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Abstract We investigate the stochastic collocation method for parametric, elliptic
partial differential equations (PDEs) with lognormally distributed random parameters
in mixed formulation. Such problems arise, e.g., in uncertainty quantification studies
for flow in porous media with random conductivity. We show the analytic dependence
of the solution of the PDE w.r.t. the parameters and use this to show convergence
of the sparse grid stochastic collocation method. This work fills some remaining
theoretical gaps for the application of stochastic collocation in case of elliptic PDEs
where the diffusion coefficient is not strictly bounded away from zero w.r.t. the
parameters. We illustrate our results for a simple groundwater flow problem.

1 Introduction

The elliptic boundary value problem

−∇ · (a(x,ω)∇p(x,ω)) = f (x,ω) in D, P-a.s., (1a)
p(x,ω) = g(x) on ∂D, P-a.s., (1b)

with random coefficient a and random source f , resp. its weak form, is of particular
interest for studies on uncertainty quantification (UQ) methods. It is a rather simple
mathematical model to study and, at the same time, of practical relevance, e.g.,
in groundwater flow modelling. There, the conductivity coeffcient a is typically
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uncertain and therefore modeled as a random field, in particular, a lognormal random
field [11].

Recent methods for solving random PDEs such as stochastic collocation or
Galerkin methods use a truncated Karhunen-Loève expansion of the random fields a
and f in order to separate the deterministic and random parts of the problem (1) as
well as reduce the randomness to a finite or countable number of random variables.
This truncation leads to high-dimensional parametric problems, and approximation
methods which are suited for higher dimensions, such as sparse grid collocation, have
been successfully applied to this problem [1, 19, 18, 3]. In these works one often
finds the assumption that the coefficient a is uniformly bounded away from zero,
i.e., there exists a constant c > 0 such that a(x,ω) ≥ c P-a.s. for all x ∈ D. While
this assumption simplifies the analysis, it fails to cover the important case where a
has a (multivariate) lognormal distribution. For instance, in [1, 19, 18] the authors
ensure uniform positivity by taking a to be the sum of a lognormal field and a positive
constant amin. In [6] the analysis of full tensor-product collocation given in [1] is
extended to the case of non-uniformly bounded coefficients a, but for deterministic
sources f and homogeneous Dirichlet boundary conditions. Moreover, many works
consider only the primal form (1) of the diffusion equation, but for many applications
the numerical simulation of system (1) in mixed form

a−1(x,ω)u(x,ω)−∇p(x,ω) = 0 in D, (2a)
∇·u(x,ω) = − f (x,ω) in D, (2b)

p(x,ω) = g(x) on ∂D, (2c)

P-almost surely, is more appropriate. This is the case, for instance, if the flux u is of
particular interest, see [12] for numerical examples. In [4] a first study of stochastic
Galerkin methods for mixed problems was given, but again the assumptions on a
made there do not apply to lognormal or non-uniformly bounded random fields.

In this work, we fill the remaining gaps and present a convergence analysis
of sparse grid collocation for (2) without assuming the existence of a deterministic
amin > 0 such that a(x,ω)≥ amin. Therefore, we introduce in Section 2 the parametric
variational problem under consideration and prove in Section 3 a regularity result for
its solution. In Section 4 we then conduct the proof of convergence of sparse grid
stochastic collocation in unbounded parameter domains for approximating smooth
functions. Section 5 illustrates the theoretical results for a simple elliptic boundary
value problem in mixed form and Section 6 closes with concluding remarks.

2 The Parametric Variational Problem

In this section we briefly recall how the elliptic boundary value problem (BVP)
(1) with random diffusion coefficient a(x,ω) is transformed into a BVP containing
a high-dimensional parameter. We shall restrict our considerations to the mixed
formulation (2).
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2.1 Finite-Dimensional Noise Via Karhunen-Loève Expansion

Given a probability space (Ω ,A,P) we denote by L2(Ω ,A,P;R) the space of second-
order real-valued random variables. We make the finite-dimensional noise assumption
whereby the randomness in the coefficient a(x,ω) and right hand side f (x,ω) can
be completely described by a finite set of M Gaussian random variables ξ1, . . . ,ξM ∈
L2(Ω ,A,P;R).

Assumption 1 There exist measurable functions ã : RM → L∞(D) and f̃ : RM →
L2(D) and M independent Gaussian random variables ξ1, . . . ,ξM ∈ L2(Ω ,A,P;R),
such that

a(x,ω) = ã(x,ξ1(ω), . . . ,ξM(ω)) and f (x,ω) = f̃ (x,ξ1(ω), . . . ,ξM(ω))

hold P-almost surely almost everywhere in D.

We shall identify a with ã and f with f̃ in the following. Such finite-dimensional
noise arises, e.g., when a random field is approximated by its truncated Karhunen-
Loève expansion (KLE) [13].

Example 1 (KLE for lognormal random field). For a lognormal random field a, it is
convenient to truncate the KLE of its logarithm loga, yielding

a(x,ω)≈ aM(x,ω) := exp

(
ψ0(x)+

M

∑
m=1

√
λmψm(x)ξm(ω)

)
, (3)

where ψ0(x) :=E [loga(x, ·)] and {(λm,ψm)}m≥0 denotes the sequence of eigenpairs
of the covariance operator C associated with loga,

(Cψ)(x) =
∫

D
c(x,y)ψ(y)dy, where c(x,y) = Cov(loga(x, ·), loga(y, ·)) , (4)

and where the {ξm}m≥0 are i.i.d. standard normally distributed random variables. For
a discussion on approximating a directly by a (generalized) truncated polynomial
chaos expansion see [10]. For an analysis of the effect of truncating the KLE see [6].
We neglect any truncation error in the following and identify aM with a resp. ã.

