesh width H = 2h, where N = 2n+ 1. We transfer grid functions
uH = [uH

1 , . . . ,u
H
n ] (we omit the zero boundary values) to the fine grid Ω h using

linear interpolation, which defines the linear mapping

IH
h : Ω

H →Ω
h, uH 7→ IH

h uH
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defined by

[Ih
HuH ] j =

{
[uH ] j/2 if j is even,
1
2

(
[uH ]( j−1)/2 +[uH ]( j+1)/2

)
if j is odd,

j = 0, . . . ,N +1,

(23)
with matrix representation

Ih
H =

1
2



1
2
1 1

2
1

. . . 1
2
1


∈ RN×n

with respect to the standard unit coordinate bases in Rn and RN , respectively.
Following [41], we analyze the mapping properties of the linear interpolation

operator Ih
H on the coarse-grid eigenvectors {vH

j }n
j=1 of the discrete 1D Dirichlet-

Laplacian , where

vH
j = [sin( j`πH)]n`=1, j = 1, . . . ,n.

Proposition 1. The coarse-grid eigenvectors are mapped by the interpolation oper-
ator Ih

H according to

Ih
HvH

j = c2
jv

h
j − s2

jv
h
N+1− j, j = 1, . . . ,n,

where we define

c j := cos
jπh
2

, s j := sin
jπh
2

, j = 1, . . . ,n. (24)

In particular, vh
n+1 is not in the range of interpolation.

Proof. For each j ∈ {1, . . . ,n} we distinguish the cases of odd and even index ` ∈
{1, . . . ,N} corresponding to the two cases in the definition (23). In the first case we
obtain using elementary trigonometric identities[
Ih
Hv j

]
`
=

1
2

(
[vH

j ](`−1)/2 +[vH
h ](`+1)/2

)
=

1
2

(
sin

j(`−1)πH
2

)+ sin
j(`+1)πH

2

)
=

1
2

(
sin( j(`−1)πh)+ sin( j(`+1)πh)

)
= cos( jπh)sin( jπ`h)

= (c2
j − s2

j)sin( j`πh) = c2
j sin( j`πh)− s2

j sin((N +1− j)`πh)

= c2
j [v

h
j ]`− s2

j [v
h
N+1− j]` .
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For even ` we obtain[
Ih
Hv j

]
`
=
[
vH

j
]
`/2 = sin

j`πH
2

= sin( j`πh) = (c2
j + s2

j)sin( j`πh)

= c2
j sin( j`πh)− s2

j sin((N +1− j)`πh) = c2
j [v

h
j ]`− s2

j [v
h
N+1− j]` .

ut
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Fig. 13 Coefficients c2
j and s2

j of the eigenvectors of the discrete 1D Dirichlet-Laplacian under the
linear interpolation operator for N = 31, i.e., n = 15.

The coarse-grid modes vH
j are thus mapped to a linear combination of their fine-

grid counterparts vh
j and a complementary mode vh

j′ with index j′ := N+1− j. Note
the relations

c j′ = s j s j′ = c j, j = 1, . . . ,n,

between complementary s j and c j. Interpolating coarse-grid functions therefore al-
ways activates high-frequency modes on the fine grid, with a factor that is less than
one but grows with j (cf. Figure 13).

To transfer fine-grid functions to the coarse grid we employ the full weighting
restriction operator

IH
h : Ω

h→Ω
H , uh 7→ IH

h uh

defined by[
IH
h uh

]
j
=

1
4

(
[uh]2 j−1 +2[uh]2 j +[uh]2 j+1

)
, j = 1, . . . ,n. (25)

The associated matrix representation is given by IH
h = 1

2 [I
h
H ]
>. The restriction oper-

ator is thus seen to be the adjoint of the interpolation operator if one introduces on
Rn and RN the Euclidean inner product weighted by the mesh size H and h, respec-
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tively. Denoting by N (·) and R(·) the null-space and range of a matrix, the basic
relation

RN = R(Ih
H)⊕N ([Ih

H ]
>) = R(Ih

H)⊕N (IH
h ) (26)

reveals that the range of interpolation and the null-space of the restriction are com-
plementary linear subspaces of RN , which are also orthogonal with respect to the
Euclidean inner product. Since the columns of Ih

H are seen to be linearly indepen-
dent, the interpolation operator has full rank, which together with (26) implies

dimR(Ih
H) = n, dimN (IH

h ) = N−n = n+1.

