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Multigrid Methods for Helmholtz Problems:
A Convergent Scheme in 1D
Using Standard Components

Oliver G. Ernst and Martin J. Gander

Abstract. We analyze in detail two-grid methods for solving the 1D Helmholtz equation
discretized by a standard finite-difference scheme. We explain why both basic components,
smoothing and coarse-grid correction, fail for high wave numbers, and show how these com-
ponents can be modified to obtain a convergent iteration. We show how the parameters of
a two-step Jacobi method can be chosen to yield a stable and convergent smoother for the
Helmholtz equation. We also stabilize the coarse-grid correction by using a modified wave
number determined by dispersion analysis on the coarse grid. Using these modified compo-
nents we obtain a convergent multigrid iteration for a large range of wave numbers. We also
present a complexity analysis which shows that the work scales favorably with the wave num-
ber.

Keywords. Multigrid Methods, Helmholtz Equation, 2-step Smoother, Krylov Smoother, Dis-
persion Correction.
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1 Introduction
The development of multigrid methods in the 1960s represents a milestone for solving
linear systems of equations obtained by discretizing elliptic PDEs, allowing such a
system to be solved with the optimal work and storage complexity, i.e., proportional to
the number of unknowns. While enormously effective when applied to elliptic equa-
tions as well as a multitude of more difficult problems (see [45] and the references
therein), extending the multigrid method for solving the Helmholtz equation with the
same efficiency remains an open problem.

The Helmholtz equation
Du+ k2u = f (1.1)

is satisfied by the spatial part u = u(x) of a time-harmonic solution w(x, t) =
u(x)e�i!t with angular frequency ! 2 R of the linear wave equation wtt = c2Dw �
f̃ with propagation speed c. For a homogeneous medium, which we shall assume
throughout, the wave number k is given by the constant k = !/c. The wave number is
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real for models of purely propagating waves, which is the case of primary interest and
highest difficulty. When the underlying medium is absorbing, k is complex and can be
nomalized to have nonnegative real part (cf. [14]).

Multigrid methods consist of an ingeneous combination of the two complementary
iterative solution techniques smoothing and coarse-grid correction. Smoothing, in its
simplest form, refers to classical so-called relaxation methods, a term introduced by
Southwell in the 1930s [43], for successively updating the solution values of a dis-
cretized, see also Richardson’s early paper [41] from 19101. The comprehensive the-
ory of relaxation methods for elliptic PDEs is summarized in the monograph of Varga
[49]. Smoothers are characterized algorithmically by updating each solution value by
local averages of neighboring values, resulting in linear complexity for each smoothing
step. For elliptic PDEs this typically results in strong damping of oscillatory compo-
nents of the solution error in each step, while smooth components remain essentially
unaffected. These smooth error components remaining after smoothing are reduced by
the coarse-grid correction, in which an approximation of the original elliptic problem
on a coarser grid is solved, in the simplest case by solving the residual equation for the
error. This simple combination of smoothing and coarse-grid correction is known as a
two-grid iteration; a multigrid method is obtained by solving the coarse grid equation
in the same way, descending recursively through increasingly coarser grids and ending
ultimately at a grid for which the discrete equation can be solved with trivial effort.
Classical multigrid theory is described in [10, 33, 12, 45].

It was realized early on [4, 6, 8, 42, 50] that the basic multigrid approach will in-
deed work for the Helmholtz equation if the wave number is small relative to the mesh
size. Essentially, this means that the coarsest grids employed in the multigrid hier-
archy must resolve the waves of wave number k. This is however not very useful in
practical situations, particularly for large-scale calculations, since then the finest grid
is precisely chosen to resolve the waves of wave number k, and one could not use any
coarsening at all in a multigrid context.

Thus, it is still the case that classical multigrid methods do not work when applied
to discretizations of the Helmholtz equation, see for example [20, 22] and references
therein. Textbooks on multigrid often comment on the difficulty of the case of indefi-
nite problems, for example the early multigrid guide by Brandt and Livne from 1984,
which has recently been republished in the SIAM Classics in Applied Mathematics
series [10, page 72], contains the quote:

“If � is negative, the situation is much worse, whatever the boundary con-

1 This paper is exemplary for a modern paper in numerical analysis: there are several physical prob-
lems modeled by PDEs, which are then discretized, and solved by iteration (Richardson iteration,
which is almost the Chebyshev semi-iterative method in its original form, albeit constructing an
approximate Chebyshev polynomial by trial and error, and Richardson extrapolation), with realis-
tic wallclock times (flops Richardson and his boy calculators were able to attain), computing costs
( n

18 pence per coordinate relaxation of Dh, n being the number of digits), and finally there is a real
application, a masonry dam.
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ditions.”

In the formative 1985 monograph by Hackbusch [33, page 212], we find

“We have restricted our interest to weakly indefinite problems since severe
difficulties arise for very small ".”

And in the more recent multigrid book by Trottenberg, Oosterlee and Schüller [45,
page 400], the authors state

“The multigrid treatment of the case c < 0 can become rather involved and
will be a real difficulty if �c gets very large.”

In these references, the authors then give some brief indications of why standard multi-
grid methods fail to work effectively for Helmholtz type problems, and many other
textbooks simply do not mention the difficult Helmholtz case at all. In the research
literature, in an early paper [9], Brandt and Ta’asan investigated why a slight indef-
initeness already poses problems for the classical multigrid algorithm, and proposed
to treat the small subspace where the algorithm fails explicitly by deflation. This sub-
space, however, becomes unmanageably large for increasingly large wave number, and
therefore one can no longer treat it explicitly when the goal is an algorithm with op-
timal complexity. A new technique for treating the subspace, namely the ray cycle,
was introduced in the PhD thesis of Livshits [39], with a detailed study of the one-
dimensional case, and a higher-dimensional variant appeared in Brandt and Livshits
[11], see also [40]. The so called wave-ray algorithm has, however, a considerable
number of technical and algorithmic complications, which make both the implemen-
tation and the rigorous convergence analysis challenging, and this has prevented the
algorithm from being widely used. A different approach at first sight is to write the
Helmholtz equation as a first-order least squares system, see Lee, Manteuffel, Mc-
Cormick and Ruge [38]. This does, however, in no way remove the specific problems
of the multigrid algorithm in the case of the Helmholtz equation, and again ray compo-
nents need to be introduced, based on several heuristics. While numerical experiments
on the unit square illustrate the performance of this method, there is no convergence
analysis. Vaněk, Mandel and Brezina present a two-level algebraic multigrid method
for the Helmholtz problem in [46], where they use an explicit plane wave represen-
tation on the coarse grid, localized within an aggregate of nodes, and zero outside,
smoothed by a Chebyshev iteration. Numerical experiments show good computational
complexity and scalability of the method. Since multigrid works well in the Helmholtz
case provided the mesh is fine enough, and fine meshes are needed because of the pol-
lution effect [35, 36, 3], Kim and Kim propose in [37] to just use standard multigrid for
the first few finest levels, and then to switch to a domain decomposition solver of op-
timized Schwarz type (see below), when multigrid ceases to be effective. Proceeding
in a different direction, Elman, Ernst and O’Leary studied the convergence problems
of the classical multigrid algorithm applied to the Helmholtz equation in more detail
by spectral analysis in [17], and used Krylov methods, both as smoothers and as outer
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convergence accelerator for multigrid, in order to obtain a practical and more robust
method. One can also use the Laplacian, as proposed by Bayliss, Goldstein and Turkel
[5], or the shifted Laplacian, as advocated by Erlangga, Vuik and Oosterlee [21], as
a preconditioner for the Helmholtz equation, and then apply the preconditioner using
multigrid, see also [32], and for an algebraic version [2], where it is shown numerically
that, asymptotically, the number of iterations grows linearly with the wave number for
this approach, see also [15, 48]. This illustrates well that in the shifted Laplacian pre-
conditioner, there are two conflicting requirements: the shift should be large enough
in order for multigrid to work, and not too large, in order to still have a good precon-
ditioner of the original problem, and one cannot, in general, satisfy both; see [22] for
a simple Fourier analysis argument, and [31] for a complete theoretical treatment, and
the preprint [15] for a detailed local Fourier analysis and a thorough numerical study.

But what happens precisely in the multigrid algorithm when one applies it to the
Helmholtz equation? Why and how do standard components of a multigrid algorithm
fail? Is it even possible to obtain a convergent algorithm using just the standard com-
ponents? This chapter is for people who are interested in understanding the details on
how multigrid fails for the Helmholtz equation. We explain all our results on a one-
dimensional model problem, and show what is needed in one dimension in order to
obtain a convergent method using only the standard multigrid components of smooth-
ing and coarse-grid correction. Some of the ideas presented in this chapter, such as
the smoothing components, can easily be extended to higher dimensions. Others are
more difficult to extend, in particular the shifting of the coarse problem, which is a
perfect remedy in one spatial dimension, but will not cure all problems of the coarse
grid correction in higher dimensions. We hope to share with this text some of our
passion we developed over the years analyzing iterative methods for the Helmholtz
equation, which has also led to a certain success: for example there are now quite suc-
cessful incomplete factorization preconditioners, based on the analytic factorization of
the operator [26], for the Helmholtz equation see [30] for an analytic incomplete LU
(AILU) preconditioner. The newest variants in this class of preconditioners is called
the sweeping preconditioner [18, 19]. Also in domain decomposition there are suc-
cessful preconditioners, with the first fundamental contribution [16], which then led
to optimized Schwarz methods for the Helmholtz equation [29, 28]. There are also
specialized FETI methods, like FETI-H [25], and FETI-DPH [23], with a convergence
analysis in [24]. For a thorough numerical comparison of all domain decomposition
methods specialized for the Helmholtz equation applied to a realistic test equation, see
[27]. For multigrid methods, we are certainly still far away from being able to give
definitive answers in this chapter, except maybe for one spatial dimension.

The remainder of this chapter is organized as follows: In Section 2 we recall the in-
effectiveness and instability of the classical relaxation methods when used as smoothers
for the Helmholtz equation using a spectral analysis of the damped Jacobi smoother
for a 1D model problem. We propose a two-step Jacobi smoother, a second-order re-
laxation method, as a possible working alternative and, again using spectral analysis,
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show how its parameters can be chosen depending on the type of indefinitenes, i.e., the
level of discretization within a multigrid hierarchy. We also indicate the fundamental
limitations of such a stationary iteration at a certain level of the multigrid hierarchy,
the so-called resonance level. In Section 3 we perform a detailed spectral analysis of
the coarse-grid correction operator using standard linear interpolation and full weight-
ing restriction. We give closed-form expressions of its eigenvalues and show how,
with decreasing resolution, the correction operator changes from a projection to an in-
creasingly unstable operation, which can be interpreted as a resonance phenomenon.
Guided by dispersion analysis of the finite difference scheme, we explore a variety
of modified wave numbers on the coarse grids, resulting in stable correction opera-
tors on much coarser grids. Section 4 considers the combination of these remedies
in a two-grid iteration and proposes a number of additional modifications yielding,
for our model problem, a uniformly convergent two-grid algorithm for essentially all
wave numbers that can occur within a full multigrid cycle. Section 5 then gives the re-
sults of numerical experiments for solving one-dimensional Helmholtz boundary value
problems using multigrid methods constructed from the new techniques.

