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Abstract In contrast to the positive definite Helmholtz equation, the deceivingly
similar looking indefinite Helmholtz equation is difficult to solve using classical
iterative methods. Simply using a Krylov method is much less effective, especially
when the wave number in the Helmholtz operator becomes large, and also algebraic
preconditioners such as incomplete LU factorizations do not remedy the situation.
Even more powerful preconditioners such as classical domain decomposition and
multigrid methods fail to lead to a convergent method, and often behave differently
from their usual behavior for positive definite problems. For example increasing the
overlap in a classical Schwarz method degrades its performance, as does increasing
the number of smoothing steps in multigrid. The purpose of this review paper is to
explain why classical iterative methods fail to be effective for Helmholtz problems,
and to show different avenues that have been taken to address this difficulty.

1 Introduction

We consider in this paper the iterative solution of linear systems of equations arising
from the discretization of the indefinite Helmholtz equation,

L u WD !.!C k2/u D f; (1)
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with suitable boundary conditions yielding a well-posed problem. For k > 0
solutions of the Helmholtz equation, also known as the reduced wave equation,
describe the variation in space of linear propagating waves with wave number k.
The performance of standard iterative methods is much worse for such problems
than for the deceivingly similar looking equation

! .! ! "/u D f; " > 0; (2)

which describes stationary reaction-diffusion phenomena but is often also called
Helmholtz equation in certain communities. For example in meteorology, the early
seminal papers [51, 59] led an entire community to call equations of the form
(2) Helmholtz equations, see for example [14]. Even standard texts in applied
mathematics now sometimes use the term Helmholtz equation for both (1) and
(2), see for example [69]. The subject of this paper is exclusively the indefinite
Helmholtz equation (1), which is much harder to solve with classical iterative
methods than equation (2), see also the recent review [20].

Discretizations of the indefinite Helmholtz equation (1) using, e.g., finite dif-
ferences or a finite element or spectral element method and appropriate boundary
conditions result in a linear system of equations

Au D f; (3)

which, for k sufficiently large, possesses an indefinite coefficient matrix A.
Often an approximation of the Sommerfeld radiation condition, which in d

space dimensions reads @r u ! iku D o.r.1!d/=2/ as the radial variable r tends
to infinity, is imposed on part of the boundary, specifying that wave motion
should be outgoing along physically open boundaries. The Sommerfeld condition
prescribes the asymptotic behavior of the solution, and its representation on finite
boundaries leads to nonlocal operators. For this reason localized approximations of
the Sommerfeld condition are used, the simplest of which is the Robin condition
@nu! iku D 0. As a result, the linear system (3) has a complex-symmetric, but non-
Hermitian coefficient matrix as well as a complex-valued solution. The iterative
solution of the discrete Helmholtz problem (3) is difficult, even for constant wave
number k, and we will illustrate this in the first part of this paper, for Krylov
methods, preconditioned Krylov methods, domain decomposition methods and
multigrid. We then try to explain where these difficulties come from, and show what
types of remedies have been developed over the last two decades in the literature.
We will conclude the paper with some more recent ideas.
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2 Problems of Classical Iterative Methods

2.1 Krylov Subspace Methods

Krylov subspace methods seek an approximate solution of the linear system (3) in
the Krylov space

Km.A; f/ D spanff; Af; A2f; : : : ; Am!1fg D spanfq0; q1; q2; : : : ; qm!1g; (4)

where qj denotes the j th Arnoldi vector of Km, i.e. the vectors obtained by
orthonormalization of the vectors f, Af, A2f, : : : defining the Krylov space. We have
made the common choice of a zero initial guess for the solution, as is recommended
in the absence of any additional information, see for example [53]. We show in Fig. 1
how the wave number k fundamentally influences the solution of the Helmholtz
equation. We have set homogeneous Dirichlet conditions on all boundaries, except
on the left, where the Robin condition @nu ! iku D 0 was imposed, and we used a
point source in the upper right corner, i.e., a Dirac delta distribution concentrated at
this point, as the source term. In the case of Laplace’s equation (k D 0) the solution
is large only near the point source in the corner, whereas for k D 25, the solution
is large throughout the domain. The Krylov space constructed in (4), however, is
very similar for both problems: due to the local connectivity (we used a five-point
finite difference discretization for the Laplacian), the vector f is zero everywhere,
except for the grid point associated with the upper right corner point, and thus the
Arnoldi vector q0 is just a canonical basis vector .1; 0; : : : ; 0/T . The next vector
in the Krylov space, Af, is then non-zero only for the points connected with the
first point, and the corresponding Arnoldi vector q1 will have only two non-zero
entries, and so on. In the case of Laplace’s equation we see that the first Arnoldi
vectors are precisely non-zero where the solution is large, and thus it can be well
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Fig. 1 Solution of Laplace’s equation on the left, with a point source on the boundary, and on the
right the solution of the Helmholtz equation, with the same boundary conditions
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Fig. 2 Evolution of the residual for GMRES, on the left for the case of Laplace’s equation, k D 0,
and on the right for the Helmholtz equation, k D 25