Proposition 2. The fine-grid eigenvectors are mapped by the restriction operator IH
h

according to

IH
h vh

j = c2
jv

H
j , j = 1, . . . ,n, (27a)

IH
h vh

N+1− j =−s2
jv

H
j , j = 1, . . . ,n, (27b)

IH
h vh

n+1 = 0. (27c)

Proof. By (25) and elementary trigonometric relations we have for j, ` ∈ {1, . . . ,n}[
IH
h vh

j

]
`
=

1
4

(
[vh

j ]2`−1 +2[vh
j ]2`+[vh

j ]2`+1

)
=

1
4

(
sin((2`−1) jπh)+2sin(2` jπh)+ sin((2`+1) jπh)

)
=

1
4
(
2sin(2` jπh)+2cos( jπh)sin(2` jπh)

)
=

1
2

(
1+ cos( jπh)

)
sin(2` jπh)

= cos2 jπh
2

sin(` jπH) = c2
j [v

H
j ]`,

which is (27a). For j = n+1 we have 2 jh = 1, implying sin(2` jπh) = 0 ∀`, which
is (27b). To show (27c) note first that

[vh
N+1− j]` =−(−1)` sin( j`πh), j = 1, . . . ,n; `= 1, . . . ,N,

and therefore[
IH
h vh

N+1− j

]
`
=

1
4

(
2cos( jπh)sin( j`πH)− (−1)2`2sin( j`πH)

)
=

1
2

(
cos( jπh)−1

)
sin( j`πH) =−sin2 jπh

2
sin( j`πH) =−s2

j [v
H
j ]` .

ut
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The coarse-grid correction of an approximation uh to the solution of (15) on
the fine grid Ω h is obtained by solving the error equation Aheh = b−Ahuh = rh

on the coarse grid. To this end, the residual is first restricted to the coarse grid
and a coarse-grid representation AH of the differential operator is used to obtain the
approximation A−1

H IH
h rh of the error A−1

h rh on Ω H . The update is then obtained after
interpolating this error approximation to Ω h as

uh← uh + Ih
HA−1

H IH
h (b−Ahuh) (28)

with associated error propagation operator

C := I− Ih
HA−1

H IH
h Ah. (29)

In view of Propositions 1 and 2 the coarse-grid correction operator C is seen to
possess the invariant subspaces

span{vh
n+1} and span{vh

j ,v
h
j′}, j′ = N +1− j, j = 1, . . . ,n. (30)

Denoting the eigenvalues of the discrete 1D Helmholtz operators on Ω h and Ω H by

λ
h
j =

4
h2 sin2 jπh

2
− k2, j = 1, . . . ,N

and
λ

H
j =

4
H2 sin2 jπH

2
− k2, j = 1, . . . ,n,

respectively, the action of the coarse-grid correction operator on these invariant sub-
spaces is given by

C [vh
j vh

j′ ] = [vh
j vh

j′ ]C j, j = 1, . . . ,n,

where

C j =

[
1 0
0 1

]
−

[
c2

j

−s2
j

]
1

λ H
j

[
c2

j −s2
j
][λ h

j 0
0 λ h

j′

]
=

1− c4
j

λ h
j

λ H
j

c2
js

2
j

λ h
j′

λ H
j

c2
js

2
j

λ h
j

λ H
j

1− s4
j

λ h
j′

λ H
j

 (31)

in addition to Cvh
n+1 = vh

n+1.
For k = 0 we observe as in [41]

λ h
j

λ H
j
=

4s2
j

(2s jc j)2 =
1
c2

j
as well as

λ h
j′

λ H
j
=

4c2
j

(2s jc j)2 =
1
s2

j
, j = 1, . . . ,n, (32)

and therefore

C j =

[
1− c2

j c2
j

s2
j 1− s2

j

]
=

[
s2

j c2
j

s2
j c2

j

]
, j = 1, . . . ,n.
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A matrix of the form X =

[
ξ η

ξ η

]
has the eigenvalues and spectral norm

Λ(X) = {0,ξ +η}, (33a)

‖X‖= ‖XX>‖1/2 =
√

ξ 2 +η2

∥∥∥∥[1 1
1 1

]∥∥∥∥1/2

=
√

ξ 2 +η2 ·
√

2. (33b)

For C j we thus obtain in the case of the Laplacian

ρ(C j) = s2
j + c2

j = 1, ‖C j‖=
√

2(s4
j + c4

j), j = 1, . . . ,n.