2 Smoothing
Nearly all multigrid algorithms for solving a linear system of equations Au = f
employ for their smoothing component stationary linear iterations of the form

um+1 = um +M�1(f �Aum), m = 0, 1, . . .

based on a splitting A = M �N of the coefficient matrix A. Denoting the (algebraic)
error of the m-th iterate by em := u�um and the associated residual rm := f �Aum,
the error propagation operator of such an iteration is given by

S = I �M�1A. (2.1)

2.1 Smoothing Analysis

We give several representations of the spectral properties of smoothers for the 1D
model problem

�u00(x)� k2u(x) = f, x 2 (0, 1),

u(0) = u(1) = 0.
(2.2)

With the standard 3-point centered finite difference approximation for the second
derivative operator on a uniform mesh with N interior grid points and mesh width
h = 1/(N + 1), (2.2) is approximated by the linear system Au = f for the function
values uj ⇡ u(xj), j = 1, . . . N , at the grid points xj = jh, where

A =
1
h2 tridiag(�1, 2� k2h2,�1). (2.3)
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Figure 1. Symbols Â(✓) and Âh(✓), ✓ = ⇠h 2 [�⇡,⇡) of continuous and discrete 1D
Helmholtz operators. The mesh size is h = 1/256 with wave numbers k1 = 10⇡ and
k2 = 80⇡. The wavelength-to-mesh size ratio �/h is a measure of resolution, indicating
how many mesh intervals of length h correspond to each wave of length � = 2⇡/k.

Spectral Analysis

The matrix A is symmetric and therefore has a complete set of orthogonal eigenvec-
tors. These are given by the discrete sine functions

vj = [sin j`⇡h]N`=1, j = 1, . . . , N. (2.4)

When it is necessary to rescale these eigenvectors to have unit Euclidean norm this is
achieved by the factor

p
2h (for all j). The associated eigenvalues are given by

�j =
2(1� cos j⇡h)

h2 � k2 =
4
h2 sin2 j⇡h

2
� k2, j = 1, . . . , N. (2.5)

The form of the eigenvectors (2.4) reveals that these become more oscillatory with
increasing index j. We refer to the eigenpairs accociated with the indices 1  j  N/2
as the smooth part of the spectrum Ism and the remainder as the oscillatory part Iosc,
i.e.,

Ism := {�j : 1  j  N/2}, Iosc := {�j : N/2 < j  N}. (2.6)

When N is odd the eigenpair with index j = (N + 1)/2 lies exactly in the middle,
and we denote by n = (N + 1)/2� 1 = 1/(2h)� 1, so that the middle index is n+ 1.
The associated eigenvector has a wavelength of 4h.

Fourier Analysis

For simple model problems smoothing analysis may be performed based on the spec-
tral decomposition of the error propagation operator (2.1). This usually requires that
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the eigenvalues of S be accessible analytically, as is the case e.g. with Jacobi smooth-
ing applied to Poisson’s equation on a square with uniform meshes. An alternative
approach, sometimes known as local mode analysis or normal mode analysis, is to
perform Fourier analysis, replacing the given boundary conditions by periodic ones
or assuming the regular mesh to be infinite. In the latter case the Fourier variable is
continuous, in the former discrete. For a given uniform mesh size h > 0 the infinite
grid

xj = jh, j 2 Z,

supports Fourier modes

u : Z! C, uj = ei⇠xj = ei⇠jh, j 2 Z, (2.7)

in which the Fourier variable (frequency) ⇠ may be restricted to the fundamental do-
main ⇠ 2 [�⇡/h,⇡/h). In this case, however, the smooth part of the spectrum is given
by Ism = [� ⇡

2h ,
⇡
2h ] and the oscillatory part is Iosc = {|⇠| � ⇡

2h}. Applying the dis-
crete Helmholtz operator Ah = �Dh�k2 resulting from the usual centered three-point
finite difference stencil to a Fourier mode (2.7) yields

[(�Dh � k2)u]j =
1
h2 (�uj�1 + 2uj � uj+1)� k2uj

=
ei⇠xj

h2 (�e�i⇠h + (2� k2h2)� ei⇠h)

=
ei⇠xj

h2 (2� 2 cos(⇠h)� k2h2),

which reveals the so-called symbol Âh = Âh(⇠) of the discrete Helmholtz operator
Ah to be

Âh(⇠) =
2� 2 cos(⇠h)� k2h2

h2 , ⇠ 2
h
�⇡

h
,
⇡

h

⌘
.

Figure 1 displays the Fourier symbols of the continuous and discrete Helmholtz
operators A = �D � k2 and Ah = �Dh � k2. To facilitate the comparison of sym-
bols associated with different mesh sizes it is sometimes preferable to plot the symbol
against the variable ✓ = ⇠h, which then ranges over the fixed interval [�⇡,⇡).

2.2 Jacobi Smoothing

The Jacobi smoother is based on the splitting A = D�(D�A), where D = diag(A),
resulting in the iteration

um+1 = um +D�1(f �Aum).

For smoothing one usually introduces a damping factor ! for the update, giving

um+1 = um + !D�1(f �Aum),
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which corresponds to the splitting A = 1
!D � ( 1

!D � A). The associated error
propagation operator is

S! = I � !D�1A.

Noting that

D =
2� (kh)2

h2 I ,

we conclude that A and D are simultaneously diagonalizable, and we obtain for the
eigenvalues �j of S!

�j = �j(!) = 1� !

✓
1� 2 cos(j⇡h)

2� (kh)2

◆
=: 1� !

�j

�
, j = 1, . . . , N, (2.8)

where we have introduced � = �(k, h) := (2� k2h2)/h2 to denote the diagonal entry
in the Jacobi splitting, which is constant for this model problem. In multigrid methods
the smoothing parameter ! is chosen to maximize damping on the oscillatory half of
the spectrum Iosc. For the Laplace operator (k = 0) the eigenvalues of D�1A are
given by �j/� = 1� cos(j⇡h), j = 1, . . . , N , specifically,

�1

�
=

⇡2h2

4
+O(h4),

�N

�
= 2� ⇡2h2

2
+O(h4) (h! 0) and

�n+1

�
= 1.

As a result, up to order h2, the spectral interval of D�1A is [0, 2], with Iosc = [1, 2]
containing the eigenvalues belonging to oscillatory modes. Maximal damping on Iosc
thus translates to the requirement

1� ! = �(1� 2!), i.e., ! = !0 :=
2
3
.

For this optimal value of the damping parameter !, each eigenmode belonging to the
oscillatory part of the spectrum span{vh

n+1, . . . , v
h
N} is reduced by at least a factor of

�n+1(!0) = 1� !0 =
1
3

in each smoothing step, independently of the mesh size h.
Figure 2 shows the spectrum of S! for the discrete 1D Laplacian on the unit interval

with mesh width h = 1/50 for the values ! = 0 (undamped) and the optimal value
! = 2/3, on the left plotted against the eigenvalues of A. Another common way to
visualize the spectral properties of a smoother shown on the right is to plot the eigen-
values of S! against the eigenvalue index j or, in a more normalized representation,
against jh, in which the eigenvalues of the smoother lie on a curved line.

The same considerations applied to the 1D Helmholtz operator (k > 0) result in
eigenvalues

�j

�
= 1� 2 cos j⇡h

2� k2h2 , j = 1, . . . , N,
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Figure 2. Left: eigenvalues of the undamped and optimally damped Jacobi smoother
plotted against those of the associated 1D Laplacian�Dh, h = 1/50, divided into smooth
and oscillatory parts Ism and Iosc. The dashed red lines indicate the spectral radius of
S! restricted to the space of oscillatory eigenfunctions. Right: same results, but with
smoother eigenvalues �j plotted against jh.

of D�1A and therefore, again up to O(h2), a spectral interval ranging between the
extremal eigenvalues

�1

�
=
�k2h2

2� k2h2 ,
�N

�
=

4� k2h2

2� k2h2 ,

so that maximal smoothing on the oscillatory half of the spectrum is obtained for !
characterized by

1� !
�N

�
= �

✓
1� !

�1 + �N

2�

◆
,

which results in

! = !k :=
2� k2h2

3� k2h2 . (2.9)

Figure 3 shows the spectrum of S! for the discrete 1D Helmholtz operator on the unit
interval with mesh width h = 1/50 for different values of !, on the left plotted against
the eigenvalues of A, and on the right against the eigenvalue index j.

Remark 2.1. In the Laplace case, the optimal choice of the smoothing parameter !
guarantees a reduction of the high-frequency error components by a factor of at least
1/3 independently of the mesh size. This is not so in the case of the Helmholtz equa-
tion, since there we obtain for the reduction factor

|1� !k
�N

�
| = |�N (!k)| =

����
1 + 2 cosN⇡h

3� k2h2

���� ⇡
1

3� k2h2 .

This reduction factor is only smaller than one if kh <
p

2, which means the resolution
r := 2⇡/(kh), i.e., the ratio of wavelength 2⇡/k to the mesh size h, must be larger than
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Figure 3. Left: eigenvalues of the Jacobi smoother plotted with ! = !k, ! = 1 and
! = !0 against those of the associated 1D Helmholtz operator�Dh�k2, h = 1/50 with
wavelength-to-mesh ratio �/h = 10. Right: same result in equispaced representation.

p
2⇡ ⇡ 4.44 points per wavelength, otherwise the smoother is not working. This was

also the assumption under which the parameter !k was derived. For given kh <
p

2
one has to perform

⌫ � � log ✏
log(3� k2h2)

(2.10)

smoothing steps to achieve the same reduction factor ✏ = 1/3 as a single smoothing
step in the Laplace case. Expanding the number of smoothing steps close to the limit
kh =

p
2, we find for the number of smoothing steps the estimate

⌫ =
�
p

2 log ✏
4(
p

2� kh)
+O(1).

In addition, the Jacobi smoother is not stable when used for the Helmholtz equation,
since low frequency modes are amplified. The strongest amplification occurs for the
lowest mode, namely

1� !k
�1

�
= �1(!k) =

1 + 2 cos⇡h
3� k2h2 ⇡ 3

3� k2h2 > 1

for kh <
p

2, and the worst amplification could be as large as 3.