approximated in the Krylov space. By contrast, in the indefinite Helmholtz case,
where the solution is of the same size throughout the domain, these vectors do not
have an appropriate support to approximate the solution. We show in Fig. 2 how
this influences the convergence of GMRES. While the residual decreases well in the
Laplace case over the first 2 " n iterations, where n is the number of grid points
in one direction, convergence stagnates in the Helmholtz case. For a more precise
quantitative analysis of this phenomenon, see [36]. Similar effects are also observed
in the advection dominated case of advection diffusion equations, see [24, 53]. It
is therefore important to have a preconditioner, a Krylov method alone is not an
effective iterative solver.

2.2 Algebraic Preconditioners Based on Factorization

The idea of preconditioning is as follows: instead of solving the original discretized
system Au D f, we solve the preconditioned system

M !1Au DM !1f; (5)

where M is the so-called preconditioner. Preconditioners often arise from a
stationary iterative method

M ukC1 D N uk C f (6)

derived from a matrix splitting A D M ! N with M nonsingular. It is well
known that this method converges asymptotically rapidly, if the spectral radius of
the iteration matrix M !1N is small. This implies that the preconditioned matrix
in (5),

M !1A D M !1.M !N / D I !M !1N
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Table 1 Iteration counts for QMR with and without preconditoner, applied to an indefinite
Helmholtz equation with increasing wave number

k QMR ILU(’0’) ILU(1e-2)

It Mflops It Mflops It Mflops

5 197 120.1 60 60.4 22 28.3
10 737 1858.2 370 1489.3 80 421.4
15 1,775 10185.2 > 2;000 > 18133:2 220 2615.1
20 > 2;000 > 20335:1 – – > 2;000 > 42320:1

has a spectrum clustered around 1 in the complex plane, which leads to fast
asymptotic convergence also for a Krylov method applied to the preconditioned
system (5). Clearly, the best preconditioner would be A!1, since this makes the
spectral radius of M !1N vanish since then M !1N =A!10 D 0, and all the
eigenvalues of the preconditioned system M !1A D I equal 1. But then one could
directly solve the system without iteration.

The idea of factorization preconditioners is to use an approximation of A!1 by
computing an approximate LU factorization of the matrix A, A # LU , and then
in each iteration step of (5), a forward and a backward substitution need to be
performed. Two popular algebraic variants are the ILU(0) and ILU(tol) precon-
ditioners, see [60]. For ILU(0), one computes an approximate LU factorization,
retaining entries in the LU factors only if the corresponding entry in the underlying
matrix A is non-zero. In the ILU(tol) variant, elements are kept, provided they
are bigger than the tolerance tol. We compare in Table 1 the performance of this
type of preconditioner when applied to the Helmholtz equation for growing wave
number k. We solve an open cavity problem as in the previous example in Sect. 2.1,
but now with a point source in the center. For this experiment, we keep the number
of grid points per wavelength constant, i.e. kh D 10, which means that the grid
is refined proportionally with increasing wave number. We observe that the ILU
preconditioners are quite effective for small wave numbers, but their performance
deteriorates when k becomes larger: the situation with ILU(’0’) is worse than
without preconditioning, and even ILU(tol) with a small drop tolerance does not
permit the solution of the problem. Here the Krylov subspace solver used was
QMR [30], but similar results are observed when using GMRES and other Krylov
methods, see [38].

2.3 Domain Decomposition Methods

The oldest and simplest domain decomposition method is due to Schwarz [62]. He
invented his alternating method in order to prove the Dirichlet principle, on which
Riemann had based his theory of analytic functions of a complex variable (See [39]
for a historical overview, and also [32] for an overview over the different continuous
and discrete variants of the Schwarz method). The idea of the alternating Schwarz
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Fig. 3 Drawing for the
original Schwarz method
using the notation in the text
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Table 2 Performance of a classical Schwarz domain decomposition method for a discretized
Helmholtz equation

k 10# 20# 40# 80# 160# 10# 20# 40# 80# 160#

Overlap = h Overlap fixed

Iterative Div Div Div Div Div Div Div Div Div Div
Preconditioner 20 33 45 69 110 16 23 43 86 155

method is illustrated in Fig. 3. One simply solves the original partial differential
equation alternatingly in overlapping subdomains, and uses as interface condition
the trace of the previously computed solution in the neighboring subdomain. For the
case of the Helmholtz equation and the two-subdomain decomposition in Fig. 3, the
algorithm is