From s2
j ∈ [0, 1

2 ] for j = 1, . . . ,n we infer the bound

‖C j‖ ≤ max
0≤t≤ 1

2

√
2[t2 +(1− t)2] =

√
2, j = 1, . . . ,n.

In the Helmholtz case k > 0 the spectral analysis of the coarse grid correction op-
erator C j becomes more tedious and no simple closed-form expression exists for
the spectral radius and norm of the 2× 2 blocks C j. We therefore resort to compu-
tation and consider the case of a fine mesh with N = 31 interior points. The left of
Figure 14 shows a stem plot of the eigenvalues of the 2×2 blocks of C for the Lapla-
cian, which consist of ones and zeros, as C is an orthogonal projection in this case,
see (33a). On the right of Figure 14 we see the analogous plot for k = 6.3π . Note
that the unit eigenvalues remain, but that the second eigenvalue of each pair is no
longer zero. In particular, mode number 13 is amplified by a factor of nearly -4. This
mode is well outside the oscillatory part of the spectrum, so that smoothing cannot
be expected to offset such an error amplification. In the example we have shown in
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Fig. 14 Eigenvalues of the coarse-grid correction operator with respect to a fine mesh with h =
1/32 for k = 0 (left) and k = 6.3π (right).

Figure 9, we had chosen the parameters precisely such that the corresponding mode
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was multiplied by the factor -1, which led to the correct shape of the coarse grid
correction, but with the incorrect sign.

A simple device for obtaining a more effective coarse-grid correction for Helmholtz
operators results from taking into account the dispersion properties of the discretiza-
tion scheme. For our uniform centered finite-difference discretization of the 1D
Helmholtz operator with constant k

L u≈ 1
h2

(
−u j−1 +2u j−u j+1

)
− k2u j,

plane-wave solutions eikhx j of the discrete homogeneous Helmholtz equation pos-
sess a discrete wave number kh characterized by

kh

k
=

1
kh

arccos
(

1− k2h2

2

)
> 1.

As a result, the discrete solution exhibits a phase lead with respect to the true solu-
tion, which grows with h. In the same way, coarse grid approximations in a multigrid
hierarchy will be out of phase with fine grid approximations. This suggests ‘slow-
ing down’ the waves on coarse grids in order that the coarse grid correction again
be in phase with the fine grid approximation. For our example, this is achieved by
using a modified wave number k̃ in the coarse-grid Helmholtz operator defined by
the requirement

k̃H = k, which is achieved by k̃ =

√
2(1− cos(kh))

h2 .

An even better adjustment of the coarse-grid correction results from matching the
coarse-grid discrete wave number kH to the fine-grid discrete wave number kh by
choosing the modified wave number k̃ on the coarse grid to satisfy

k̃H = kh which is achieved by k̃ = k
√

1− k2h2/4. (34)

Choosing a modified wave number according to (34) is also equivalent to avoiding
a possible ‘singularity’ in the term λ h

j /λ H
j in (31) by forcing the vanishing of λ H

j as
a continuous function of j to occur in the same location as for λ h

j .
Figure 15 shows the eigenvalues of the coarse-grid correction operator depicted

on the right of Figure 14 with the modified wave number (34) used on the coarse
grid. The strong amplification of mode number 13 is seen to be much less severe,
all non-unit eigenvalues now being less than one in modulus.

Such a dispersion analysis can be carried out for all standard discretization
schemes, and it is found that higher order schemes have much lower phase er-
ror (cf.,e.g., [3]), making them a favorable choice also from the point of multigrid
solvers. In higher dimensions higher order method also possess nearly isotropic dis-
persion relations, a necessary requirement for (scalar) dispersion correction.
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Fig. 15 Eigenvalues of the coarse-grid operator with respect to a fine mesh with h = 1/32 for
k = 6.3π using the modified wave number k̃ given in (34) in the coarse grid Helmholtz operator.