2.3 Two-Step Jacobi Smoothing

As the mesh is coarsened beyond a resolution of roughly � = 8h the standard damped
Jacobi smoother becomes less efficient because
(a) there is less damping of modes in the oscillatory part Iosc of the spectrum (cf.

(2.6))
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Figure 4. Eigenvalues of the damped Jacobi smoother with larger wavelength-to-mesh
ratio �/h = 8 and �/h = 5. The damping on Iosc is becoming less while smooth modes
at the lower end of Iosc are amplified significantly.

(b) negative eigenvalues in the smooth part Ism are amplified, some severely.
This is illustrated in Figure 4, where the eigenvalues of the damped Jacobi smoother
with different values of the damping parameter are shown for wavelength-to-mesh
ratios of 8 and 5. Even for the wavenumber-adapted value ! = !k we observe that
damped Jacobi relaxation is becoming less effective as a smoother on Iosc while at the
same time amplifying the smoothest modes in Ism, for �/h = 5 up to a factor of 2.

More flexibility in the construction of the smoother is obtained for higher-order re-
laxation methods (cf. [49, Chapter 5]). Rather than allowing arbitrarily high order (cf.
the preprint [47] or Krylov smoothers [7, 17]) we consider a two-step Jacobi smoother
consisting of two consecutive smoothing steps, each with its own damping parameter
!1 and !2:

S!1,!2 = (I � !1D
�1A)(I � !2D

�1A).

Such a two-step Jacobi scheme was proposed as a (standalone) solver for Helmholtz
problems by Hadley [34].

Denoting again the eigenvalues of D�1A by �j/�, the eigenvalues �j of S!1,!2 are
given by

�j = �(�j), �(�) =

✓
1� !1

�

�

◆✓
1� !2

�

�

◆
, (2.11)

i.e., the eigenvalues of the two-step Jacobi smoother lie on a parabola with vertex

�v =
�

2
!1 + !2

!1!2
with value �(�v) = �

1
4
(!1 � !2)2

!1!2
.

To determine values of the smoothing parameters !1 and !2 to ensure stability on Ism
as well as good damping on Iosc we distinguish three cases with regard to the location
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Figure 5. Two-step Jacobi smoothing with parameter choice (2.14).

of the two halves of the spectral interval [�1,�N ] relative to the origin. Specifically,
introducing

�mid :=
�1 + �N

2
,

we distinguish as to whether

0 < �mid, �mid < 0 < �N , or �N < 0,

i.e., whether Iosc lies to the right, contains, or lies to the left of the origin, respectively.
Using the estimates �1 ⇡ �k2 and �N ⇡ 4/h2 � k2, these cases are characterized by

kh 2 [0,
p

2), kh 2 [
p

2, 2), kh 2 [2,
p

6), and kh �
p

6. (2.12)

Case (1): 0 < �mid

When Iosc lies to the right of the origin we design the smoother to damp the modes
associated with the eigenvalues there while at the same time not amplifying the smooth
modes, i.e., those with eigenvalues in Ism, which lie closer to and on the left of the
origin. We accomplish this by fixing the maximum value of the parabola � = �(�) at
� = 0 while requiring maximal damping on the oscillatory interval Iosc:

�0(0) = 0,

�(�mid) = ��(�N ).

The first constraint yields !2 = �!1 which, together with the second, results in (note
that � > 0 in this case)

!1 =

s
8�2

�2
1 + 2�1�N + 5�2

N

=
2
p

2�q
(�1 + �N )2 + 4�2

N

. (2.14)
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Figure 5 illustrates this choice of parameters. On the left we see the eigenvalue plot
for the two-step Jacobi smoother with this choice of relaxation parameters for a well-
resolved situation � = 20h. Note that damping on Iosc is reasonable, although weaker
than for the one-step Jacobi smoother at this resolution. On the right the same plot for
a lower resolution of � = 5h. Note that damping has become weaker with decreasing
resolution, but there is no amplification.

Remark 2.2. Once more, this smoother does not lead to a fixed mesh-independent
reduction factor of the high-frequency modes. Specifically, the reduction factor is

����

✓
1� !1

�N

�

◆✓
1� !2

�N

�

◆���� =
����1� !2

1
�2
N

�2

���� =
����1�

8�2
N

(�1 + �N )2 + 4�2
N

����

⇡ 6� 2k2h2

10� 6k2h2 + k4h4 ,

where we have used the estimates �1 ⇡ �k2 and �N ⇡ 4/h2 � k2. This reduction
factor is again only strictly smaller than one if kh <

p
2, for which it was constructed.

For given kh <
p

2, one now has to perform

⌫ � log ✏
log((6� 2k2h2)/(10� 6k2h2 + k4h4))

(2.15)

smoothing steps to get the same reduction factor ✏ = 1/3 as one smoothing step for the
Laplace case, but this smoother is stable. Expanding the number of smoothing steps
close to the critical value kh =

p
2, we find

⌫ =
� log ✏

4(
p

2� kh)2
+O

⇣ 1
kh�

p
2

⌘
,

which shows that the price for stability one has to pay is the squaring of the smoothing
steps close to the resolution limit, compared to the classical single-step Jacobi method.

Case (2): �mid < 0 < �N

When the center of the spectral interval moves to the left of the origin, requiring equal
damping on different sides of the origin can cause the smoother to become unstable
for the smooth modes. This can be seen to occur in Figure 6 on the left for a resolution
of � = 4h. Instead, we require for this situation �0(0) = 0 as before and, to guarantee
stability for the smooth modes, �(�1) = �1. This is achieved for the parameters

!1 =

p
2|�|
|�1|

, !2 = �!1. (2.16)

Figure 6 on the right shows the smoother for this parameter choice for the same resolu-
tion. The amplification of the smooth modes is seen to have been eliminated. However,
we see that no damping occurs for modes associated with eigenvalues near the origin.
This is an inherent problem for the indefinite Helmholtz operator.
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Figure 6. Left: two-step Jacobi smoother with parameter choice (2.14) from Case (1)
at resolution �/h = 4, for which �mid < 0 < �N . The smooth modes are seen to be
strongly amplified. Right: two-step Jacobi smoother with parameter choice (2.16) from
Case (2) at resolution �/h = 4.

Remark 2.3. We call this most difficult level for the smoothing operation the reso-
nance level. The reduction factor we obtain with the two-step Jacobi smoother for
each j = n+ 1, . . . , N is

����

✓
1� !1

�j

�

◆✓
1� !2

�j

�

◆���� =

�����1� !2
1
�2
j

�2

����� =

������
1� 2

 
4 sin2 j⇡h

2 � k2h2

4 sin2 ⇡h
2 � k2h2

!2
������
.

(2.17)
This reduction factor can be arbitrarily close to one, since 2 sin j⇡h

2 can be arbitrarily
close to kh 2 (

p
2, 2) on this level, but they cannot be equal, since otherwise the

corresponding Dirchlet problem would be singular. For a reduction by a factor ✏, one
has to perform

⌫ ⇡ � log ✏
2

"
k2h2

4 sin2 j0⇡h
2 � k2h2

#2

(2.18)

smoothing steps, where j0 is the closest integer to the solution of the equation 4 sin2 j⇡h
2 =

k2h2, i.e.

j0 = round
✓

2
⇡h

arcsin
kh

2

◆
.

We arrive at (2.18) by approximating log q, where q denotes the reduction factor in
(2.17), to first order by log q = log(1��) ⇡ �� for � small and bounding |4 sin2 ⇡h

2 �
k2h2| by k2h2.

In the best case, k would lie exactly between two adjacent values of j, k = 4
h2 sin2 (j+ 1

2 )⇡h
2 ,

and then for a j > n = 1
2h � 1, e.g. j = 1

2h + c for some integer c � 0, we obtain for
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Figure 7. Two-step Jacobi smoothing with parameter choices (2.19) (left) and (2.20)
(right), respectively.

h small


4 sin2 j⇡h

2
� k2h2

�2

=

"
4 sin2 ( 1

2h + c)⇡h

2
� 4 sin2 ( 1

2h + c+ 1
2)⇡h

2

#2

= ⇡2h2+O(h4),

independently of the constant c. Since on the resonance level kh = C with C 2
(
p

2, 2), this shows that one has to perform about

⌫ ⇡ � log ✏
2

C2k2

⇡2 = O(k2)

smoothing steps for an error reduction by a factor of ✏ in the high-frequency modes, a
truly expensive level for smoothing. It is therefore recommended not to use a simple
two-step Jacobi smoother on this level. A better idea would be to use a Chebyshev
smoother tuned for the oscillatory part of the spectrum, or even a Krylov method ,
which can lead to a fixed error reduction with only O(k) iterations.

Case (3): �N < 0

In the remaining case where also the largest eigenvalue has crossed to the left, i.e., the
problem has become negative definite, we further distinguish between the cases

�1 < 3�N and �1 > 3�N .

In terms of the approximations �1 ⇡ �k2 and �N ⇡ 4/h2 � k2, this corresponds to
whether or not kh <

p
6.

In the first case we fix �(�1) = 1, thus making the parabola symmetric to � = �1/2
(since also �(0) = 1 by construction) and thus ensuring stability. We further specify
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equal damping at the right end of the spectrum �N and at the vertex of the parabola
�v = �1/2, i.e., �(�v) = ��(�N ). This results in

!1 =
2(2 +

p
2)�

�1 + (2 + 2
p

2)�N

, !2 =
2(2�

p
2)�

�1 + (2� 2
p

2)�N

. (2.19)

For the reduction factor on the oscillatory part Iosc of the spectrum we obtain

|�(�N )| = |�(�v)| =
(�1 � 2�N )2

�1 + 4�1�N � 4�2
N

.

This situation is depicted on the left of Figure 7.
In the final remaining case �1 > 3�N , we choose the parabola to be the shifted

and scaled Chebyshev polynomial of degree 2 which is 1 at � = 0 and has minimal
supremum on Iosc. This is not an option when �1 < 3�N since then the Chebyshev
polynomial will generally be greater than one on Ism. In this case we obtain the pa-
rameters

!1 =
4(2 +

p
2)�

�1 + (7 + 4
p

2)�N

, !2 =
4(2�

p
2)�

�1 + (7� 4
p

2)�N

. (2.20)

This situation at a resolution of �/h = 2 is shown on the right of Figure 7. In the
limiting case �1 = 3�N (2.19) and (2.20) yield the same two parameters.

Remark 2.4. While the smoothing in this last case is again quite effective, there are
in general no error components left any more on these levels, if the two-step Jacobi
smoother with the O(k2) smoothing steps required on the previous level was used, as
one can see from the error reduction curve shown in Figure 6: with so many smoothing
steps, all coarse error components will have been damped out as well, even more so
than the oscillatory ones. This may, however, not be so if a special smoother is used
on the resonance level.