2.2 The Parametric Elliptic Problem in Mixed Variational Form

We set ξξξ := (ξ1, . . . ,ξM) and denote by ρ(ξξξ ) = ∏
M
m=1

exp(−ξ 2
m/2)√

2π
the joint probability

density function (pdf) of the i.i.d standard normally distributed ξ1, . . . ,ξM . We rewrite
the random mixed elliptic problem (2) as the parametric mixed elliptic problem



4 Oliver G. Ernst and Björn Sprungk

a−1(x,ξξξ )u(x,ξξξ )−∇p(x,ξξξ ) = 0 in D, (5a)
∇·u(x,ξξξ ) =− f (x,ξξξ ) in D, (5b)

p(x,ξξξ ) = g(x) on ∂D, (5c)

where the equations are taken to hold ρdξξξ -almost everywhere.
To state the weak mixed form of (5), we assume g ∈ H1/2(∂D) and introduce the

space
H(div;D) =

{
v ∈ L2(D) : ∇·v ∈ L2(D)

}
(6)

with norm ‖v‖2
H(div;D) = ‖v‖

2
L2(D)

+ ‖∇·v‖2
L2(D)

as well as the bilinear and linear
forms

Aξξξ (u,v) =
∫

D
a−1(x,ξξξ )u(x) ·v(x)dx, (7)

B(v,q) = −
∫

D
q(x) ∇·v(x)dx, (8)

hξξξ (q) = −
∫

D
f (x,ξξξ )q(x)dx, (9)

`(v) = −
∫

∂D
g(x)v(x) ·n(x)dx, (10)

for u,v ∈ H(div;D) and q ∈ L2(D), where in the last line n denotes the unit outward
normal vector along the boundary ∂D and the integral is understood as a linear
functional on H1/2(∂D), see [9, Appendix B.3]. The weak form of (5) then reads

Aξξξ (u(·,ξξξ ),v)+B(v, p(·,ξξξ )) = `(v) ∀v ∈ H(div;D), (11a)

B(u(·,ξξξ ),q) = hξξξ (q) ∀q ∈ L2(D), (11b)

ρdξξξ -almost everywhere. Hence, setting S := L2(RM,B(RM),ρdξξξ ), where B denotes
the σ -algebra of Borel sets, and V := L2(D)×H(div;D), we are thus seeking a
solution (p,u) ∈ S ⊗V which satisfies (11) ρdξξξ -a.e. That such a solution exists and
is unique will be shown in Section 3.

Remark 1. Note that, due to Assumption 1 and the continuous (hence measurable)
dependence of the solution (p,u) of a variational problem such as (11) on the
coefficient a and the source term f , we can deduce by means of the Doob-Dynkin
lemma [17, Lemma 1.13, p. 7] that the solution of (11) may be identified with the
weak solution of (2) by way of

(p(ω),u(ω)) = (p(ξξξ ),u(ξξξ )) , ξξξ = ξξξ (ω),

P-almost surely as functions in L2(D) and H(div;D), respectively.
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3 Analytic Dependence on the Parameter

Subsequently, we denote by (·, ·) the inner product in L2(D), where for vector-valued
functions we set (u,v) :=

∫
D u(x) ·v(x)dx.

In this section we prove existence and analytic dependence of the solution
(p(ξξξ ),u(ξξξ )) of the mixed problem (11) on the parameter ξξξ . In particular, we will
prove analyticity of (p(·),u(·)) in a subdomain of CM . To this end, we consider prob-
lem (11) with the parameter vector ξξξ extended to complex values ζζζ = ξξξ + iηηη ∈ CM ,
ξξξ ,ηηη ∈ RM , along with suitable extensions of the functions a(x, ·) and f (x, ·). To
ensure well-posedness of (11) for this complex extension

Aζζζ (u,v) =
∫

D
a−1(x,ζζζ )∇u(x) ·∇v(x)dx,

of Aξξξ , and hζζζ (q) =−
∫

D f (x,ζζζ )q(x)dx, we restrict the complex parameter ζζζ to the
domain

Σ :=
{

ζζζ ∈ CM : amin(ζζζ )> 0 and amax(ζζζ )<+∞
}
,

where

amax(ζζζ ) := esssupx∈D Rea(x,ζζζ ), amin(ζζζ ) := ess infx∈D Rea(x,ζζζ ).

For a general Banach space W , we denote by Lq
ρ(RM;W ) the Bochner space

Lq(RM,B(RM),ρdξξξ ;W ) of W -valued functions of ξξξ and make the following as-
sumptions for proving the existence of a solution to (11) for real-valued parameters
ξξξ ∈ RM:

Assumption 2 The data a, f and g defining problem (11) satisfy

(1) g ∈ H1/2(∂D),
(2) a ∈ Lq

ρ(RM;L∞(D)) for all q ∈ [1,∞),
(3) amin(ξξξ )> 0 for all ξξξ ∈ RM and 1/amin ∈ Lq

ρ(RM;R+) for all q ∈ [1,∞),

(4) f ∈ Lq∗
ρ (RM;L2(D)) for some q∗ > 2.

Note that, under Assumption 2, we have RM ⊂ Σ . We can now state

Lemma 1 (cf. [4, Lemma 2.3]). Let Assumption 2 be satisfied. Then there exists a
unique solution (p,u) ∈ S ⊗V of (11).

Lemma 1 will be proven together with the following existence and continuity
result for the solution to (11) for complex parameters ζζζ ∈ CM . In order to state this
result, we introduce the spaces

Cσ (Σ ;W ) := {v : Σ →W continuous, strongly measurable and
‖v‖Cσ

= max
ζζζ∈Σ

σ(Reζζζ )‖v(ζζζ )‖W < ∞},

where σ : RM → R+ is an arbitrary nonnegative weight function and W a Banach
space.
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Assumption 3 For σ : RM → R+ there holds

(5.) f ∈Cσ (Σ ;L2(D)) and a ∈Cσ (Σ ;L∞(D)),
(6.) amax ∈Cσ (Σ ;R) and 1/amin ∈Cσ (Σ ;R).

Lemma 2. Let Assumptions 2 and 3 be satisfied. Then for each ζζζ ∈ Σ there exists a
unique (p(ζζζ ),u(ζζζ )) which solves (11) with (p,u) ∈Cσ4(Σ ;V).

Proof (of Lemma 1 and Lemma 2). We first observe that, for u,v ∈ H(div;D) and
q ∈ L2(D), we obtain

|Aζζζ (u,v)| =
∣∣(a−1(ζζζ )u, v

)∣∣≤ 1
amin(ζζζ )

‖u‖H(div;D) ‖v‖H(div;D),

|B(v,q)| = |(q, ∇·v)| ≤ ‖q‖L2(D) ‖v‖H(div;D),

|`(v)| ≤ ‖v‖H(div;D) ‖g‖H1/2(∂D),

|hζζζ (q)| = |( f (ζζζ ),q)| ≤ ‖ f (ζζζ )‖L2(D) ‖q‖L2(D).