3.4.3 Two-Grid Operator

Two-grid iteration combines one or more smoothing steps with coarse-grid correc-
tion. If ν1 and ν2 denote the number of pre-smoothing and post-smoothing steps car-
ried out before and after after coarse-grid correction, the error propagation operator
of the resulting two-grid operator is obtained as T = Sν2CSν1 . Choosing damped Ja-
cobi iteration with relaxation factor ω as the smoothing operator, the results on the
spectral analysis of the damped Jacobi smoother and coarse-grid correction allow
us to decompose the analysis of the two-grid operator into the subspaces

span{v1,vN},span{v2,vN−1}, . . . ,span{vn,vn+2},span{vn+1}

of n pairs of complementary modes and the remaining ‘middle mode’ vn+1. The
action of T on these one- and two-dimensional subspaces is represented by the block
diagonal matrix

T = diag(T1, . . . ,Tn,Tn+1)

with

Tj =

[
σ j 0
0 σ j′

]ν2

1− c4
j

λ h
j

λ H
j

c2
js

2
j

λ h
j′

λ H
j

c2
js

2
j

λ h
j

λ H
j

1− s4
j

λ h
j′

λ H
j

[σ j 0
0 σ j′

]ν1

j = 1, . . . ,n, (35)

and
Tn+1 = (1−ω)ν1+ν2 ,

the latter resulting from σn+1 = 1−ω (cf. (20)).
We begin again with the case k = 0, in which, due to (32), the 2× 2 blocks in

(35) simplify to (see also [41])
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Tj =

[
σ j 0
0 σ j′

]ν2
[

s2
j c2

j
s2

j c2
j

][
σ j 0
0 σ j′

]ν1

with σ j = 1−2ωs2
j , σ j′ = 1−2ωc2

j .

Fixing ν1 = ν and ν2 = 0 (pre-smoothing only) and ω = ω0 (cf. (21)), this becomes

Tj =

[
s2

jσ
ν
j c2

jσ
ν

j′

s2
jσ

ν
j c2

jσ
ν

j′

]
, j = 1, . . . ,n, Tn+1 =

(
1
3

)ν

,

where
σ j =

1
3
(
3−4s2

j
)
, σ j′ =

1
3
(
4s2

j −1
)
, j = 1, . . . ,n.

Using (33a) we obtain for the spectral radius

ρ(Tj) = s2
jσ

ν
j + c2

jσ
ν

j′ , j = 1, . . . ,n, ρ(Tn+1) = 3−ν .

Noting that c2
j = 1− s2

j and s2
j ∈ [0, 1

2 ] for all j, we obtain the upper bound

ρ(Tj)≤ Rν := max
0≤t≤ 1

2

Rν(t), Rν(t) := t
(

3−4t
3

)ν

+(1− t)
(

4t−1
3

)ν

for j = 1, . . . ,n. Since Rν(
1
2 ) =

( 1
3

)ν
this bound holds also for Tn+1. A common

upper bound for the spectral norms ‖Tj‖ is obtained in an analogous way using
(33b) as

‖Tj‖≤Nν := max
0≤t≤ 1

2

Nν(t), Nν(t) :=

√√√√2

[
t2

(
3−4t

3

)2ν

+(1− t)2

(
4t−1

3

)2ν
]
,

which holds for all j = 1 . . . ,n+1 due to Nν(
1
2 ) =

( 1
3

)ν
.

ν\ρ(T ) k = 0 k = 1.3π k = 4.3π k = 6.3π

1 0.3333 0.3364 0.4093 0.8857
2 0.1111 0.1170 0.2391 1.8530
3 0.0787 0.0779 0.2623 1.6455
4 0.0617 0.0613 0.2481 1.6349
5 0.0501 0.0493 0.2561 1.5832
10 0.0263 0.0256 0.2668 1.3797

Table 7 Spectral radius of the two-grid operator for the Helmholtz equation with h = 1/32 for
varying wave number k and (pre-) smoothing step number ν .

Table 7 gives the spectral radius of the two-grid operator for the Helmholtz equa-
tion with ν steps of pre-smoothing using damped Jacobi for a range of wave num-
bers k. We observe that the iteration is divergent for k = 6.3π , which corresponds
to a resolution of roughly 10 points per wavelength. Moreover, while additional
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smoothing steps resulted in a faster convergence rate for k close to zero, this is no
longer the case for higher wave numbers.

ν\ρ(T ) k = 1.3π k = 4.3π k = 6.3π

1 0.3365 0.5050 0.6669
2 0.1173 0.1648 0.1999
3 0.0779 0.1012 0.1542
4 0.0614 0.0568 0.1761
5 0.0493 0.0591 0.2012
10 0.0257 0.0790 0.3916

Table 8 Same as Table 7 using a modified wave number on the coarse grid.