So for completeness, we give here an estimate of the number of smoothing steps
needed. In the first case, 2 < kh <

p
6, the reduction factor on the high-frequency

modes with the parameter values (2.19) is at least
����

✓
1� !1

�N

�

◆✓
1� !2

�N

�

◆���� =
(�1 � 2�N )2

(�1 + 2�N )2 � 8�2
N

⇡ (8� k2h2)2

�64 + 16k2h2 + k4h4 ,

where we have again used the estimates �1 ⇡ �k2 and �N ⇡ 4/h2 � k2. Hence for
an error reduction in the high frequencies by a factor ✏, one has to perform

⌫ � log ✏
log((8� k2h2)2/(�64 + 16k2h2 + k4h4))

(2.21)
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smoothing steps. In the second case, kh >
p

6, the reduction factor on the high
frequency modes is with the choice (2.20)
����

✓
1� !1

�N

�

◆✓
1� !2

�N

�

◆���� =
(�1 � �N )2

(�1 + 7�N )2 � 32�2
N

⇡ 1
17� 12k2h2 + 2k4h4 .

For an error reduction in the high frequencies by a factor ✏, one has to perform in this
last case

⌫ � � log ✏
log(17� 12k2h2 + 2k4h4)

(2.22)

smoothing steps.
We finally note that for kh >

p
6, one could also use the simple one-step Jacobi

smoother, as it achieves a reduction factor of 1/3 in that case. Using equioscillation to
maximize damping on the high frequencies, the parameter should be chosen as

! =
4�

�1 + 3�N
=

2� k2h2

3� k2h2 � 2 sin2 ⇡h
2
.

With this, one obtains a reduction in the high frequency components by at least a factor
of ����1� !

�N

�

���� =
�1 � �N

3�N + �1
⇡ 1

k2h2 � 3
,

using again the estimates �1 ⇡ �k2 and �N ⇡ 4/h2� k2. Thus for an error reduction
in the high-frequency components by a factor of ✏, one would have to perform

⌫ >
� log ✏

log(k2h2 � 3)

smoothing steps.

To summarize this section, we have shown by way of spectral analysis for our 1D
model problem how damped Jacobi relaxation, one of the standard multigrid smoothers,
breaks down at high wave numbers. As a possible remedy, we have shown how adapt-
ing the parameters of a two-step Jacobi iteration depending on the product kh can yield
a stable smoother which, however, on the resonance level, may require up to O(k2)
smoothing steps to reduce the error on the oscillatory part of the spectrum by a fixed
amount.

3 Coarse Grid Correction
The following spectral analysis of the coarse grid correction for the 1D case extends
that in [33, Chapter 2] and [12, Chapter 5] for the Dirichlet-Laplacian model problem
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(k = 0). We consider problem (2.2) discretized using centered finite differences on a
fine grid

Wh := {xj = jh : j = 0, . . . , N + 1}

with mesh width h = 1
N+1 as well as a coarser grid2

WH := {xj = jH : j = 0, . . . , n+ 1}

with twice the mesh width H = 2h so that N = 2n+ 1. We introduce a grid transfer
operator IhH mapping functions uH = [uH0 , . . . , uHn+1] defined on the coarse grid WH

to a function IhHuH defined on the fine grid Wh using linear interpolation. This results
in the linear mapping uH 7! IhHuH defined by

[IhHuH ]j =

8
<

:
[uH ]j/2 if j is even,
1
2
�
[uH ](j�1)/2 + [uH ](j+1)/2

�
if j is odd,

j = 0, . . . , N + 1,

(3.1)
and has the matrix representation

I h
H =

1
2

2

666666666666664

2
1 1

2
1

. . . 1
2
1 1

2

3

777777777777775

2 R(N+2)⇥(n+2)

with respect to the standard unit coordinate bases in Rn+2 and RN+2.
Note that in case of Dirichlet boundary conditions at both interval ends, with which

we begin our analysis, the values at the endpoints are omitted, resulting in vectors of
length N and n on Wh and WH , respectively, as well as omitting of the first and last
rows and columns in I h

H .
We analyze the mapping properties of the linear interpolation operator IhH on the

coarse-grid eigenvectors {vH
j }nj=1 of the discrete 1D Dirichlet-Laplacian, where

[vH
j ]` = sin(j`⇡H), ` = 1, . . . , n.

2 We remark that our choice of notation is intended to reflect that, on the fine grid, N is large while h
is small and vice versa on the coarse grid.
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Figure 8. Coefficients c2
j and s2

j of the eigenvectors of the discrete 1D Dirichlet-Laplacian
unter the linear interpolation operator for N = 31, i.e., n = 15.

Proposition 1. The coarse-grid eigenvectors are mapped by the interpolation operator
IhH according to

IhHvH
j = c2

jv
h
j � s2

jv
h
N+1�j , j = 1, . . . , n,

where we define

cj := cos
j⇡h

2
, sj := sin

j⇡h

2
, j = 1, . . . , n. (3.2)

In particular, vh
n+1 is not in the range of interpolation.

Proof. For any j 2 {1, . . . , n} we distinguish the cases of odd and even index ` 2
{1, . . . , N} corresponding to the two cases in the definition (3.1). In the first case we
obtain using elementary trigonometric identities

h
IhHvH

j

i

`
=

1
2

✓
[vH

j ](`�1)/2 + [vH
j ](`+1)/2

◆
=

1
2

✓
sin

j(`� 1)⇡H
2

) + sin
j(`+ 1)⇡H

2

◆

=
1
2

✓
sin(j(`� 1)⇡h) + sin(j(`+ 1)⇡h)

◆
= cos(j⇡h) sin(j`⇡h)

= (c2
j � s2

j) sin(j`⇡h) = c2
j sin(j`⇡h)� s2

j sin((N + 1� j)`⇡h)

= c2
j [v

h
j ]` � s2

j [v
h
N+1�j ]` .

For even ` we obtain
h
IhHvH

j

i

`
=
⇥
vH
j

⇤
`/2 = sin

j`⇡H

2
= sin(j`⇡h) = (c2

j + s2
j) sin(j`⇡h)

= c2
j sin(j`⇡h)� s2

j sin((N + 1� j)`⇡h) = c2
j [v

h
j ]` � s2

j [v
h
N+1�j ]` .
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The coarse-grid modes vH
j are thus mapped under the interpolation operator to a

linear combination of their fine-grid counterparts vh
j and a complementary mode vh

j0

with index j0 := N + 1� j. Note the relations

cj0 = sj sj0 = cj , j = 1, . . . , n, (3.3)

between complementary sj and cj . Interpolating coarse-grid functions therefore al-
ways activates high-frequency modes on the fine grid, with a factor that is less than
one but grows with j (cf. Figure 8). This can be viewed as an aliasing phenomenon.

To transfer fine-grid functions to the coarse grid we employ the full weighting re-
striction operator

IHh : uh 7! IHh uh

defined by

h
IHh uh

i

j
=

1
4

✓
[uh]2j�1 + 2[uh]2j + [uh]2j+1

◆
, j = 1, . . . , n. (3.4)

The associated matrix representation is given by IH
h = 1

2 [I
h
H ]>. The restriction oper-

ator is thus seen to be the adjoint to the interpolation operator if one introduces on Rn

and RN the Euclidean inner product weighted by the mesh size H and h, respectively.
Denoting by N (·) and R(·) the null-space and range of a matrix, the basic relation

RN = R(I h
H)�N ([I h

H ]>) = R(I h
H)�N (IH

h ) (3.5)

reveals that the range of interpolation and the null-space of the restriction are com-
plementary linear subspaces of RN , which are also orthogonal with respect to the
Euclidean inner product. Since the columns of I h

H are seen to be linearly independent,
the interpolation operator has full rank, which together with (3.5) implies

dim R(I h
H) = n, dim N (IH

h ) = N � n = n+ 1.

Proposition 2. The fine-grid eigenvectors are mapped by the restriction operator IHh
according to

IHh vh
j = c2

jv
H
j , j = 1, . . . , n, (3.6a)

IHh vh
N+1�j = �s2

jv
H
j , j = 1, . . . , n, (3.6b)

IHh vh
n+1 = 0 . (3.6c)
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Proof. By (3.4) and elementary trigonometric relations we have for j, ` 2 {1, . . . , n}
h
IHh vh

j

i

`
=

1
4

✓
[vh

j ]2`�1 + 2[vh
j ]2` + [vh

j ]2`+1

◆

=
1
4

✓
sin ((2`� 1)j⇡h) + 2 sin(2`j⇡h) + sin ((2`+ 1)j⇡h)

◆

=
1
4
�
2 sin(2`j⇡h) + 2 cos(j⇡h) sin(2`j⇡h)

�

=
1
2

✓
1 + cos(j⇡h)

◆
sin(2`j⇡h)

= cos2 j⇡h

2
sin(`j⇡H) = c2

j [v
H
j ]`,

which is (3.6a). For j = n + 1 we have 2jh = 1, implying sin(2`j⇡h) = 0 8`, and
thus the fourth equality above results in (3.6c). To show (3.6b) note first that

[vh
N+1�j ]` = �(�1)` sin(j`⇡h), j = 1, . . . , n; ` = 1, . . . , N,

and therefore
h
IHh vh

N+1�j

i

`
=

1
4

✓
2 cos(j⇡h) sin(j`⇡H)� (�1)2`2 sin(j`⇡H)

◆

=
1
2
�
cos(j⇡h)� 1

�
sin(j`⇡H) = � sin2 j⇡h

2
sin(j`⇡H) = �s2

j [v
H
j ]` .

In the standard “correction mode” of multigrid schemes for general linear problems
the coarse-grid correction of an approximation uh to the solution of (2.2) on the fine
grid Wh is obtained by solving the error equation Aheh = b � Ahuh = rh on the
coarse grid. To this end, the residual is first restricted to the coarse grid, and a coarse-
grid representation AH of the differential operator used to obtain the approximation
A�1

H IH
h rh of the error A�1

h rh on WH . The update is then obtained, after interpolating
this error approximation to Wh, as

uh  uh + I h
HA�1

H IH
h (b �Ahu

h)

with associated error propagation operator

C := I � I h
HA�1

H IH
h Ah. (3.7)

When the so-called Galerkin condition is satisfied, i.e., when the coarse-grid operator
is related to interpolation, restriction and the fine-grid operator by

AH = IH
h AhI

h
H , (3.8)
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then it is easily verified that C 2 = C , i.e., C is idempotent and thus a projection
operator. More precisely, it is the complementary projection of I h

HA�1
H IH

h Ah, the
range of which is the range of interpolation R(I h

H). We conclude that the coarse-grid
correction is without effect on error components outside the range of interpolation. In
the same vein, coarse-grid correction is without effect for an error component whose
associated residual vector, i.e., its image under Ah, lies in the null-space of restriction.
Moreover, the relation (AhC )> = AhC , which holds, e.g., when restriction is a
scalar multiple of the transpose of interpolation3, implies that C is Ah-selfadjoint,
i.e., selfadjoint with respect to the inner product associated with Ah whenever Ah

is symmetric and positive definite. In this case C is identified as the Ah-orthogonal
projection onto the Ah-orthogonal complement of R(I h

H). We may thus write the
direct sum (3.5) equivalently as the Ah-orthogonal decomposition

RN = R(I h
H)�N (IH

h Ah).