!.!C k2/unC1
1 D 0 in ˝1; !.!C k2/unC1

2 D 0 in ˝2;

unC1
1 D un

2 on $1; unC1
2 D unC1

1 on $2:
(7)

We show in Table 2 numerical experiments for growing wave number k for the case
of a unit square cavity, open both on the left and on the right, using two subdomains
obtained by partitioning the cavity in the middle. We used the alternating Schwarz
method both as an iterative solver, as in (6), and as a preconditioner, as in (5), for
GMRES. We see that the alternating Schwarz method is not convergent for the
indefinite Helmholtz equation. Used as a preconditioner, we obtain a convergent
method, but iteration numbers grow with increasing wave number k. For diffusive
problems the alternating Schwarz method converges better when the overlap is
increased, which is also intuitively understandable. This is, however, not the case
for the Helmholtz equation, as we see comparing the case with overlap h, the mesh
size, and with fixed overlap, equal to 2h on the coarsest grid, and then 4h, 8h etc
when the mesh is refined: at the beginning, for small wave numbers, overlap seems
to help, but later, bigger overlap is detrimental to the performance of the Schwarz
preconditioner when applied to the Helmholtz equation.

2.4 Fictitious Domain Methods

While domain decomposition methods arrive at more manageable subproblems by
dividing a given problem region into smaller subregions, fictitious domain methods
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are based on imbedding the former in a larger domain for which a more efficient
solver may be available. The first such techniques [11, 46, 58, 61], also known as
domain imbedding or capacitance matrix methods, were developed to extend the
efficiency of fast Poisson solvers based on the Fast Fourier Transform or cyclic
reduction also to problems for which these methods are not directly applicable,
as they require some form of separation of variables. In [22] (see also [23]) this
idea was applied to exterior boundary value problems for the Helmholtz equation
in two dimensions, and it was shown how the Sommerfeld radiation condition can
be incorporated into a fast Poisson solver. Large-scale scattering calculations using
this approach can be found in [45].

Computationally, fictitious-domain methods represent the original discrete prob-
lem as a low-rank modification of a larger problem amenable to fast methods. The
fast solver plays the role of a discrete Green’s function much in the same way as
its continuous counterpart is used in the integral equation method for solving the
Helmholtz equation using layer potentials [13]. In fact, fictitious domain methods
require the solution of an auxiliary system of equations which is a discretization
of an integral operator on the boundary of the problem (scattering) domain. If
a suitable formulation is chosen these operators are often compact perturbations
of the identity, which can be exploited to obtain mesh-independent convergence
for iterative solution methods. The dependence on the wave number, however, is
typically linear. Convergence independent of the wave number and mesh size would
require more efficient preconditioning schemes for the discrete integral operator,
which are currently not available. Recent developments on the spectral analysis of
such operators necessary for the design of effective preconditioners can be found
in [6].

2.5 Multigrid Methods

Two fundamental observations led to the invention of multigrid methods:

• When applied to the Poisson equation, classical stationary iterative methods such
as Gauss-Seidel or damped Jacobi iteration effectively remove high-frequency
components of the error, but are very ineffective for low-frequency components.
Stiefel points this out very vividly in his 1952 paper [64] on precursors of the
conjugate gradient method, remarking that, after a few iterations of one such
basic iterative method, in which the residual is reduced significantly, subsequent
iteration steps decrease the residual only by very little, as if the approximation
were confined to a “cage”. 1

1“Das Auftreten von Käfigen ist eine allgemeine Erscheinung bei Relaxationsverfahren und sehr
unerwünscht. Es bewirkt, dass eine Relaxation am Anfang flott vorwärts geht, aber dann immer
weniger ausgiebig wird . . . ”.
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• The remaining low-frequency components in the error can be well represented
on a coarser grid,2 as Federenko points out in his 1961 paper presenting the first
complete multigrid method [29]:

We shall speak of the eigenfunctions as “good” and “bad”; the good ones include those
that are smooth on the net and have few changes of sign in the domain; the bad ones
often change sign and oscillate rapidly [...] After a fairly small number of iterations, the
error will consist of “good” eigenfunctions [...] We shall use the following method to
annihilate the “good” components of the error. We introduce into the domain an auxiliary
net, the step of which is q times greater than the step of the original net.