Moreover, Aζζζ is coercive on

V = {v ∈ H(div;D) : B(v,q) =−(q, ∇·v) = 0 ∀q ∈ L2(D)}
= {v ∈ H(div;D) : ‖∇·v‖L2(D) = 0},

since for v ∈V there holds

ReAζζζ (v,v) = Re
(
a−1(ζζζ )v, v

)
≥ ess infx∈D Re

(
a−1(x,ζζζ )

)
‖v‖2

L2(D) ≥
‖v‖2

H(div;D)

amax(ζζζ )
.

According to [5, p. 136], for any q ∈ L2(D) there exists vq ∈V such that

‖∇·vq−q‖L2(D) = 0 and ‖vq‖H(div;D) ≤CD‖q‖L2(D),

with a constant CD depending only on the domain D. Thus, the inf-sup-condition
follows since, for any q ∈ L2(D),

sup
v∈H(div;D)

B(v,q)
‖v‖H(div;D)

≥
(q, ∇·vq)

‖vq‖H(div;D)
=
‖q‖2

L2(D)

‖vq‖H(div;D)
≥
‖q‖L2(D)

CD
.

Therefore, by applying [5, Theorem II.1.1], resp. its generalization to variational
problems in complex Hilbert spaces (hereby applying the complex version of the
Lax-Milgram-lemma), we obtain for each ζζζ ∈ CM a unique solution (p(ζζζ ),u(ζζζ )) to
the associated deterministic variational problem. Moreover, there holds

‖u(ζζζ )‖H(div;D) ≤ ‖g‖H1/2(∂D) amax(ζζζ )+2CD
amax(ζζζ )

amin(ζζζ )
‖ f (ζζζ )‖L2(D),

‖p(ζζζ )‖L2(D) ≤ 2CD ‖g‖H1/2(∂D)

amax(ζζζ )

amin(ζζζ )
+2CD

amax(ζζζ )

a2
min(ζζζ )

‖ f (ζζζ )‖L2(D).
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Further, we observe that p : RM → L2(D) and u : RM → H(div;D) are measurable,
since they are continuous functions of a, f and g.

By applying the Hölder inequality for the exponents r = q∗/2 and q > 0 (such that
1/r+1/q= 1) and by taking into account the above estimate and the assumptions, we
easily obtain that p ∈ S⊗L2(D) and u ∈ S⊗H(div;D), which yields (p,u)∈ S⊗V .
Uniqueness follows immediately. The continuity of (p(ζζζ ),u(ζζζ )) w.r.t. ζζζ ∈ Σ follows
from our assumptions on the continuity of a, f w.r.t. ζζζ . Finally, p ∈Cσ4(Σ ;L2(D))
and u ∈Cσ4(Σ ;H(div;D)) follow again directly from the estimates above and the
assumptions. This completes the proof. ut

In an analogous way to [8, Lemma 2.2] we can show the analyticity of the
parameter-to-solution map ζζζ 7→ (p(ζζζ ),u(ζζζ )).

Lemma 3. Let Assumptions 2 and 3 be satisfied and let the functions a−1 : Σ →
L∞(D) and f : Σ → L2(D) be analytic. Then also the mapping ζζζ 7→ (p(ζζζ ),u(ζζζ )) is
analytic in Σ .

Proof. We prove the statement by showing the existence of each partial complex
derivative ∂m(p(ζζζ ),u(ζζζ )), m= 1, . . . ,M. A deep theorem by Hartogs [14] then yields
analyticity as a function of all M complex variables. Therefore, we fix m∈{1, . . . ,M},
denote by em the m-th coordinate in RM and set for z ∈ C\{0}

(qz,vz)(ζζζ ) :=
(p,u)(ζζζ + zem)− (p,u)(ζζζ )

z
.

Note, that Σ is an open set due to the continuity of amax and amin. Therefore, for each
ζζζ ∈ Σ , there exists εζζζ such that, for |z| ≤ εζζζ , the solution (p,u)(ζζζ + zem) and thus
also the quotient above are well defined.

To simplify the presentation, we rewrite the variational problem (11) as a coupled
linear system in the corresponding dual spaces, denoting again by Aζζζ : H(div;D)→
H(div;D)∗ the linear mapping [Aζζζ u](v) := (a−1(ζζζ )u,v), by B : L2(D)→H(div;D)∗

the linear map [Bp](v) := (p,∇ · v) and by B> : H(div;D) → L2(D)∗ the map
[B>u](q) := (q,∇ · u). Moreover, by ` and hζζζ we denote the linear functionals
corresponding to the right hand side of (11). Thus, the variational problem (11) reads(

Aζζζ u+Bp
B>u

)
=

(
`

hζζζ

)
. (12)

Hence, by denoting ζζζ z = ζζζ + zem we have(
Aζζζ vz +Bqz

B>vz

)
−

(
Aζζζ−Aζζζ z

z u(ζζζ z)
0

)
=

(
0

hζζζ z
−hζζζ

z

)
,

i.e., the pair (qz,vz) solves the linear system (12) for the right hand side

Lz :=
1
z

(−(Aζζζ z
−Aζζζ )u(ζζζ z)

hζζζ z
−hζζζ

)
.
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We now show that

Lz→ L0 :=
(
−∂mAζζζ u(ζζζ )

∂mhζζζ

)
as z→ 0,

where [∂mAζζζ u](v) := (∂ma−1(ζζζ )u,v) and ∂mhζζζ (q) := (∂m f (ζζζ ),q). Note first that
there holds

lim
h→0

∥∥∥∥hζζζ+zem −hζζζ

z
−∂mhζζζ

∥∥∥∥
L2(D)∗

= 0,

which can be easily seen by applying the Cauchy-Schwarz inequality and the as-
sumption about the analyticity of f . Moreover, we have∥∥∥∥Aζζζ z

−Aζζζ

z
u(ζζζ z)−∂mAζζζ u(ζζζ )

∥∥∥∥
H(div;D)∗

≤
∥∥∥∥Aζζζ z

−Aζζζ

z

∥∥∥∥ ‖u(ζζζ z)−u(ζζζ )‖H(div;D)

+

∥∥∥∥Aζζζ z
−Aζζζ

z
−∂mAζζζ

∥∥∥∥ ‖u(ζζζ )‖H(div;D).