Returning to the 1D Helmholtz problem: in view of Propositions 1 and 2 the coarse-
grid correction operator C is seen to possess the invariant subspaces

span{vh
n+1} and span{vh

j , v
h
j0}, j0 = N + 1� j, j = 1, . . . , n.

Noting that the eigenvalues of Ah and AH are given by

�h
j =

4
h2 sin2 j⇡h

2
� k2, j = 1, . . . , N, (3.9a)

and
�H
j =

4
H2 sin2 j⇡H

2
� k2, j = 1, . . . , n, (3.9b)

respectively, the action of the coarse-grid correction operator on these invariant sub-
spaces is given by

C
h
vh
j vh

j0

i
=
h
vh
j vh

j0

i
Cj , j = 1, . . . , n,

C vh
n+1 = vh

n+1,

where

Cj =

"
1 0
0 1

#
�
"

c2
j

�s2
j

#
1
�H
j

h
c2
j �s2

j

i "�h
j 0

0 �h
j0

#
=

2

64
1� c4

j

�h
j

�H
j

c2
js

2
j

�h
j0

�H
j

c2
js

2
j

�h
j

�H
j

1� s4
j

�h
j0

�H
j

3

75 .

(3.10)

3 More generally, it is true if transpose is replaced by adjoint and restriction is adjoint to interpolation,
where both adjoints are taken with respect to the same inner product.
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Proposition 3. The eigenvalues of the 2⇥ 2 blocks (3.10) representing the coarse-grid
correction operator are given by

L(Cj) =

(
1�

c4
j�

h
j + s4

j�
h
j0

�H
j

, 1

)
, j = 1, . . . , n. (3.11)

A set of corresponding eigenvectors is given by

w (1)
j =

2

4
c2
j

�s2
j

3

5 and w (2)
j =

2

4
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j�

h
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h
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3

5 =
4
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2

4
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�
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2
�2
⌘

c2
j
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2
�2
⌘

3

5 , (3.12)

respectively.

Proof. In view of (3.9a), (3.9b) and (3.3), the quantities appearing in (3.10) may be
written as

�h
j =

4
h2 s

2
j � k2, �h

j0 =
4
h2 c

2
j � k2, �H

j =
4
h2 s
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j � k2, j = 1, . . . , n.

The characteristic polynomial of Cj is then
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revealing the eigenvalues. The eigenvectors are easily verified by direct calculation.

Note that the second eigenvalue and the first eigenvector of each 2⇥ 2 block Cj are
independent of k.

3.1 The Laplacian

For k = 0 we observe

�h
j

�H
j

=
4s2

j

(2sjcj)2 =
1
c2
j

as well as
�h
j0

�H
j

=
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j

(2sjcj)2 =
1
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j

, j = 1, . . . , n,

(3.13)
and therefore directly from (3.10) we obtain
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24 O. G. Ernst and M. J. Gander

A matrix of the form X =

"
⇠ ⌘

⇠ ⌘

#
has eigenvalues and spectral norm given by

L(X ) = {0, ⇠ + ⌘}, (3.14a)

kX k = kXX>k1/2 =
p

⇠2 + ⌘2

�����

"
1 1
1 1

#�����

1/2

=
p

⇠2 + ⌘2 ·
p

2. (3.14b)

For Cj we thus obtain

L(Cj) = {0, s2
j + c2

j} = {0, 1}, kCjk =
q

2(s4
j + c4

j), j = 1, . . . , n.

From s2
j 2 [0, 1

2 ] for j = 1, . . . , n we obtain the bound

kCjk  max
0t 1

2

q
2[t2 + (1� t)2] =

p
2, j = 1, . . . , n.

By consequence, we also have L(C ) = {0, 1}, which reflects the fact that C is a
projection in case k = 0. This is true since the Galerkin condition (3.8) holds if Ah

and AH result from the centered finite difference discretizations of the 1D Laplacian
on the uniform meshes of widths h and H = 2h. Note that the Galerkin property is
lost for this discretization once k > 0.

What we observe in the Laplacian case is the usual division of labor of classical
multigrid methods. The coarse-grid correction has the task of eliminating the low-
frequency components of the error. In view of (3.12) for k = 0, a set of eigenvectors
of Cj associated with eigenvalues zero and one, i.e., with the null-space and range of
the coarse-grid correction, is

w (1)
j =

"
c2
j

�s2
j

#
and w (2)

j =

"
1
1

#
.

Note that these are Ah-orthogonal. For small values of the index j the complementary
eigenmodes vh

j and vh
j0 of Ah are very smooth and highly oscillatory, respectively.

Moreover, since in this case c2
j ⇡ 1, s2

j ⇡ 0, the eigenmode w(1)
j eliminated by the

coarse-grid correction is closely aligned with the low-frequency mode vh
j . This align-

ment becomes less as j increases.

3.2 The Helmholtz Operator

In the Helmholtz case k > 0 the eigenvalues of the coarse-grid correction operator are
given by (3.11). Elementary manipulations reveal that the non-unit eigenvalues of C
are

�j = �j(kh) =

(kh)2

2✓
kh

2sjcj

◆2

� 1
, j = 1, . . . , n.
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Figure 9. Eigenvalues of the coarse-grid operator with respect to a fine mesh with h =
1/32 for k = 0 (left) and k = 6.3⇡ (right).
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Figure 10. Eigenvalues of the coarse-grid operator with respect to a fine mesh with
h = 1/32 for k = 6.3⇡ using the modified wave number k̃ given in (3.15) (left) and
(3.16) (right) in the coarse-grid Helmholtz operator.

For a fixed value of kh > 0 this expression is seen to be a rational function of sjcj
with a simple pole whenever 2sjcj = kh. Since 2sjcj 2 (0, 1) for j 2 {1, . . . , n},
this pole occurs near one of the indices j whenever kh  1.

This is illustrated in Figure 9 for a fine mesh containing N = 31 interior points. The
left plot shows a stem plot of the eigenvalues of the 2⇥ 2 blocks Cj for the Laplacian,
which consists of ones and zeros. On the right of Figure 9 we see the analogous plot
for k = 6.3⇡. Note that the unit eigenvalues remain, but that the second eigenvalue of
each pair is no longer zero. In particular, mode number 13 is amplified by a factor of
nearly -4.
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Figure 11. Eigenvalues of the coarse-grid operator with respect to a fine mesh with
h = 1/32 for k = 6.3⇡ using the modified wave number k̃ given in (3.17) in the coarse-
grid Helmholtz operator.

Dispersion Correction

A simple device for obtaining a more effective coarse-grid correction for Helmholtz
operators results from taking into account the dispersion properties of the discretiza-
tion scheme. Dispersion analysis (cf. [13, 44]) for discretization schemes is concerned
with which propagating or standing waves solve a discrete homogeneous differential
equation on a uniform grid extending over full space compared to the underlying con-
tinuous problem. For the centered finite-difference discretization of the 1D Helmholtz
operator with constant k

L u ⇡ �uj�1 + 2uj � uj+1

h2 � k2uj ,

plane-wave solutions eikhxj of the discrete homogeneous Helmholtz equation possess
a discrete wave number kh characterized by

kh

k
=

1
kh

arccos
✓

1� k2h2

2

◆
> 1.

As a result, the discrete solution exhibits a phase lead with respect to the true solution,
and this phase lead grows with h. In the same way, coarse-grid approximations in a
multigrid hierarchy will be out of phase with fine-grid approximations. This suggests
‘slowing down’ the waves on coarse grids in order that the coarse-grid correction again
be in phase with the fine-grid approximation. For our example, this is achieved by
using a modified wave number k̃ in the coarse-grid Helmholtz operator defined by the
requirement

kH =
1
H

arccos
✓

1� k̃2H2

2

◆
= k, i.e. , k̃ =

r
2(1� cos(kH))

H2 . (3.15)
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Alternatively, one could adjust the coarse-grid correction by matching the coarse-grid
discrete wave number kH with the fine-grid discrete wave number kh, which is ob-
tained by choosing the modified wave number k̃ on the coarse grid to satisfy

k̃H = kh,

i.e.,
1
H

arccos
✓

1� k̃2H2

2

◆
=

1
h
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1� k2h2

2

◆
,

or

1� k̃2H2

2
= cos

✓
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h
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✓
1� k2h2

2

◆◆
.

Noting H
h = 2 and using the relation cos(2↵) = 2 cos2(↵)� 1 this becomes

1� k̃2H2

2
= 2

✓
1� k2h2

2

◆2

� 1,

implying

k̃ = k

r
1� k2h2

4
. (3.16)

Choosing a modified wave number according to (3.16) is also equivalent to avoiding a
possible ‘singularity’ in the term �h

j /�
H
j in (3.10) by forcing the vanishing of �H

j as a
continuous function of j to occur in the same location as for �h

j .
Figure 10 shows the eigenvalues of the coarse-grid correction operator depicted on

the right of Figure 9 with the modified wave number (3.15) (left) and (3.16) (right)
used on the coarse grid. The strong amplification of mode number 13 is seen to be
much less severe, all non-unit eigenvalues now being less than one in modulus.

A closer analysis of the spectrum of the coarse-grid correction operator (3.10) re-
veals how the wave number k̃ on the coarse grid can be chosen to stabilize the correc-
tion yet further. Denoting the non-unit eigenvalue of Cj in (3.10) again by �j , upon
changing the coarse-grid wave number from k to k̃ we obtain
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Setting ⌧j := s2
jc

2
j and noting that s4

j + c4
j = 1� 2⌧j , this becomes
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.
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We observe that the non-unit eigenvalue of Cj can be made constant for all j by
adjusting k̃ to cancel the numerator and denominator on the right, which occurs for

k̃ =
kq

1 + k2h2

2

. (3.17)

In this case the non-unit eigenvalue is

�j = �
k2h2

2
.

Such a dispersion analysis can be carried out for all standard discretization schemes,
and it is found that higher order schemes have much lower phase error (cf., e.g., [1]),
making them a favorable choice also from the point of view of multigrid solvers. In
higher dimensions higher order methods also possess nearly isotropic dispersion rela-
tions, a necessary requirement for (scalar) dispersion correction.