The simplest multigrid scheme to which these developments led is the classical “V-
cycle”, which, applied to the system Au D f, reads:

function u DMultigrid.A; f; u0/;
if isSmall(A) then u D Anf else

u DDampedJacobi.%; A; f; u0/;
r DRestrict.f !Au/;
e DMultigrid.Ac; r; 0/;
u D uCInterpolate.e/;
u DDampedJacobi.%; A; f; u/;

end;

Here u0 denotes the initial approximation and Ac the coarse-grid representation
of A.

We show in Table 3 the performance of this multigrid algorithm when applied to
a discretized Helmholtz equation, in our example a closed cavity without resonance
for the discretized problem.3 We observe that the multigrid method fails to converge
as a stand-alone iterative solver except for a very small wave number. When
multigrid is used as a preconditioner, we obtain a convergent method, as in the

Table 3 Performance of a classical geometric multigrid method with optimally damped Jacobi
smoother applied to a discretized Helmholtz equation. % denotes the number of smoothing steps

k 2:5# 5# 10# 20# 2:5# 5# 10# 20# 2:5# 5# 10# 20#

% D 2 % D 5 % D 10

Iterative 7 Div Div Div 7 Stag Div Div 8 Div Div Div
Preconditioner 6 12 41 127 5 13 41 223 5 10 14 87

2The idea of beginning the iteration on a coarse grid with a subsequent “advance to a finer net”,
not unlike the modern full multigrid approach, was in use already in the early days of “relaxation
methods”, as evidenced, e.g., in the book of Southwell [63, Sect. 52] from 1946.
3In a closed cavity, i.e., with homogeneous Dirichlet conditions imposed on all sides, it is important
to ensure that k2 is not an eigenvalue of the discrete Laplacian, since otherwise one obtains a
singular matrix. In the case of a multigrid solver then, one must be careful that k2 is not an
eigenvalue of the discrete Laplacian on each of the grids used in the multigrid hierarchy, which
we did for this experiment (see also Sect. 3.4).
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case of the Schwarz domain decomposition method, but again the iteration numbers
grow substantially when the wave number increases. We used again about 10 points
per wavelength in these experiments. Often one increases the number of smoothing
steps in the multigrid method to improve performance, and we see in Table 3 that,
for small wave numbers, this seems to help the preconditioned version, but for
large wave numbers, adding more smoothing steps can both improve and diminish
performance. Again, we observe that standard multigrid methods are not suitable
for solving the Helmholtz equation.

3 Iterative Methods for Helmholtz Problems

We now describe several iterative methods and preconditioners which have been
developed especially for solving discrete Helmholtz problems. In each case we first
give an explanation of why the classical iterative method or preconditioner fails, and
then show possible remedies.

3.1 Analytic Incomplete LU

The incomplete LU (ILU) preconditioners are based on the fact that the linear
system (3) could be solved by a direct factorization, the so-called LU factorization

A D LU; L lower triangular, U upper triangular. (8)

The solution of the linear system Au D LU u D f is then obtained by solving

Lv D f by forward substitution,

U u D v by backward substitution.

If the matrix A is a discretization of the Helmholtz operator !.! C k2/ in two
dimensions, and we use the lexicographic ordering4 of the unknowns indicated in
Fig. 4, we can interpret the forward and backward substitutions geometrically: the
forward substitution process Lv D f determines first the variables in the leftmost
column of the domain, see Fig. 4, then in the second leftmost, and so on, until the last
column on the right. The process is sequential, and could be interpreted as a time-
stepping in the positive x-direction, solving an evolutionary problem. The backward
substitution process U u D v, on the other hand, starts with the variables in the
rightmost column in Fig. 4, and then computes the second rightmost column, and so

4This presupposes a tensor-product grid structure.
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Fig. 4 Ordering of the
unknowns in the
discretization of the
Helmholtz operator

x

y
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on, until the first column on the left is determined. Again the process is sequential,
and could be interpreted as a time-stepping, but this time in the negative x-direction.

From the explanation of the convergence of Krylov methods without precon-
ditioning given in Sect. 2, we see that efficient transport of information in the
preconditioner is important for Helmholtz problems. We have, however, also seen
that the classical ILU preconditioners do not seem to bring about this transport
effectively enough: even the rather accurate approximate ILU(1e-2) factorization
does not suffice.

In order to find what the evolution problems described by the LU factorization
could correspond to for the underlying Helmholtz equation, it was sought in [38] to
determine a factorization of the Helmholtz operator in the x direction,

! .!C k2/ D !.@x C&1/.@x !&2/; (9)

where &1 and &2 are (non-local) operators to be determined such that (9) holds.
Given such a factorization at the continuous level one can solve !.! C k2/u D
!.@x C&1/.@x !&2/u D f by solving two evolution problems:

!.@x C&1/v D f evolution problem in the forward x direction,

.@x !&2/u D v evolution problem in the backward x direction.