There holds
lim
z→0
‖u(ζζζ + zem)−u(ζζζ )‖= 0,

since u(ζζζ ) depends continuously on ζζζ as shown before. Furthermore, there holds∣∣∣∫D
a−1(ζζζ z)−a−1(ζζζ )

z u ·vdx
∣∣∣

‖u‖H(div;D) ‖v‖H(div;D)
≤
∥∥∥∥a−1(ζζζ z)−a−1(ζζζ )

z

∥∥∥∥
L∞(D)

→‖∂ma−1(ζζζ )‖L∞(D)

as z→ 0 due to the analyticity of a−1. Thus, we have

‖(Aζζζ z
−Aζζζ )/z‖ ≤ ‖(a−1(ζζζ z)−a−1(ζζζ ))/z‖L∞(D)→‖∂ma−1(ζζζ )‖L∞(D)

as z→ 0. By linearity we obtain with the same argument∥∥∥∥Aζζζ z
−Aζζζ

z
−∂mAζζζ

∥∥∥∥≤ ∥∥∥∥a−1(ζζζ z)−a−1(ζζζ )

z
−∂ma−1(ζζζ )

∥∥∥∥
L∞(D)

→ 0

as z→ 0, which finally yields Lz→ L0 as z→ 0. Again, by the continuous dependence
of the solution of (12) on the right hand side, we conclude

(qz,vz)→ (∂m p(ζζζ ),∂mu(ζζζ )) as z→ 0,

where (∂m p(ζζζ ),∂mu(ζζζ )) solves (12) for the right hand side L0. We have thus es-
tablished that (p(ζζζ ),u(ζζζ )) possesses the partial derivative (∂m p(ζζζ ),∂mu(ζζζ )) in the
m-th (complex) direction, which completes the proof. ut

Example 2 (lognormal diffusion coefficient). We consider a coefficient
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a(x,ζζζ ) = exp

(
φ0(x)+

M

∑
m=1

φm(x)ζm

)

with (real-valued) φm ∈L∞(D) for m= 0, . . . ,M. Let ρ be the M-dimensional standard
normal probability density function. Setting bm := ‖φm‖L∞(D) for m = 0, . . . ,M, then
for all ζζζ ∈ Σ with

Σ =
{

ζζζ ∈ CM :
M

∑
m=1

bm |Imζm|<
π

2

}
(13)

there holds

amin(ζζζ )≥ exp
(
−b0−

M

∑
m=1

bm|ξm|
)

cos
( M

∑
m=1

bm|ηm|
)
> 0,

amax(ζζζ )≤ exp
(

b0 +
M

∑
m=1

bm|ξm|
)
,

where ζζζ = ξξξ + iηηη . Furthermore, a then satisfies the assumptions of Lemma 3 for
Σ as given in (13) and the weighting function σ(ξξξ ) = σ1(ξ1) · · ·σM(ξM), where
σm(ξm) = exp

(
−bm|ξm|

)
, m = 1, . . . ,M.

Remark 2. Note that if, in Example 2, the expansion functions {φm}M
m=1 in addition

have disjoint supports, then a satisfies the assumptions of Lemma 3 for the larger
domain

Σ = {ζζζ ∈ CM : bm | Imζm|< π/2},

since then

Rea(x,ζζζ ) = exp
(

φ0(x)+
M

∑
m=1

φm(x)ξm

)
cos
( M

∑
m=1

φm(x)ηm

)
≥ exp

(
−b0−

(
max

m
bm|ξm|

))
cos
(

max
m

bm|ηm|
)
.

4 Sparse Grid Collocation

Stochastic collocation in the context of UQ or parametric problems can be described
roughly as a method for approximating a function u : RM →W with values in, say,
a separable Banach space W from the span of n linearly independent functions
{u j : RM →W}n

j=1 given only the values of u at certain distinct points in the param-
eter domain RM . Suitable finite-dimensional function spaces are determined by the
smoothness of u as a function of the parameter. Since the solution of (11) depends
smoothly on ξξξ , as was shown in the previous section, we consider approximations
by global interpolating polynomials as done in, e.g., [1, 3, 6, 18, 19, 23].

Therefore, let χk = {ξk,1, . . . ,ξk,nk}, k = 1,2, . . ., be a given sequence of node sets
in R and
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(Ikv)(ξ ) :=
nk

∑
j=0

v
(
ξk, j
)
`k, j(ξ )

be the associated Lagrange interpolation operator with the Lagrange basis polynomi-
als `k, j. We further define the difference operators ∆k = Ik−Ik−1 for k ≥ 1, where
I0 := 0. Then the (Smolyak) sparse grid stochastic collocation operator is defined as

Aq,M := ∑
|i|≤q+M

∆i1 ⊗·· ·⊗∆iM = ∑
q+1≤|i|≤q+M

cq,M(i) Ii1 ⊗·· ·⊗IiM , (14)

where |i| := i1 + . . .+ iM and

cq,M(i) = (−1)q+M−|i|
(

M−1
q+M−|i|

)
,

cf. [22]. The sparse grid associated with Aq,M consists of the points

Hq,M :=
⋃

q+1≤|i|≤q+M

χi1 ×·· ·×χiM ⊂ RM. (15)

One may choose Xk to be the roots of the nk-th Hermite polynomial (w.r.t. to the
weight ρm(ξ ) = e−ξ 2/2/

√
2π), since these nodal points yield maximally convergent

interpolations (cf. [21]) and this choice also simplifies the computation of moments
of Aq,Mu w.r.t. the weight ρ = ∏m ρm.

For bounded parameter domains and constant density ρm ≡ const, popular se-
quences of nodal sets are Gauss-Legendre and Clenshaw-Curtis nodes. For sparse
grid collocation based on these sequences a convergence analysis is given in [19],
where it is indicated that a similar analysis applies to Gauss-Hermite nodes. We carry
out this analysis in the following.

Assumption 4 There exist constants c > 0 and εm > 0, m = 1, . . . ,M, such that

ρm(ξm) =
exp(−ξ 2

m/2)√
2π

≤ cexp(−εmξ
2
m)σ

2
m(ξm), m = 1, . . . ,M, (16)

and the weighting function has the product structure σ(ξξξ ) = ∏
M
m=1 σm(ξm).