Eigenvalues and Singular Values

We compare the eigenvalues and singular values of the coarse grid correction operator
for the same problem as above with wave numbers k = 0 and k = 6.3⇡ on a mesh
with h = 1/32. For the positive wave number we compare the unmodified case as
well as modified wave numbers according to (3.16) and (3.17), respectively.

Figure 12 shows the eigenfunctions and eigenvalues sorted increasingly. As a de-
bugging measure, we computed these both by applying MATLAB’s and rou-
tines to the matrix representing the complete coarse grid correction operator as well
as to each 2 ⇥ 2 block or, in case of the eigenvalues, using (3.11). We observe that
modifying the wave number according to (3.17) almost perfectly restores the zero-one
spectrum of the coarse grid correction for the 1D Laplacian. However, this occurs at
the price of a large singular value, leading to a large norm for the operator.

Figure 13 displayes the same eigen- and singular values ordered according to the
invariant subspaces. The large singular value is seen to lie in the subspace with index
j = 6.

4 Two-Grid Iteration
The two-grid iteration combines one or more applications of the smoothing itera-
tion with a coarse-grid correction. If ⌫1 and ⌫2 denote the number of pre- and post-
smoothing steps carried out before and after the coarse-grid correction, the error prop-
agation operator of the resulting two-grid operator is obtained as

T = S⌫2CS⌫1 .

Choosing the damped Jacobi iteration with relaxation factor ! as the smoothing opera-
tor, the results on the spectral analysis of the damped Jacobi smoother and coarse-grid
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Figure 12. Eigenvalues (left) and singular values (right) of the coarse grid correction
operator in the cases k = 0 (row 1) and, for wave number k = 6.3⇡, the unmodified
wave number (row 2), modified wave number according to (3.16) (row 3) and modified
wave number according to (3.17) (row 4).
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Figure 13. Eigenvalues and singular values of the coarse grid correction operator ar-
ranged by invariant two and one-dimensional subspaces in the cases k = 0 (row 1) and,
for wave number k = 6.3⇡, the unmodified wave number (row 2), modified wave number
according to (3.16) (row 3) and modified wave number according to (3.17) (row 4).



Multigrid Methods for Helmholtz Problems 31

correction allow us to decompose the analysis of the two-grid operator into the sub-
spaces

span{v1, vN}, span{v2, vN�1}, . . . , span{vn, vn+2}, span{vn+1}

of n pairs of complementary modes and the remaining ‘middle mode’ vn+1. The
action of T on these one- and two-dimensional subspaces is represented by the block
diagonal matrix

T = diag(T1, . . . ,Tn,Tn+1)

with

Tj =

"
�j 0
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"
�j 0
0 �j0

#⌫1

j = 1, . . . , n, (4.1)

and
Tn+1 = (1� !)⌫1+⌫2 ,

the latter resulting from �n+1 = 1� ! (cf. (2.8)).
As a result, in the spectral basis {vhj }Nj=1 of the discrete 1D Helmholtz equation the

complete two-grid operator decouples into diagonal 2⇥2 blocks in addition to a trivial
block for the middle mode vhn+1. We can therefore reduce the following analysis to the
action of the two-grid iteration on the associated two-dimensional subspaces.

4.1 The Laplacian

We consider the case k = 0, in which, due to (3.13), the 2⇥ 2 blocks in (4.1) simplify
to

Tj =

"
�j 0
0 �j0

#⌫2
"
s2
j c2

j
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j c2

j

#"
�j 0
0 �j0
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with �j = 1� 2!s2
j , �j0 = 1� 2!c2

j .

A further simplification, considered in [33, Section 2.2 ff.], results from the (subopti-
mal) choice of ! = 1

2 for the smoothing parameter as well as ⌫1 = ⌫, ⌫2 = 0, in which
case

Tj =
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Using (3.14a) we thus obtain for the spectral radius

⇢(Tj) = s2
jc

2⌫
j + c2

js
2⌫
j , j = 1, . . . , n, ⇢(Tn+1) = 2�⌫ .
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Figure 14. Spectral radius and spectral norm of the two-grid operator for the 1D model
problem with k = 0 using ⌫ steps of pre-smoothing with optimal relaxation parameter
! = 2/3 (solid lines) and ! = 1/2 (dashed lines).

Noting that c2
j = 1� s2

j and s2
j 2 [0, 1

2 ] for all j, we obtain the upper bound
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for j = 1, . . . , n. Since R⌫(
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�⌫ this bound holds also for Tn+1.

A common upper bound for the spectral norms kTjk is obtained in an analogous
way using (3.14b) as
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Choosing the optimal smoothing parameter ! = 2
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Proceeding as above, this results in the upper bound
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⌫\⇢(T ) k = 0 k = 1.3⇡ k = 4.3⇡ k = 6.3⇡
1 0.3333 0.3364 0.4093 0.8857
2 0.1111 0.1170 0.2391 1.8530
3 0.0787 0.0779 0.2623 1.6455
4 0.0617 0.0613 0.2481 1.6349
5 0.0501 0.0493 0.2561 1.5832
10 0.0263 0.0256 0.2668 1.3797

Table 1. Spectral radius of the two-grid operator for the Helmholtz equation with h =
1/32 for varying wave number k and (pre-) smoothing step number ⌫.

for all j = 1, . . . , n and, since R̃⌫(
1
2) =

� 1
3
�⌫ , also for Tn+1. For the spectral norm

we obtain the bound

kTjk  Ñ⌫ := max
0t 1

2

Ñ⌫(t), Ñ⌫(t) :=

vuut2
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t2
✓

3� 4t
3

◆2⌫

+ (1� t)2
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4t� 1
3

◆2⌫
#
,

which holds for all j = 1 . . . , n+ 1 due to Ñ⌫(
1
2) =

� 1
3
�⌫ .

We show in Figure 14 the spectral radii and 2-norms of the two-grid operator as
a function of the number of smoothing steps for the case of Laplace’s equation with
both the optimal damping ! = 2/3 and the suboptimal damping ! = 1/2. Clearly, it
is worthwhile to use the optimal damping parameter, especially when the number of
smoothing steps is small.

4.2 The Helmholtz Operator

Table 1 gives the spectral radius of the two-grid operator for the Helmholtz equation
with ⌫ steps of pre-smoothing using damped Jacobi for a range of wave numbers k. We
observe that the iteration is divergent for k = 6⇡, which corresponds to a resolution
of roughly 10 points per wavelength. Moreover, while additional smoothing steps
resulted in a faster convergence rate for k close to zero, this is no longer the case for
higher wave numbers.

In order to improve the situation, we note that we have two parameters, the damp-
ing parameter ! from the smoothing analysis and the shifted wave number k̃ we can
choose in the coarse grid correction. We thus first investigate numerically whether
a better choice is possible for these parameters. This choice needs to guarantee that
each block Tj in (4.1) is a contraction, i.e. its eigenvalues must be smaller than one.
If, in addition, the eigenvalues are distinct, then each block Tj is diagonalizable and
the convergence rate determined by the eigenvalues is not only asymptotic, but visible
right from the start, up to a constant given by the condition of the eigenvectors. After
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⌫\⇢(T ) k = 1.3⇡ k = 4.3⇡ k = 6.3⇡
1 0.3302 (4.4660,0.6632) 0.3605 (13.6088,0.6322) 0.4046 (19.1171,0.5875)
2 0.1129 (4.1825,0.6637) 0.1358 (13.2518,0.6294) 0.1602 (18.7491,0.5959)
3 0.0708 (4.1382,0.7040) 0.0738 (13.2373,0.6355) 0.1184 (18.9766,0.5076)
4 0.0590 (4.1309,0.7030) 0.0544 (13.2857,0.6544) 0.1207 (18.9835,0.4098)
5 0.0394 (4.1093,0.7583) 0.0475 (13.2537,0.6135) 0.1239 (18.9881,0.3552)
10 0.0226 (4.0963,0.7797) 0.0477 (13.2570,0.3243) 0.1342 (18.9773,0.2036)

Table 2. Spectral radius of the two-grid operator for the Helmholtz equation with
h = 1/32 for varying wave number k and (pre-) smoothing step number ⌫, using op-
timized coarse wave number and relaxation parameter (k̃,!) shown in parenthesis. For
comparison, the original values are k = 1.3⇡ = 4.0841 with ! = 2�h2k2

3�h2k2 = 0.6648,
k = 4.3⇡ = 13.5088 with ! = 2�h2k2

3�h2k2 = 0.6456, and k = 6.3⇡ = 20.1062 with
! = 2�h2k2

3�h2k2 = 0.6179.

some simplification, we find for the eigenvalues µ1,2(Tj) the formula

µ1,2(Tj) =
�⌫
j (�

H
j � c4

j�
h
j ) + �⌫

j0(�
H
j � s4

j�
h
j0)±

p
D

2�H
j

,

D = �2⌫
j (�H

j � c4
j�

h
j )

2 + �2⌫
j0 (�

H
j � s4

j�
h
j0)

2

+ 2�⌫
j �

⌫
j0(�

H
j s4

j�
h
j0 + �H

j c4
j�

h
j + �h

j0�
h
j c

4
js

4
j � (�H

j )2),

(4.2)

where we set ⌫ := ⌫1 + ⌫2, since only the sum appears in the eigenvalues. We now
use the free parameters ! and k̃ to minimize numerically the maximum of |µ1,2| over
all j = 1, 2, . . . , n in order to test if this leads to a working algorithm. Doing so,
we obtain the results shown in Table 2. We see that it is indeed possible to obtain a
converging multigrid algorithm in 1D using this approach. But what happens at higher
wave numbers k?

In order to investigate this, we fix the mesh size to h = 1/32, and apply our two-grid
analysis for increasing wave number k, reflecting a typical realistic situation where, in
a multigrid algorithm for a problem with large wave number k, one would reach such
a situation after several coarsening steps. We must, however, be careful not to generate
singular problems due to the Dirichlet boundary condition assumption in our analysis.
To avoid this, we choose the particular wave number sequence

kj =

s
2
h2

✓
sin2 (j � 1)⇡h

2
+ sin2 j⇡h

2

◆
, j = 1, 2, . . . , N, (4.3)

placing k2
j exactly between two Dirichlet eigenvalues. This yields N Helmholtz prob-

lems, and we apply to each of these the two-grid analysis. In Figure 15, we show as a
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function of kj what spectral radius one obtains with the various choices of components
in the two-grid method.

The first curve corresponds to the classical two-grid method without modifying the
wave number, and using ten smoothing steps (which would correspond to five pre- and
five post-smoothing steps) of the one-step Jacobi smoother with the relaxation param-
eter appropriate for the Helmholtz equation given in (2.9). We see that this method
diverges as soon as the wave number k is larger than about 18, which corresponds to
about 2⇡/(kh) ⇡ 11 points per wavelength, and is consistent with the observation in
Table 1.