Taking a Fourier transform of the Helmholtz operator (ignoring boundary condi-
tions) in the y-direction with Fourier variable ', we obtain

Fy.!.!C k2// D !@xx C '2 ! k2 D !.@x C
p

'2 ! k2/.@x !
p

'2 ! k2/; (10)

and thus we have the continuous analytic factorization of the Helmholtz operator

! .!C k2/ D !.@x C&1/.@x !&2/; (11)

where &1 D &2 D F!1
y .

p
'2 ! k2/. Note that &j , j D 1; 2, are non local

operators in y due to the square root in their symbol
p

'2 ! k2.
The discrete analogue of this factorization at the continuous level is the block

LDLT factorization of the discrete Helmholtz matrix A. In the case of a five point
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finite difference discretization, this matrix has the block structure

A D 1

h2

2

664

A1 !I

!I A2
: : :

: : :
: : :

3

775 ; Aj D

2

664

4 ! kh2 !1

!1 4 ! kh2 : : :

: : :
: : :

3

775 :

A direct calculation shows that the block LDLT factorization of A is given by

L D 1

h

2

66664

I

!T !1
1 I

!T !1
2

: : :

: : :
: : :

3

77775
; D D

2

64
T1

T2

: : :

3

75 ;

where the matrices Tj satisfy the recurrence relation

Tj C1 D Aj C1 ! T !1
j ; T1 D A1; (12)

as is easily verified by multiplying the matrices. We observe that in this exact
factorization the matrices Tj are no longer sparse, since the recurrence relation
(12) which determines them involves an inverse. This fill-in at the discrete level
corresponds to the non-local nature of the operators &j . Using a local approx-
imation of the matrices Tj with tridiagonal structure gives only an approximate
LDLT factorization of A, which we call AILU(’0’) (Analytic Incomplete LU). In
order to obtain a good approximation, the relation to the continuous factorization
was used in [38], and the spectral radius of the corresponding iteration matrix was
minimized. The performance of this preconditioner, which is now tuned for the
Helmholtz nature of the problem, is shown in Table 4, for the same open cavity
problem as before. We clearly see that this approximate factorization contains much
more of the physics of the underlying Helmholtz equation, and leads to a better
preconditioner. Nonetheless, the iteration counts are still seen to increase with
growing wave number k.

Table 4 Performance comparison of the specialized AILU(’0’) preconditioner, compared to the
other ILU variants
k QMR ILU(’0’) ILU(1e-2) AILU(’0’)

It Mflops It Mflops It Mflops It Mflops

5 197 120.1 60 60.4 22 28.3 23 28.3
10 737 1858.2 370 1489.3 80 421.4 36 176.2
15 1,775 10185.2 2;000 18133:2 220 2615.1 43 475.9
20 2;000 20335:1 – – 2;000 42320:1 64 1260.2
30 – – – – – – 90 3984.1
40 – – – – – – 135 10625.0
50 – – – – – – 285 24000.4
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The AILU preconditioner goes back to the analytic factorization idea, see
[56] and references therein. It is very much related to the Frequency Filtering
Decomposition, as proposed by Wittum in [67, 68] and analyzed for symmetric
positive problems in [65], and for non-symmetric problems in [66]. There was
substantial research activity for these kinds of preconditioners around the turn of
the century, see [42], [12], [37], [1], and for Helmholtz problems this is one of the
best incomplete factorization preconditioners available. For more recent work, see
[2], [57], and for Helmholtz problems in particular [17] and [18], where this type of
preconditioner is called a “sweeping preconditioner”, and an optimal approximation
is proposed in the sense that iteration numbers no longer depend on the wave number
k, see also [19].

3.2 Domain Decomposition Methods for Helmholtz Problems

In the late 1980s researchers realized that classical domain decomposition methods
were not effective for Helmholtz problems, and the search for specialized methods
began. In his PhD thesis [15], Bruno Després summarizes this situation precisely:

L’objectif de ce travail est, après construction d’une méthode de décomposition de domaine
adaptée au problème de Helmholtz, d’en démontrer la convergence.5

The fundamental new ingredient for such an algorithm turned out to be the
transmission condition between subdomains, as in the non-overlapping variant of
the Schwarz algorithm proposed by Lions [54]. The algorithm proposed by Bruno
Després reads

!.!C k2/unC1
j D f; in ˝j

.@nj ! ik/unC1
j D .@nj ! ik/un

l ; on interface $jl ,
(13)

and, on comparing with the classical alternating Schwarz algorithm in (7), we see
that now a Robin transmission condition is used at the interfaces. The algorithm was
considered by Després for many subdomains, but only without overlap, so that its
convergence can be proved using energy estimates.