Note that Assumption 4 implies that Cσ (RM;W ) is continuously embedded in
L2

ρ(RM;W ), since for v ∈Cσ (RM;W ) there holds

∫
RM
‖v(ξξξ )‖2

W ρ(ξξξ )dξξξ ≤ ‖v‖2
Cσ (RM ;W )

∫
RM

ρ(ξξξ )

σ2(ξξξ )
dξξξ

≤ c‖v‖2
Cσ (RM ;W )

M

∏
m=1

∫
RMm

exp(−εmξ
2
m)dξξξ < ∞.

The same is true of the restrictions of functions in Cσ (Σ ;W ), since RM ⊂ Σ ⊂ CM

due to Assumption 2.
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Theorem 1 (cf. [19, Theorem 3.18]). Let W be a separable Banach space, let u :
RM →W admit an analytic extension to the domain

Στττ = {ζζζ ∈ CM : | Imζm| ≤ τm, m = 1, . . . ,M}, τττ = (τ1, . . . ,τM),

and, in addition, u ∈Cσ (Στττ ;W ), i.e.,

max
ζζζ∈Στττ

σ(Reζζζ )‖u(ζζζ )‖W <+∞,

where ρ(ξξξ ) = ∏m ρm(ξm) and σ(ξξξ ) = ∏m σm(ξm) satisfy Assumption 4. Then the
error of the sparse grid collocation approximation Aq,Mu based on Gauss-Hermite
nodes χk where

|χk|= nk =

{
1, k = 1,
2k−1 +1, k > 1,

can be bounded by

‖u−Aq,Mu‖L2
ρ
≤ CM+1

r −Cr

Cr−1

exp
(
−q log2

2

(
R e√

2
−1
))

, if 0≤ q≤ 2M
log2 ,

exp
(
−R M√

2

√
2q/M + q

2 log2
)
, otherwise,

(17)
where Cr =C(2+

√
8π/r/ log2) and

r := min
m=1,...,M

τm, R := M
√

τ1 · · ·τM.

In particular, for 0≤ q≤ 2M
log2 there holds

‖u−Aq,Mu‖L2
ρ
≤ C̃(r,R,M) N−ν1 , ν1 =

log2
2(2.1+ logM)

(
eR√

2
−1
)
, (18)

where N = |Hq,M| and C̃(r,R,M) =C(r) 1−C(r)M

1−C(r)

√
2eR/

√
2−1.

Conversely, for q > 2M
log2 there holds

‖u−Aq,Mu‖L2
ρ
≤ CM+1

r −Cr

Cr−1
N2

M2 e−
R√
2

MNν2
, ν2 =

log2
2M(2.1+ logM)

. (19)

Proof. The proof follows closely the procedure for showing convergence of Aq,M
w.r.t. Clenshaw-Curtis nodes given in [19]. Since only certain steps need to be modi-
fied we only mention these here and refer to [19] for further details.

Step 1: Show ‖u−Aq,Mu‖L2
ρ
≤ ∑

M
k=1 R(q,k).

According to the proof of [19, Lemma 3.4], there holds
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I−Aq,M =
M

∑
k=2

[
R̃(q,k)

M⊗
m=k+1

I

]
+
(
I−Aq,1

) M⊗
m=2

I,

where

R̃(q,k) = ∑
i∈Nk−1

|i|≤q+k−1

k−1⊗
m=1

∆im ⊗
(

I−Inîk

)

and îk = 1+q−∑
k−1
m=1(im−1). Further, the term R̃(q,k) can bounded using the results

given in the Appendix:

‖R̃(q,k)u‖L2
ρ
≤ ∑

i∈Nk−1

|i|≤q+k−1

∥∥∥∥∥k−1⊗
m=1

∆im ⊗
(

I−Inîk

)
u

∥∥∥∥∥
L2

ρ

≤ ∑
i∈Nk−1

|i|≤q+k−1

Ck
(√

2îk
)

e
− 1

2

(
∑

k−1
m=1 τm

√
2im+τk

√
2îk+1

)
k−1

∏
m=1

(√
2im +1

)

= Ck
∑

i∈Nk

|i|=q+k

exp
(
−1

2
h(i,k)

)
,

where h(i,k) = ∑
k
m=1 τm

√
2im − (log2)im. Moreover, we obtain by applying results

from [1, Section 4]

‖
(
I−Aq,1

)
u‖L2

ρ
= ‖(I−Inq+1)u‖L2

ρ
≤C

(√
2q+1

)
exp
(
− τ1√

2

√
2q+1

)
= ∑

i∈N1

|i|=q+1

C
(√

2i
)

exp
(
− τ1√

2

√
2i

)
.

Therefore, setting

R(q,k) :=Ck
∑

i∈Nk

|i|=q+k

exp
(
−1

2
h(i,k)

)
,

we arrive at the bound
∥∥(I−Aq,M)u

∥∥
L2

ρ
≤ ∑

M
k=1 R(q,k).

Step 2: Estimate R(q,k).
Computing the minimum of h(·,k) on the set {x ∈ Rk : x1 + · · ·+ xk = q+ k} yields
the optimal point i∗ = (i∗1, . . . , i

∗
k) with

i∗m = 1+q/k+
2
k

k

∑
n=1

log2(τn/τm), m = 1, . . . ,k.
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Moreover, expanding h(·,k) at i∗ up to second order yields for any i ∈ Nk with
|i|= q+ k

h(i,k) = h(i∗,k)+∇h(i∗,k) · (i− i∗)T︸ ︷︷ ︸
=0

+
1
2
(i− i∗) ·∇2h(ιιι ,k) · (i− i∗)T

= k2(q+k)/(2k)
k

∏
m=1

k
√

τm− (log2)(q+ k)+
1
2

k

∑
m=1

τm
(log2)2

4
2ιm/2(im− i∗m)