The second curve shows the spectral radius of the classical two-grid method with
modified wave number according to the theoretical shift proposed in (3.16). We see
that the two-grid algorithm is already performing somewhat better, a contraction now
being obtained up to wave number k = 23, corresponding to 2⇡/(kh) ⇡ 9 points per
wavelength.

Numerically optimizing the shift by minimizing the spectral radius gives a slightly
better contraction at this wave number, but does not lead to a convergent method at
higher wave numbers, as confirmed by the third, red curve. One needs to modify the
smoother.

The next three curves result when using the two-step Jacobi smoother with the num-
ber of smoothing steps given in (2.15) from Remark 2.2 and (2.18) from Remark 2.3,
requiring a reduction by a factor of 10 in the high-frequency part of the spectrum. In
the fourth curve we see that, without the shift, it does not help to use the convergent
two step Jacobi smoother: as for the classical one-step Jacobi smoother, the two-grid
method diverges as soon as one has fewer than about 11 points per wavelength res-
olution. This changes fundamentally, however, when one also uses the shifted wave
number k according to (3.16): now the two-grid algorithm is convergent for all wave
numbers up to about k = 40, which corresponds to about 2⇡/(kh) ⇡ 5 points per
wavelength. Afterward, the shift becomes counter productive, and the shifted two grid
algorithm diverges. However, in that regime, the unshifted algorithm does converge,
and the numerical optimization of the shift indicates that one should indeed not shift as
soon as the resolution has become less than about 5 points per wavelength. This does
also make sense intuitively since, at that resolution, the corresponding coarse problem
has now become (negative) definite, and is no longer a wave problem.

We show now in Figure 16 the various shifts that were used in these experiments.
We see that the theoretical shifting formula (3.16) is very good for the two-grid method
with the two-step Jacobi smoother, as long as the wave number is smaller than k ⇡ 40,
which corresponds to 5 points per wave length. For higher values of k the theoretical
shift becomes meaningless, and the unshifted problem should be used.

We finally show in Figure 17 the number of smoothing steps that were used for the
spectral radii shown in Figure 15. The graph corresponds to the theoretically required
smoothing steps (2.15) and (2.18) to obtain a reduction by a factor of 10 in the high-
frequency part of the spectrum.
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Figure 15. Spectral radii of the two grid algorithm using various components, for a fixed
mesh size h, and increasing wave number k.
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Figure 16. Shifts used in the two grid algorithm of Figure 15.
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Figure 17. Number of smoothing steps used in the two-step Jacobi smoother for the
two-grid algorithm of Figure 15.

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

10

k

2 
gr

id
 o

pe
ra

to
r c

on
tra

ct
io

n 
fa

ct
or

using 10 1step and specific number of 2step Jacobi

 

 
1step original k
1step shifted k
1step optimized k
2step original k
2step shifted k
2step optimized k

Figure 18. Contraction factors of the two grid algorithm using various components, for a
fixed mesh size h, and increasing wave number k, now using the O(k2) smoothing steps
already a bit before the resonance level.
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Figure 19. Number of smoothing steps used in the two step Jacobi smoother for the two
grid algorithm of Figure 18.

We see that the number of smoothing steps is moderate for values of the wave num-
ber less that about 40, i.e., 5 points per wave length, but then increases dramatically to
the order of about 1000, on the level where k gets close to or into the resonance level.
This is, however, not a surprise if one looks at the smoothing curve in Figure 6: clearly
the smoother has difficulties to smooth close to and in the resonance level.

When taking a final look at Figure 15 again, we see that the shifted two-grid method
with two-step Jacobi smoother seems to have difficulties to contract around k = 38�
44. This is, however, only due to our estimate in Remark 2.2 for the smoothing steps
needed in the two-step Jacobi smoother, which was based on the smoother alone. For
the case k just above 40, this estimate leads to 71 smoothing steps, which is not quite
enough, since the shift for the coarse problem starts to lose its effectiveness. We show
in Figure 18 the same sequence of experiments again, but now using the estimate for
the number of smoothing steps in the resonance level already for kh >

p
2 � 0.3,

to overcome the difficulty of the coarse grid correction just before the shift becomes
completely ineffective. The value 0.3 is just chosen from looking at these numerical
experiments, an analysis would need to take into account the estimates for µ1,2 given in
(4.2). Using more smoothing steps a bit before the resonance level leads to the results
shown in Figure 18. The precise number of steps used is shown in Figure 19.

We see that it is indeed possible with this strategy to obtain a uniformly convergent
two-grid algorithm for all possible values of k with the mesh resolution h = 1/32.

We show in Figures 20 and 21 the same type of experiment, but now for a finer
mesh resolution h = 1/128. In Figure 21, we see that in the range of k between about
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Figure 20. Contraction factors of the two grid algorithm using various components, for a
fixed mesh size h = 1/128, and increasing wave number k.
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Figure 21. Shifts used in the two grid algorithm of Figure 20.
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Figure 22. Contraction factors of the two grid algorithm using various components, for a
fixed mesh size h = 1/512, and increasing wave number k.

130 and 180, both the shifted and unshifted coarse problems function, there is a zone
of overlap, which is very reassuring.

We finally show in Figure 22 the case of h = 1/512. From these experiments, we
can see that a reasonable strategy for a multigrid algorithm for the Helmholtz equa-
tion in 1D is to simply use a classical one-step Jacobi smoother and a shifted coarse
problem, as long as the wave number and mesh size satisfy hk < 0.5 for the current
level mesh size h, which means we have about 13 points per wave length or more. For
0.5  kh < 1.25, one has to switch to the two-step Jacobi smoother, and use a shifted
coarse problem, and as soon as kh � 1.25, one should not use a shifted coarse problem
any more, and needs to use O(k2) smoothing steps of the two-step Jacobi smoother,
or a more effective smoothing method based on Chebyshev polynomials or a Krylov
method.

5 Numerical Examples
In this section we describe some numerical experiments with two model problems.
The first (cf. (2.2)) is the Helmholtz equation

�u00 � k2u = f, on (0, 1)

u(0) = u(1) = 0,
(5.1)

with constant wave number k > 0, homogeneous Dirichlet boundary conditions and a
source term f . This may be viewed as a cavity problem in one dimension in view of
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the fact that the negative 1D Dirichlet-Laplacian has positive eigenvalues leading to a
singular operator for the discrete values

k = j⇡, j 2 N,

the so-called resonance values of the wave number k. Problem (5.1) is well-posed
for all 0 < k 6= j⇡, and discretizations thereof are well-behaved for sufficiently fine
resolution.

As a second 1D model problem we replace the Dirichlet condition at x = 1 with the
Sommerfeld radiation condition, which in one dimension is a simple local condition
of Robin type:

�u00 � k2u = f on (0, 1),

u(0) = 0,

u0(1)� ik u(1) = 0.

(5.2)

For the constant source function f ⌘ 1 we obtain the exact solution

u(x) =
1

2k2

⇣
(eik � 2)eikx � eike�ikx � 2

⌘

=
�1� cos(kx)� sin k sin(kx)� i(1� cos k) sin(kx)

k2 .

The same example with f ⌘ �1 was used in [36] but the expression given there
contains a sign error.

We apply the modifications of the basic multigrid V-cycle as developed in the pre-
vious sections to the two model problems using the same uniform second-order finite
difference discretization considered before. In all cases, the coarse-grid operators were
formed not by Galerkin projection but by using the same finite difference scheme on
the coarse grid as on the fine grid. Specifically, we use two-step Jacobi smoothing
with the parameters chosen depending on the relation of the discrete eigenvalues of
the Dirichlet problem as developed in Section 2.3. In all the estimates of the required
number of smoothing steps we set the parameter ✏ indicating the desired reduction
factor to 0.1. Moreover, we apply the modified wave number as given in (3.16) on the
coarse levels. To illustrate the behavior of the modified multigrid scheme we apply it
to the model problems over the discrete range of wave numbers given in (4.3).

5.1 Two-Grid Experiments

We begin with two-grid iterations for the model problem (5.1) with a coarse-grid cor-
rection employing a modified wave number on the coarse grid according to (3.16)
combined with two-step Jacobi smoothing with the smoothing parameters chosen ac-
cording to the location of the eigenvalues of the discrete Dirichlet-Helmholtz operator
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Figure 23. Measured error reduction factor for a two-grid method (left) and total number
of smoothing steps (right) using two-step Jacobi smoothing and modified wave number
for problem (5.1) with mesh width h = 1/32 (top) and h = 1/64 (bottom) for the
sequence (4.3) of wave numbers k.

as described in Section 2.3. Following the observations made in Section 4, we employ
a modified wave number on all coarse grids which still have a resolution of at least
�/h � 5. Figure 23 shows the corresponding measured reduction factors and total
number of smoothing iterations. We note the region just below kh =

p
2 where a

reduction factor much larger than the desired ✏ = 0.1 results. As discussed in Sec-
tion 4.2, this is due to the weakening of the effect of shifting the wave number on the
coarse grid, which was not taken into account when estimating the number of smooth-
ing steps required based on the smoother alone. When using the remedy proposed
in Section 4.2, which means we switch for the estimate of the number of smoothing
steps in the two-step Jacobi smoother from the first to the second case already when
kh �

p
2� 0.3, leads to the results shown in Figure 24. We observe that the two grid

cycle has now a uniform error reduction factor of about 0.2.
We also notice, however, that the number of smoothing steps required by the esti-

mate (2.18) on the resonance level is excessively high. We therefore replace the 2-step
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Figure 24. Reduction factor of the two-grid method using two-step Jacobi with early tran-
sition to resonance level number of smoothing steps (2.18) and modified wave number
for problem (5.1) with mesh width h = 1/32 (top) and h = 1/64 (bottom).

Jacobi smoother now by GMRES whenever we would have used the estimate (2.18)
for the number of smoothing steps, i.e., on the resonance level and slightly before,p

2 � 0.3 < kh < 2, and we use ⌫ = 3k
2⇡ as the number of GMRES smoothing steps,

which is linear in k. This leads to the reduction factors and total smoothing counts
shown in Figure 25 for h = 1/32 and h = 1/64. We observe again a uniformly small
reduction factor across all wave numbers and a much smaller number of smoothing
steps.