To obtain further insight into why the transmission conditions are important, we
show in Fig. 5 on the vertical axis the convergence factor of the algorithm for the
simple model problem of a square decomposed into two rectangles, plotted against
the index ' of the Fourier modes. In this case, we can use Fourier series in the
direction of the interface to explicitly compute how each Fourier mode converges,
see for example [35]. We see on the left for the classical alternating Schwarz method
that low frequency modes are not converging at all, their convergence factor equals

5The goal of this work is to design a special domain decomposition method for Helmholtz
problems, and to prove that it converges.
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Fig. 5 Comparison of how each Fourier mode ' in the error converges, on the left for the
classical alternating Schwarz method with overlap, and on the right for the variant designed for
the Helmholtz equation, without overlap. The vertical axis denotes the convergence factor of a
Fourier mode

one. These modes correspond to the oscillatory, or propagating modes in the solution
of the Helmholtz equation, as are clearly visible, e.g., in the example in Fig. 1
on the right. High-frequency components, however, converge well in the classical
alternating Schwarz method. These modes correspond to evanescent modes, usually
only well visible for diffusive problems, as in Fig. 1 on the left. The situation for the
non-overlapping method of Després on the right is reversed: the new transmission
conditions lead to a rapidly converging method for the propagating modes in the
low-frequency part of the spectrum, but now high frequency components are not
converging.

Després wanted to prove convergence of the algorithm, and the technique of
energy estimates generally works only for the non-overlapping variants of the
algorithm. But Fig. 5 suggests that one could use the overlap for the high-frequency
modes, and the transmission condition for the low-frequency modes, in order to
obtain a method effective for all modes in a Helmholtz problem. In addition, it might
be possible to choose an even better transmission condition, as indicated toward the
end in Lions’ work [54], and also by Hagström et al. in [44]. All these observations
and further developments led at the turn of the century to the invention of the new
class of optimized Schwarz methods [34], with specialized variants for Helmholtz
problems [33, 35]. For an overview for symmetric coercive problems, see [31].

Using optimized transmission conditions of zeroth order, which means choosing
the best complex constant in place of ik in the Robin condition, we obtain for the
same model problem as in Fig. 5 the contraction factors shown in Fig. 6 on the left.
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Fig. 6 Comparison of how each Fourier mode ' in the error converges, on the left for an optimized
Schwarz method of order zero (OO0), and on the right for a second order optimized Schwarz
method (OO2), both with overlap

Table 5 Asymptotic convergence factors obtained for a model problem

k fixed k(h const

Overlap 0 1 ! O.h
1
4 / 1 ! O.k

1!2(
8 /

Overlap CLh 1 ! O.h
1
5 /

(
1 ! O.k! 1

8 / 1 " ( " 9
8

1 ! O.k
1!2(

10 / ( > 9
8

Overlap const 1 ! const 1 ! O.k! 1
8 /

We can see that all modes, except for the resonance mode,6 now converge well. On
the right in the same figure, we show a second-order optimized Schwarz method, in
which one also uses the Laplace-Beltrami operator at the interface to obtain an even
more effective transmission condition. Using this operator in no way increases the
sparsity pattern of the subdomain solver, since second-order derivatives are already
present in the underlying discretization of the Laplacian.

A general convergence analysis of optimized Schwarz methods for Helmholtz
problems currently only exists for the non-overlapping case, using energy estimates.
This approach, however, does not allow us to obtain convergence factor estimates. In
addition, to prove convergence for the general overlapping case is an open problem.
For the model situation of two subdomains however, one can quantify precisely
the dependence of the convergence factor on the wave number k and the mesh
parameter h. We show in Table 5 the resulting convergence factors from [33]. We see
that for a fixed wave number k and constant overlap, independent of the mesh size h,

6We denote by resonance mode that value of the Fourier parameter for which the transformed
Helmholtz operator becomes singular.
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Table 6 Numerical experiment for a two-subdomain decomposition

h Iterative Krylov k Krylov

Optimized Deprés Optimized Deprés Optimized

1/50 322 26 14 10# 24 13
1/100 70 34 17 20# 33 18
1/200 75 44 20 40# 43 20
1/400 91 57 23 80# 53 21
1/800 112 72 27 160# 83 32

the algorithm converges with a contraction factor independent of h. In the important
case where k scales with h as k(h in order to avoid the pollution effect, see [47,48],
we see that the contraction factor only depends very weakly on the growing wave
number: for example if the overlap is held constant, all Fourier modes of the error
contract at least with a factor 1 !O.k! 1