2

≥ k2(q+k)/(2k)
k

∏
m=1

k
√

τm− (log2)(q+ k)+ r
(log2)2

8

k

∑
m=1

(im− i∗m)
2,

where ιm ∈ [min(im, i∗m),max(im, i∗m)] for m = 1, . . . ,M.
Without loss of generality we may assume that τ1 ≥ τ2 ≥ . . .≥ τM . Thus, we have

for any k = 1, . . . ,M
k

∏
m=1

k
√

τm ≥
M

∏
m=1

M
√

τm =: M
√

τττ

and there holds furthermore

R(q,k) ≤ Ck exp
(

q
2

log2− k
M
√

τττ

2
2(q+k)/(2k)

)
∑

i∈Nk

|i|=q+k

k

∏
m=1

er log2 2/8(im−i∗m)
2

≤ Ck exp
(

q
2

log2− k
M
√

τττ

2
2(q+k)/(2k)

) k

∏
m=1

q+1

∑
i=1

er log2 2/8(i−i∗m)
2

≤ Ck exp
(

q
2

log2− k
M
√

τττ

2
2(q+k)/(2k)

)(
2+

√
8π

r log2 2

)k

= Ck
r exp

(
q
2

log2− k
M
√

τττ

2
2(q+k)/(2k)

)
,

where we have used {i ∈ Nk : |i|= q+ k} ⊂ {i ∈ Nk : |i| ≤ q+ k} in the second and
[19, Lemma A.1] in the next-to-last last line.

Step 3: Combine previous steps.
The remaining steps are analogous to the proof of [19, Theorem 3.7] and [19, Theo-
rem 3.10], respectively, using the bound for N = |Hq,M| from [19, Lemma 3.17]

logN
2.1+ logM

−1≤ q≤ log2(N/M−1).

ut

Remark 3. Note that Theorem 1 states algebraic convergence of Aq,Mu w.r.t. the
number of collocation nodes N in the regime q ≤ 2M/ log2 and subexponential
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convergence in the regime q > 2M/ log2. Typically, in applications with M ≥ 3 a
level q > 2M/ log2 is seldom feasible.

Remark 4. Note, that our proof takes into account different widths τm of the strips of
analyticity for different dimensions ξm in contrast to the corresponding proofs of [19,
Lemma 3.4 & Lemma 3.16]. Moreover, we would like to mention that the proofs
in [19], in particular the estimates of the term ‖R̃(q,k)u‖L2

ρ
given there, require also

that u possesses an analytic continuation to a product subdomain ∏
M
m=1 Σ0 of CM ,

Σ0 ⊂ C. This condition is, however, never explicitly assumed or shown to hold in
[19]. Rather, the authors only state one-dimensional regularity results, i.e., results
on the domain of analytic continuation of u w.r.t. each ζm, m = 1, . . . ,M, separately,
with the remaining coordinates ξn ∈ R, n 6= m, kept fixed and real. However, this
type of one-dimensional regularity is not sufficient for concluding analyticity of u
in a product domain in CM . As we have seen in the proof of Lemma 3, the results
on the one-dimensional complex domain of analytic continuation of u w.r.t. ζm,
m = 1, . . . ,M, need to hold for all fixed, complex coordinates ζn ∈ Σ0, n 6= m.

Combining the result above with our investigations of the previous section, we
conclude

Corollary 1 (Convergence in case of lognormal diffusion). Let a problem (11)
with a diffusion coefficient of the form

a(x,ξξξ ) = exp

(
φ0(x)+

M

∑
m=1

φm(x)ξm

)

be given and let the assumption of Lemma 3 be satisfied. Then there holds for
0≤ q≤ 2M

log2 and N = |Hq,M|

‖u−Aq,Mu‖L2
ρ
≤ C̃(r,R,M) N−

log2
2(2.1+logM)

(
eR√

2
−1
)

where C̃(r,R,M) is according to Theorem 1 and where

R≥ π− ε

2M
(
‖φ1‖L∞(D) · · ·‖φM‖L∞(D)

)1/M

for any ε > 0.

Proof. Given the statement of Theorem 1 and the observations made in Example 2,
we simply maximize M

√
τ1 · · ·τM under the constraint

M

∑
m=1

τm‖φm‖L∞(D) =
π− ε

2

for an arbitrary ε > 0. This yields the optimal point
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τ
∗
m =

π− ε

2M‖φm‖L∞(D)
, m = 1, . . . ,M,

and, furthermore, M
√

τ∗1 · · ·τ∗M = (π− ε)/
(
2M(‖φ1‖L∞(D) · · ·‖φM‖L∞(D))

1/M
)
. ut

5 Numerical Example

We illustrate the theoretical results of the previous sections for a simple elliptic
boundary value problem in mixed form as arises, e.g., in groundwater flow modeled
by Darcy’s law. In addition, we examine how the convergence of stochastic collo-
cation is affected by properties of the lognormal diffusion coefficient a. Although
the results given in the previous section are valid for a general random field with
a representation of the form given in (3), we wish to relate common properties of
Gaussian random fields such as their mean, variance etc. to the convergence of the
stochastic collocation method.

The Gaussian random field loga is uniquely determined by its mean and covari-
ance functions. The mean φ0 of loga does not affect the convergence of the stochastic
collocation approximation as Corollary 1 shows, but the covariance plays a more
important role, since it determines the representation (3). Generally speaking, covari-
ance functions are characterized by a variance parameter, correlation length and its
degree of smoothness. The latter may also be expressed in terms of a parameter, as
is the case for the Matérn family of covariance functions (see, e.g., [7]). However,
since the smoothness of the covariance function controls the asymptotic decay of the
eigenvalues of the associated covariance operator and the correlation length deter-
mines the length of a preasymptotic plateau preceding the asymptotic decay, both will
affect the length M of a truncated Karhunen-Loève expansion with sufficiently small
truncation error. Hence, by relating the smoothness and the correlation length to M,
we will illustrate the effect of increasing M and increasing σ on the convergence of
the stochastic collocation approximations in the following.

A Simple Groundwater Flow Model.

The PDE under consideration is of the form (1) with source term f ≡ 0, boundary
data g(x1,x2) = 3

(
x2

1 +(1− x2)
2
)1/2, and lognormal coefficient a on the unit square

D = [0,1]2 in R2. In particular, we assume for the Gaussian random field loga a
mean φ0(x)≡ 1 and a stationary and isotropic two-point covariance function given
by

Cov(loga(x), loga(y)) = σ
2 exp

(
−‖x−y‖2) .