Table (8) gives the spectral radius of the same two-grid operator using the modi-
fied wave number according to (34) on the coarse grid. We observe that, even for the
unstable damped Jacobi smoother, this results in a convergent two-grid method in
this example. A more complete analysis of how far one can get with this approach,
and what its limits are, will appear in a forthcoming paper.

3.5 The Shifted Laplacian Preconditioner

An idea proposed in [20], going back to [6], which has received a lot of attention
over the last few years, see for example the references in [39], is to precondition the
Helmholtz equation (1) using a Helmholtz operator with a rescaled complex wave
number,

Ls :=−(∆ +(α + iβ )k2), (36)

i.e., where damping has been added. The main idea here is that if the imaginary shift
β is large enough, standard multigrid methods are known to work again, and, if the
shift is not too large and α ≈ 1, the shifted operator should still be a good precon-
ditioner for the original Helmholtz operator, where α = 1 and β = 0. We show here
quantitatively these two contradicting requirements for the one-dimensional case
on the unit interval with homogeneous Dirichlet boundary conditions. In that case,
both the Helmholtz and the shifted Helmholtz preconditioner can be diagonalized
using a Fourier sine series, as we have seen in subsection 3.4, and we obtain for the
corresponding symbols (or eigenvalues)

L̂ =
2
h2 (1− cos jπh)− k2, L̂s =

2
h2 (1− cos jπh)− (α + iβ )k2, j = 1, . . . ,N.

Hence the preconditioned operator L −1
s L has the symbol

L̂

L̂s
=

−2+2cos jπh+h2k2

−2+2cos jπh+h2k2(α + iβ )
.
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The spectrum of the preconditioned operator therefore lies on a circle in the complex
plane, which passes through (0,0), and if α = 1, the center is at ( 1

2 ,0) and the radius
equals 1

2 , as one can see using a direct calculation. Examples are shown in Figure
16. Since the circle passes through (0,0) when the numerator of the symbol of the

Fig. 16 Spectrum of the Helmholtz operator preconditioned with the shifted Laplacian precondi-
tioner with α = 0 and β = 0.01 on the left, and β = 1 on the right. The spectrum clustered around
the point (1,0) on the left is favorable for a Krylov method, while the spectrum on the right is not,
due to the eigenvalues close to zero

preconditioned operator vanishes, i.e.

2cos jπh+h2k2 = 2, (37)

the spectrum of the preconditioned operator is potentially unfavorable for a Krylov
method, as one can see in Figure 16 on the right. For α = 1 and β small, we have

L̂

L̂s
= 1− i

k2h2

−2+2cos jπh+ k2h2 β +O(β 2),

which shows that the spectrum is clustered on an arc of the circle around (1,0), as
illustrated in Figure 16 on the left, provided β�min j=1,...,n |−2+2cos jπh+h2k2|.
How small must we therefore choose β ? A direct calculation shows that we must
choose β < 1

k in order to obtain a clustered spectrum about (1,0). We show in Figure
17 an illustration of this fact: from equation (37), we can compute a critical j where
the spectrum vanishes,

jc =
1

πh
(π− arccos(−1+

1
2

k2h2)).

The spectrum being restricted to integer j, we can plot
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d :=−2+2cos jcπh+ k2h2,

in order to get an impression of the size of this quantity. We see in Figure 17 that

Fig. 17 Illustration of how small β has to be chosen in the shifted Helmholtz preconditioner in
order to remain an effective preconditioner for the Helmholtz equation. Note the log scale on the
y-axis

the minimum distance d (oscillatory curve in red) behaves like 1/k (smooth curve
shown in green), and thus β needs to be chosen smaller than 1/k for a given problem
if one wants to obtain a spectrum of the preconditioned operator close to (1,0).

Now, is it possible to solve the shifted Helmholtz equation effectively with multi-
grid for this choice of β ? In order to investigate this, we use the two grid analysis
from subsection 3.4, now applied to the shifted Laplace problem. We show in Fig-
ure 18 the spectral radius of the two grid iteration operator for each frequency pair
in (30), for k = 10,100,1000 using ten points per wavelength, choosing in each
case β = 1/k. This numerical experiment shows clearly that, unfortunately, for the
multigrid method to converge when applied to the shifted Laplace operator, β can
not be chosen to satisfy β < 1/k, since already for β = 1/k the contraction factor ρ

of multigrid grows like ρ ∼ k (note the different scaling on the axes in Figure 18)
and thus the method is not convergent. One can furthermore show that β must be a
constant, independent of k, in order to obtain a contraction factor ρ < 1 and a con-
vergent multigrid algorithm. Hence the shifted Laplacian preconditioner might not
be an effective choice to solve large scale Helmholtz problems, in particular when
the wave number k becomes large.
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Fig. 18 Spectral radius of the two grid iteration operator for all frequency pairs. On the left for
k = 10, in the middle for k = 100 and on the right for k = 1000, with the shift β = 1/k in order
to guarantee a spectrum away from (0,0) of the Helmholtz operator preconditioned by the shifted
Laplace preconditioner