8 /.
In Table 6 we show a numerical experiment for a square cavity open on two

sides and the non-overlapping optimized Schwarz method in order to illustrate
the asymptotic results from Table 5. We used a fixed wave number k on the left,
and a growing wave number k on the right, while again keeping ten points per
wavelength. We show in the leftmost column the stand-alone iterative variant of the
algorithm in order to illustrate the sensitivity of the algorithm with respect to the
peak of the convergence factor at the resonance frequency. Since the discretization
modifies the continuous spectrum, a discretization with insufficient resolution may
have eigenvalues close to the resonance frequency, which are not taken into account
by the continuous optimization based on Fourier analysis, which in turn can result
in an arbitrarily large iteration count, as we see for example for h D 1

50
. Such

problems, however, disappear once the mesh is sufficiently refined, or when Krylov
acceleration is added, as one can observe in Table 6. This issue is therefore not
of practical concern. We also see that it clearly pays to use optimized parameters,
as the iteration count is substantially lower than with the first choice of ik in the
transmission conditions.

We finally show two numerical experiments, in order to illustrate that optimized
Schwarz methods for Helmholtz equations also work well in more practical situa-
tions. We first show the acoustic pressure in two spatial dimensions for the approach
of an Airbus A340 over the silhouette of a city, computed with a decomposition
into 16 subdomains, as shown in Fig. 7 on the left. In this case, using a Robin
transmission condition with ik as parameter required 172 iterations, whereas the
optimized Schwarz method needed only 58 iterations to converge to the same
tolerance. For more details, see [35]. The second example is the interior of a Twingo
car from Renault, shown in Fig. 8. Here, the Robin transmission condition with ik
as parameter required 105 iterations, and the optimized Schwarz method 34. For
further details, see [33].

There is a second type of domain decomposition methods for Helmholtz prob-
lems from the FETI family of methods (Finite Element Tearing and Interconnect,
see [28]). These methods are based on a dual Schur complement formulation,
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Fig. 7 Airbus A340 in approach over a city, domain decomposition on the left, and result of one
simulation on the right

Pressure
5.480E+001

5.258E+001

5.036E+001

4.813E+001

4.591E+001

4.369E+001

4.147E+001

3.924E+001

3.702E+001

Fig. 8 Simulation of the noise in the passenger cabin of a Twingo car from Renault: the pressure
range on the right goes from 37.02 to 54.8

which means that interior variables in the subdomains are eliminated, assuming that
Neumann traces are continuous across interfaces, and then a substructured system
is obtained by requiring that Dirichlet traces along interfaces match. A primal Schur
formulation would do the opposite: eliminate interior unknowns of subomains,
assuming that Dirichlet traces are continuous across interfaces, and then impose
continuity of the Neumann traces along interfaces in order to obtain a substructured
formulation. These methods usually require an additional preconditioner in order to
obtain convergence rates independent of (or only weakly dependent on) the mesh
parameter h. An optimal choice is to use the primal Schur complement method
for the dual Schur complement formulation, and vice versa. In order to scale with
the number of subdomains, also a coarse grid is needed. For the case of Laplace’s
equation, the classical coarse grid is to use a constant per subdomain, since if FETI is
used to solve Laplace’s equation, interior subdomain problems containing Neumann
conditions all around have precisely the constant as a kernel. This idea transformed
an inconvenience of the original FETI idea, namely that interior subdomains are
singular, into a benefit: a natural coarse grid.

In order to adapt this class of methods to Helmholtz problems, the first
variant was the FETI-H method (for FETI-Helmholtz), see [27]. Instead of using
Neumann transmission conditions in the dual Schur complement formulation, Robin
conditions @n ! ik are used, but then still Dirichlet traces are matched in order
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to obtain a substructured formulation. This approach is thus very much related to
an optimized Schwarz method without overlap; however, only one type of Robin
conditions can be imposed, since the other one is Dirichlet. This means that always
on one side of the interface, a Robin condition with the good sign is used, whereas
on the other side, a Robin condition with the bad sign is imposed. For checkerboard
type partitions, one can ensure that subdomains have only Robin conditions with
constant sign all around. Otherwise, an algorithm was proposed to generate a choice
of sign which guarantees that subdomain problems are not singular. The original
formulation has no additional preconditioner, but a coarse grid in form of plane
waves.