Thus, the approximation logaM(x,ξξξ ) is the truncated KLE of this Gaussian random
field, i.e.,
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aM(x,ξξξ ) = exp

(
1+

M

∑
m=1

φm(x)ξm

)
, (20)

where φm(x) = σ2√λmψm(x) and {(λm,ψm)}m=1,...,M are the first M eigenpairs (in
order of decreasing eigenvalues) of

λψ(x) =
∫
[0,1]2

exp
(
−‖x−y‖2)

ψ(y)dy.

Figure 1 displays the exponential decay of the eigenvalues λm and the norms
‖φm‖L∞(D) of the corresponding lognormal diffusion coefficient.
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Fig. 1 Left: Decay of the eigenvalues of the covariance operators associated with loga. Right:
Decay of the L∞(D)-norm of the φm in (20).

Remark 5. Note that, in geophysical applications such as hydrogeology, one usually
encounters ‘rougher’ random fields with a covariance function, e.g., of Matérn type,
see [7]. However, the above model for loga is sufficient for our purpose of illustrating
how the convergence of stochastic collocation depends on M and σ as explained
above.

Note that, as the variance parameter σ of the random field loga increases, so does
the L∞-norm of the expansion functions φm, and therefore the rate of convergence
for the stochastic collocation should decrease according to Corollary 1. We will
demonstrate this in the following.

For the spatial discretization we use Raviart-Thomas finite elements of lowest
order [5] for the flux and piecewise constants for the head variable. Thus, p(·,ξξξ )
is approximated as a piecewise constant and u(·,ξξξ ) as a piecewise linear function.
Moreover, the domain D is decomposed into 4206 triangles resulting in 10595 spatial
degrees of freedom. Hence, the space V = L2(D)×H(div;D) is replaced by the
cartesian product Vh ⊂ V of the finite dimensional approximation spaces and the
continuous solution pair (p,u) by the semidiscrete pair (ph,uh). Note that this does
not influence the analysis of the previous sections, we merely apply the statements
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of Lemma 3 and Theorem 1 to the finite-dimensional subspaces. The full—i.e.,
collocation and finite element approximation—error can be obtained by appealing to
standard finite element approximation theory, (cf. e.g., [2, 20]).

Solution and Convergence.

In Figure 2 we show for illustration the computational domain D, the triangular mesh
and the mean head (left) and streamlines of the mean flux (right) of the solution
obtained by sparse grid collocation with level q = 5 for a truncated KLE containing
M = 9 terms.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1  

x
1

Mean of pressure

 

x
2

0.5

1

1.5

2

2.5

3

3.5

4

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Streamlines of mean of flux

x
1

x
2

Fig. 2 Left: The mean of the pressure head approximation A5,9 ph; right: Streamlines of the mean
of the flux approximation A5,9uh.

We observe (at least algebraic) convergence of the stochastic collocation approx-
imation for head and flux in the left plot in Figure 3. Here and in the following
we estimate the L2(RM;W )-error of the stochastic collocation approximations by
a sparse quadrature method applied to the error ‖ph(ξξξ )−Aq,M ph(ξξξ )‖L2(D) and
‖uh(ξξξ )−Aq,Muh(ξξξ )‖H(div;D), respectively. We have chosen the sparse Smolyak
quadrature operator corresponding to a stochastic collocation approximation of a
high level q∗, i.e.,

E
[
‖ph−Aq,M ph‖2

L2(D)

]
≈ ∑

ξξξ j∈Hq∗ ,M

w j‖ph(ξξξ j)−Aq,M ph(ξξξ j)‖2
L2(D),

where {w j : ξξξ j ∈Hq∗,M} are the weights of the sparse quadrature operator associated
with Aq∗,M . For the results shown in Figure 3 we used q∗ = 5. Note that we have
also applied a Monte Carlo integration for the error estimation above for comparison
which showed no substantial difference to the quadrature procedure above. The error
estimation for Aq,Muh was obtained in the same way. We observe that the relative
error for the flux does not immediately decay at the asymptotic rate. This is due to a
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Fig. 3 Left: Relative errors for head and flux for M = 9 and q = 0, . . . ,4. Right: Estimated Hermite
coefficients of ph and uh for the first 25 Hermite polynomials w.r.t. ξ1.

preasymptotic phase of slower decay of the Hermite coefficients of uh. We display
the Hermite coefficients for the first 25 Hermite polynomials in ξ1 for ph and uh on
the right hand side of Figure 3. The preasymptotic slow decay of the coefficients in
case of the flux is clearly visible. However, both errors apparently decay at a much
greater rate than the estimate in Corollary 1 would suggest.

Influence of the Input Variance σ .

We fix M = 5 and vary the variance parameter σ ∈ {1/2,1,2}. For all three values
of σ we choose a quadrature level of q∗ = 6 for the error estimation. The results
are shown in Figure 5. We observe the expected behaviour that for increased σ the
convergence rate is reduced.
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Fig. 4 Estimated relative L2(RM ;W ) errors of the sparse grid stochastic collocation approximations
for pressure head ph and flux uh for M = 5 but different values of σ . The level q of Aq,5 varies from
0 to 5.
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Influence of the Parameter Dimension M.

We set σ = 1 and let M ∈ {3,6,9}. As quadrature levels for the error estimation
we choose q∗ = 8 for M = 3, q∗ = 7 for M = 6, and q∗ = 6 for M = 9. The results
are shown in Figure 4. Again, the results are according to the conjecture that for
increased dimension M the convergence rate decreases.
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Fig. 5 Estimated relative L2(RM ;W ) errors of the sparse grid stochastic collocation approximations
for pressure head ph and flux uh for σ = 1 but different values of M. The level q of Aq,M varies
from 0 to 7 for M = 3, from 0 to 6 for M = 6 and from 0 to 5 for M = 9.

Remark 6. In view of the decelerating effect of large variance σ and roughness of a
random field a (requiring large M for small truncation error) on the convergence rate
of stochastic collocation, certain advanced Monte Carlo methods (such as quasi- or
multilevel Monte Carlo) might be preferable for certain applications in subsurface
physics where such rough random fields of high variance are common. We refer to
the results in [7] for a comparison of the Monte Carlo and stochastic collocation
method in case of a real-world subsurface flow problem. However, while efficient for
estimating moments, probabilities or other statistical properties (so-called quantities
of interest), Monte Carlo methods do not yield an approximate solution function of
the PDE problem with random data as does stochastic collocation, which may serve
as a cheap, sufficiently accurate surrogate model in many situations.