5.2 Multi-grid Experiments, Complexity

We next show multigrid experiments, beginning with a complexity estimate. For the
Laplacian, if we perform a fixed number ⌫ of smoothing steps, and the smoother has a
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Figure 25. Reduction factor of the two-grid method using two-step Jacobi with early tran-
sition to resonance level with Krylov smoothing and modified wave number for problem
(5.1) with mesh width h = 1/32 (top) and h = 1/64 (bottom).

cost per step linear in 1
h , e.g., CJ

h , then the cost of one V-cycle is, for h = 2�m,

cD := ⌫
CJ

h
+ ⌫

CJ

2h
+ . . .+ ⌫CJ = ⌫

CJ

h

mX

j=0

1
2j

= ⌫
CJ

h
(2� 1

2m
)

= ⌫
CJ

h
(2� h) < ⌫

2CJ

h
.

In the Helmholtz case, we have seen that the number of smoothing steps becomes large
on one particular level, the resonance level, where O(k2) two-step Jacobi smoothing
steps, or O(k) Krylov smoothing steps are necessary. On the remaining levels the
number of smoothing steps remains again bounded by a number ⌫ = O(1). The cost
of our multigrid algorithm therefore contains a component like for the Laplacian, cD,
and the cost of the resonance level. If we assume that, to avoid the pollution effect, we
have chosen a fine-level resolution satisfying k3h2 = C, then we have in the multigrid
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hierarchy, before reaching the resonance level `, further levels, where ` satisfies

k(2`h) <
p

2, 2` ⇡
p

2
kh

, (5.3)

see (2.12). The size of the system on the resonance level is then 1
2`+1h

= k
23/2 , where

we used estimate (5.3). On this level, we need either O(k2) two-step Jacobi smoothing
steps, which leads to a cost of

cJ = k2CJ
k

2
3
2
=

CJk3

2
3
2

=
CJC

2
3
2h2

,

where we used k3h2 = C, or O(k) Krylov smoothing steps, which, assuming that also
the cost of Krylov steps is linear in the size of the system with constant of proportion-
ality CK , leads to a cost

cK = kCk
k

2
3
2
=

CKk2

2
3
2

=
CKC

2
3
2h

4
3
.

The overall cost of this multigrid algorithm is therefore, for one V-cycle, bounded by

ctotJ < cD + cJ < ⌫
2CJ

h
+

CJC

2
3
2h2

(5.4)

in the case of the 2-step Jacobi smoother on the resonance level, and

ctotK < cD + cK < ⌫
2CJ

h
+

CKC

2
3
2h

4
3

(5.5)

in the case where on one level, the resonance level, one uses a Krylov smoother with
O(k) steps, and otherwise 2-step Jacobi. We see that, compared to the case of the
Laplacian, each V-cycle has more than linear complexity with respect to the dimen-
sion of the finest system, 1/h: with Jacobi on the resonance level, one pays O(h�2) to
have a fixed iteration number independent of the mesh size h, and hence k, and with
Krylov smoothing on the resonance level one pays O(h�4/3) per V-cycle to have a
fixed iteration number independent of h and k. This latter result seems very much ac-
ceptable, however, for the difficult case of the Helmholtz equation: one pays O(h�4/3)
instead of O(h�1) per V-cycle, for iteration numbers independent of h and k.

We now show numerical experiments for multigrid V-cycles over six levels applied
to the Helmholtz equation using the modifications described in this chapter. We start
by showing error reduction rates in Figure 26. On the left, we see that, for the problem
(5.1) with pure Dirichlet boundary conditions, for which our analysis of the two-grid
cycle was performed, the addition of further grid levels still gives uniform error reduc-
tion for all wave numbers k, by a factor bounded by about 0.3.
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Figure 26. V-cycle with 6 levels using 2-step Jacobi smoothing and Krylov smoothing
on the resonance level and modified wave number for problem (5.1) (left) and problem
(5.2) (right) with mesh width h = 1/256.

On the right in Figure 26, we also show a numerical experiment for a situation not
covered by our analysis, namely problem (5.2) which features a Sommerfeld radia-
tion condition at one boundary. We have observed that the two-step Jacobi smoother,
whose parameters were tuned to the Dirichlet case in Section 2.3, are not optimal for
this case and that the modified wave number had to be restricted to grids for which
kh < 2.3, a somewhat better resolution than �/h = 5, to obtain a convergent scheme.
Extending the analysis to this situation is more difficult as the discrete operator is no
longer normal and, therefore, pure eigenvalue analysis of the smoother is not sufficient.
Nevertheless, using the shift of the wavenumber and smoothing techniques developed
for the Dirichlet problem, we onetheless obtain a convergent multigrid V-cycle across
the full range of wave numbers. Combining this type of solver with an (outer) Krylov
acceleration could lead to an effective solver.

We finally show a sequence of realistic numerical experiments, starting on a fine grid
with enough resolution to give an accurate discrete approximation, which means to use
a scaling of k and h that bounds the pollution error of our centered finite-difference
discretization scheme. As shown in [35, 36, 3], this requires that k3h2 remain bounded
as the wave number is increased and the fine mesh refined.

We begin with a mesh width of h = 1/64 and k = 40, yielding a resolution of
about 10 points per wavelength. We then choose the wave numbers on the sequence
of successively halved meshes with h = 1/128, . . . , h = 1/2048 so that k3h2 has
about the same value for all problems. We show measured reduction rates for two
variants of our multigrid method employing V-cycles containing two through six grids
levels for the 1D model problem (5.1) in Table 3 and the Sommerfeld problem (5.2)
in Table 4. The first variant employs O(k2) two-step Jacobi smoothing steps and the
second O(k) Krylov smoothing steps on the resonance level using GMRES. Spanning
a range of wave numbers k from 63.74 to 403.04, which corresponds to roughly 12
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h 1/128 1/256 1/512 1/1024 1/2048
k 63.74 101.43 161.12 255.38 403.04

two-step Jacobi smoothing on resonance level
2-grid 0.0891 0.1147 0.1111 0.1605 0.1448
3-grid 0.1177 0.1216 0.1291 0.1686 0.1579
4-grid 0.1091 0.1291 0.3157 0.2146 0.1604
5-grid 0.1091 0.1291 0.3157 0.1649 0.1679
6-grid 0.1091 0.1291 0.3157 0.1649 0.1679

GMRES smoothing on resonance level
2-grid 0.0891 0.1147 0.1111 0.1605 0.1448
3-grid 0.1177 0.1216 0.1291 0.1686 0.1580
4-grid 0.1107 0.1187 0.3157 0.2146 0.1604
5-grid 0.1107 0.1195 0.3157 0.2086 0.1686
6-grid 0.1107 0.1195 0.3157 0.2086 0.1686

Table 3. Measured reduction rates for two multigrid variants on a sequence of problems
of type (5.1) with k2h3 held constant to bound pollution error. The smoothing on the res-
onance level employs O(k2) steps for two-step Jacobi and O(k) for GMRES smoothing.

and 64 full waves across the domain W = (0, 1), respectively, we obtain in the case of
Dirichlet boundary conditions reduction rates around 0.1 for the two-grid method to at
worst 0.32 for the six-grid method. For Problem (5.2) with the Sommerfeld boundary
condition, we obtain for the two-grid method again reduction rates of about 0.1, and
at worst 0.62 for the six-grid method. In all our results, while the error reduction rates
can deteriorate a bit when the resonance level becomes part of the multigrid hierarchy,
they become stable as one increases the number of levels further, which shows that
the methods are now clearly independent of the number of levels used, crossing the
resonance level in a stable fashion. We note that we have obtained even somewhat
better rates when standard Jacobi smoothing is used in place of our two-step Jacobi
smoother on sufficiently fine grids.

6 Conclusions
We have explained in this chapter in detail for a 1D model problem why one cannot
simply use a standard multigrid method to solve discretized Helmholtz problems. Both
the smoother and the coarse grid correction will fail in that case. Standard smoothers
amplify low frequency error components, and are thus not stable, a fact that is well
known. The coarse grid correction fails because of the incorrect dispersion relation
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h 1/128 1/256 1/512 1/1024 1/2048
k 63.74 101.43 161.12 255.38 403.04

two-step Jacobi smoothing on resonance level
2-grid 0.0936 0.1249 0.1442 0.1656 0.1618
3-grid 0.2884 0.2187 0.1794 0.1899 0.1916
4-grid 0.2864 0.3926 0.6222 0.2714 0.2370
5-grid 0.2864 0.3963 0.6222 0.2761 0.4117
6-grid 0.2864 0.3963 0.6222 0.2761 0.4117

GMRES smoothing on resonance level
2-grid 0.0936 0.1249 0.1442 0.1656 0.1618
3-grid 0.2884 0.2187 0.1794 0.1899 0.1916
4-grid 0.3077 0.2837 0.6222 0.2714 0.2370
5-grid 0.3077 0.2837 0.6222 0.2838 0.2893
6-grid 0.3077 0.2838 0.6222 0.2838 0.2893

Table 4. Measured reduction rates for two multigrid variants on a sequence of problems
of type (5.2) with k2h3 held constant to bound pollution error. The smoothing on the res-
onance level employs O(k2) steps for two-step Jacobi and O(k) for GMRES smoothing.

(phase error) on coarser and coarser grids, a fact that is less well known.
We then designed a two-step Jacobi smoother which is convergent for all levels, and

this required scheduling specific numbers of smoothing steps depending on the wave
number k and the mesh size h on the current level, in order to obtain uniform error
reduction in the high frequency modes. On one particular level, which we call the res-
onance level, an exceedingly high number of smoothing steps is needed, namely O(k2)
steps, if one insists on uniform error reduction in the high-frequency components on
that level. A better approach is to choose a more suitable higher degree polynomial
smoother on the resonance level, and we used GMRES in this case, and then “only”
O(k) smoothing steps are needed for a uniform error reduction in the high-frequency
components.

In order to alleviate the dispersion relation problem on coarser meshes, we intro-
duced a shift in the wave number, adapted to the mesh size h of the level. In one
spatial dimension, we can obtain uniform error reduction with the two and multigrid
cycle using this technique, and we showed that the overall complexity of our multi-
grid algorithm is O(h�4/3) when we use on the resonance level a Krylov smoother,
compared to the optimal complexity of multigrid for the Laplacian alone, which is
O(h�1).

We illustrated our results with numerical experiments in one spatial dimension,
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which illustrates well that a fixed number of iterations suffices to solve Helmholtz
equations in one dimension with this adapted multigrid method, still only using stan-
dard, but adapted components, independently of the wave number k and the mesh size
h.

In higher dimensions, our smoothing analysis still applies, and the two-step Jacobi
smoother will work well, as will the Krylov smoother on the resonance level. A perfect
dispersion relation correction, however, will not be possible any more with only a shift
of the wave number on coarser and coarser levels, since the dispersion relation is now a
curve in two dimensions, or a surface in three dimensions. We have, however, observed
that higher order discretization schemes lead to nearly spherical dispersion surfaces.
We are currently analyzing how much a scalar dispersion correction can still help in
higher dimension; these results will appear in a future publication.
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