3.6 Wave-Ray Multigrid

In [9] Brandt and Livshits proposed a variant of multigrid especially tailored to
the Helmholtz equation by exploiting the structure of the error components which
standard multigrid methods fail to eliminate. These are the so-called characteristic
components, which are discrete representations of functions of the form

u(x,y) = v(x,y)eik1x+ik2y, k2
1 + k2

2 = k2. (38)

Such factorizations are common in geometrical optics (see, e.g. [47, 49]), and from
there the terminology ray function for the amplitude term v(x,y) and phase for the
exponent k1x+ k2y is adopted. Characteristic components of the error are nearly
invisible to standard smoothing techniques since they have very small residuals on
grids which resolve these oscillations. On coarser grids they are contaminated by
phase errors and ultimately by approximation errors.

The ray functions, however, are smooth, and satisfy a convection-diffusion-type
PDE, called the ray equation, which is obtained by inserting (38) into the Helmholtz
equation. In their wave-ray multigrid method, Brandt and Livshits add so-called ray
cycles to the standard multigrid scheme, in which the ray functions of principal com-
ponents are approximated by performing smoothing with respect to the ray equation
on auxiliary grids which they call ray grids.

We describe the basic idea for the simple 1D model problem (15) with constant
wave number k as first described in Livshits’ Ph.D. thesis [52]. Multidimensional
generalizations such as described in [9] introduce a considerable number of techni-
cal and algorithmic complications. In 1D principal error components have the form

v(x) = a(x)eikx +b(x)e−ikx,

which, when inserted into the homogeneous Helmholtz equation, yields the equation(
a′′(x)+2ika′(x)

)
eikx +

(
b′′(x)−2ikb′(x)

)
e−ikx = 0
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which we separate into

L+a = a′′+2ika′ = 0, L−b = b′′−2ikb′ = 0.

The wave-ray method employs a standard multigrid scheme, say, a V-cycle, to first
eliminate the non-characteristic components from the error eh, such that the associ-
ated residual rh = Aheh is approximately of the form

rh
j = (rh

a) jeikx j +(rh
b) je−ikx j ,

with smooth ray grid functions rh
a and rh

b. By a process called separation the two
components of the residual are first isolated, resulting in the right hand sides of the
two ray equations

Lh
+ah = f h

+, Lh
−bh = f h

b ,

which are each solved on separate grids and then used to construct a correction of
the current approximation.

Details of the separation technique, the treatment of multidirectional rays neces-
sary for higher space dimensions, suitable cycling schedules as well as the incorpo-
ration of radiation boundary conditions can be found in [52, 9].

4 Conclusions

Solving the indefinite Helmholtz equation by iterative methods is a difficult task. In
all classical methods, the special oscillatory and non-local structure of the associated
Green’s function leads to severe convergence problems. Specialized methods exist
for all well known classes of iterative methods, like preconditioned Krylov methods
by incomplete factorizations, domain decomposition and multigrid, but they need
additional components tailored for the indefinite Helmholtz problem, which can
become very sophisticated and difficult to implement, especially if one wants to
achieve a performance independent of the wave number k.
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61. Eduart Stiefel. Über einige Methoden der Relaxationsrechnung. Z. Angew. Math. Phys., 3:1–

33, 1952.
62. C. Wagner. Tangential frequency filtering decompositions for symmetric matrices. Numer.

Math., 78(1):119–142, 1997.
63. C. Wagner. Tangential frequency filtering decompositions for unsymmetric matrices. Numer.

Math., 78(1):143–163, 1997.
64. G. Wittum. An ILU-based smoothing correction scheme. In Parallel algorithms for partial

differential equations, volume 31, pages 228–240. Notes Numer. Fluid Mech., 1991. 6th
GAMM-Semin., Kiel/Ger.

65. G. Wittum. Filternde Zerlegungen. Schnelle Löser für grosse Gleichungssysteme. Teubner
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