6 Conclusions

In this paper we have filled some remaining theoretical gaps for the application of
sparse grid stochastic collocation to diffusion equations with a random, lognormally
distributed diffusion coefficient. In particular, we have shown the smooth dependence
of the solution of the associated parametric variational problems on the parameter
under natural assumptions. This extends previous work [4] on random mixed elliptic
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problems to a broader and practically relevant class of diffusion coefficients. In
addition, we have given a complete convergence proof for sparse grid stochastic
collocation using basic random variables with unbounded supports, which was pre-
viously only hinted at in the literature as a remark [19]. Both results combine to
form the theoretical foundation for applying stochastic collocation to interesting real
world problems [7, 12] which we have illustrated for a simple groundwater flow
model. The qualitative behavior of the approximation bounds indicate the limita-
tions of stochastic collocation when applied to problems with diffusion coefficients
displaying roughness or short correlation length.
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Appendix

We will here prove some auxiliary results used in the previous sections. In partic-
ular, we want to generalize some results from [1, Section 4] to multi-dimensional
interpolation. The first concerns the uniform boundedness of the operator

Ik1 ⊗·· ·⊗IkM : Cσ (RM;W )→ L2
ρ(RM;W ),

where σ and ρ are according to (16). It can be shown by an obvious generalization
of [1, Lemma 4.2] that

‖Ik1 ⊗·· ·⊗IkM v‖L2
ρ (RM ;W ) ≤C(ρ,σ)‖v‖Cσ (RM ;W ),

where the constant C(ρ,σ) is independent of k = (k1, . . . ,kM). In the following, let
Pn denote the space of all univariate polynomials up to degree n. We state

Lemma 4 ( cf. [1, Lemma 4.3] ). For every function v ∈Cσ (RM;W ) there holds

‖v−∆kv‖L2
ρ (RM ;W ) ≤CM inf

w∈Pnk−1⊗W
‖v−w‖Cσ (RM ;W )

where ∆k = ∆k1 ⊗·· ·⊗∆kM and Pnk−1 = Pnk1−1 ⊗·· ·⊗PnkM−1 .
In particular, there holds∥∥∥∥∥v−

M−1⊗
m=1

∆km ⊗ (I−IkM )v

∥∥∥∥∥
L2

ρ (RM ;W )

≤CM inf
w∈Pnk−1⊗W

‖v−w‖Cσ (RM ;W ).

Proof. We consider a separable function v(ξξξ ) = v1(ξ1) · · ·vM(ξM) ∈ Cσ (RM;W ).
Note that the set of separable functions is dense in Cσ (RM;W ). Further, let w ∈
Pnk−1 ⊗W be arbitrary. There holds Ik−1w = w and
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‖v−∆kv‖2
L2

ρ (RM ;W )
=

M

∏
m=1
‖vm−∆kmvm‖2

L2
ρm (R;W )

≤
M

∏
m=1

2
(
‖vm−Ikmvm‖2

L2
ρm (R;W )

+‖vm−Ikm−1vm‖2
L2

ρm (R;W )

)
≤

M

∏
m=1

4
(
‖vm−wm‖2

L2
ρm (R;W )

+‖Ikm(vm−wm)‖2
L2

ρm (R;W )

+‖vm−wm‖2
L2

ρm (R;W )
+‖Ikm−1(vm−wm)‖2

L2
ρm (R;W )

)
≤ 4M

M

∏
m=1

C2‖vm−wm‖2
Cσm (R;W )

=CM‖v−w‖2
Cσ (RM ;W ).

The statement follows by density. ut

Lemma 5 ([16] ). Let v(ζ ) be an analytic function in the strip Στ = {ζ ∈C : | Imζ |<
τ + ε}, ε > 0. A necessary and sufficient condition that the Fourier-Hermite series

v(ζ ) =
∞

∑
n=0

vnhn(ζ ), vn =
∫
R

v(ξ )hn(ξ )dξ ,

where hn(ξ ) = e−ξ 2/2Hn(ξ ) and Hn(ξ ) =
(−1)n√
π1/22nn!

eξ 2
∂ n(e−ξ 2

), converge, is that

for every β ∈ [0,τ + ε) there exists C(β ) such that

|v(ξ + iη)| ≤C(β )e−|ξ |
√

β 2−η2
, y ∈ R, |η | ≤ β .

In this case the Fourier coefficients satisfy

vn ≤Ce−τ
√

2n+1.

Following the proofs in [15, 16], it is clear that if a multivariate function v : RM→
W admits an analytic extension to the domain Στττ = {ζζζ ∈CM : | Imζm|< τm+ε,m =
1, . . . ,M}, ε > 0, and satisfies

|v(ξ1+iη1, . . . ,ξM+iηM)| ≤C(β1, . . . ,βM)e−∑
M
m=1 |ξm|

√
β 2

m−η2
m , ξm ∈R, |ηm| ≤ βm, ∀m,

for all βm ∈ [0,τm], m = 1, . . . ,M, then we have

v(ζζζ ) = ∑
n

vn

M

∏
m=1

hnm(ζm), vn =
∫
RM

v(ξξξ )
M

∏
m=1

hnm(ξm)dξξξ ,

for all ζζζ ∈ Στττ , and, in particular,
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vn ≤C exp

(
−

M

∑
m=1

τm
√

2nm +1

)
.

Thus, we can generalize [1, Lemma 4.6] by an obvious modification to

Lemma 6 ( cf. [1, Lemma 4.6] ). Let v : RM →W admit an analytic extension to

Στττ = {z ∈ CM : | Imζm|< τm + ε,m = 1, . . . ,M},

ε > 0, and satisfy
max
ζζζ∈Στττ

σ(Reζζζ )‖v(ζζζ )‖W ≤+∞.

Then there holds

min
w∈Pn

max
ξξξ∈RM

∣∣∣‖v(ξξξ )−w(ξξξ )‖W e−‖ξξξ‖
2/8
∣∣∣≤CΘ(n)exp

(
− 1√

2

M

∑
m=1

τm
√

nm

)
,

where Θ(n) =C(τττ)(n1 · · ·nM)1/2.
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