The second algorithm in the FETI class specialized for Helmholtz problems
is FETI-DPH, see [26]. This is a FETI-DP formulation, which means that some
interface unknowns are kept as primal variables, where continuity is enforced,
and which serve at the same time as coarse space components. These are usually
cross points, and in FETI-DPH additional primal constraints are enforced at the
interfaces, using planar waves. Furthermore, a Dirichlet preconditioner is used on
top, like in the classical FETI formulation. A convergence analysis exists for this
algorithm, see [25], but it needs the assumption that subdomains are small enough.
A systematic comparison of all currently existing domain decomposition algorithms
for Helmholtz problems is in preparation, see [40].

3.3 Multigrid for Helmholtz Problems

We will see in this section that neither of the two fundamental observations made
by Stiefel and Federenko (cf. Sect. 2.5) hold for the case of the Helmholtz equation.
In an early theoretical paper about multigrid methods [4], Bakhvalov first advertises
the method also for indefinite problems:

For instance it is used in the case of the equation !uC)u D f with large positive ).x1; x2/.
Previously no methods of solving this equation with good asymptotics for the number of
operations were known

but then later in the paper he discovers potential problems:

In the case of the equation !u C )u D f with large positive ) we do not exclude the
possibility that the evaluation of (3.21) may be attained in order. Then the increase in the
number m in comparison with that calculated can lead to a deterioration in the discrepancy
of the approximation.

Three decades later Brandt and Livshits [8] take on the difficult Helmholtz case
again, and they try to explain the origin of the difficulties of the multigrid algorithm:

On the fine grids, where [the characteristic components] are accurately approximated by
the discrete equations, they are invisible to any local relaxation, since their errors can
have very small residuals. On the other hand, on coarser grids such components cannot
be approximated, because the grid does not resolve their oscillations.

Similarly, Lee, Manteuffel, McCormick and Ruge [50] explain the problem as
follows:
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Helmholtz problems tax multigrid methods by admitting certain highly oscillatory error
components that yield relatively small residuals. Because these components are oscilla-
tory, standard coarse grids cannot represent them well, so coarsening cannot eliminate
them effectively. Because they yield small residuals, standard relaxation methods cannot
effectively reduce them.

In order to more precisely illustrate the problems of the multigrid algorithm when
applied to the Helmholtz equation, we consider now the Helmholtz equation in two
dimensions on the unit square,

! .!C k2/u D f; in ˝ WD .0; 1/" .0; 1/: (14)

We show two numerical experiments following the common strategy (cf. [7], [10,
Chap. 4]) that, in order to investigate the behavior of multigrid methods, one should
replace one of the two components (smoother or coarse grid correction) by a
component which one knows to be effective (even if it is not feasible to use this
component in practice), to test the other one. In a first experiment, we use a Fourier
smoother in order to explicitly remove the high-frequency components of the error,
and try to compute the solution shown in Fig. 9, on top, which corresponds to the
choice of parameters f D ! 1

20
, k D

p
19:7 and fine-grid parameter h D 1

32
. We

use a random initial guess u0, and a two-grid cycle. The result is shown in Fig. 9.
We clearly observe the following in this experiment: while the error on the

coarse grid is well resolved, the correction calculated on the coarse grid is 100%
incorrect, it has the wrong sign! Hence the problem does not seem to be that certain
(high) frequency components in the error are left to the coarse grid and cannot be
approximated accurately there: the mesh here is largely fine enough to represent the
component left. However, the correction calculated is incorrect: it is the operator
itself which is not well approximated. This had already been discovered in an earlier
paper by Brandt and Ta’asan [9] on slightly indefinite problems:

Usual multigrid for indefinite problems is sometimes found to be very inefficient. A strong
limitation exists on the coarsest grid to be used in the process. The limitation is not so much
a result of the indefiniteness itself, but of the nearness to singularity, that is, the existence
of nearly zero eigenvalues. These eigenvalues are badly approximated (e.g. they may even
have a different sign) on coarse grids, hence the corresponding eigenfunctions, which are
usually smooth ones, cannot efficiently converge.

For our second numerical experiment, we now use a damped Jacobi smoother
and compute the exact coarse-grid correction by computing it on the fine grid, then
restricting it to the coarse grid and prolongating it again back to the fine grid to
ensure that the coarse-grid correction is working properly (this would obviously not
make sense in a real multigrid code, but allows us to illustrate the reason why the
smoother fails). We try to compute the solution shown in Fig. 10, in the top left
graph, which corresponds to the parameters f D !1;000, k D 20 and fine mesh
size h D 1

32
, and we use again a random initial guess u0 and a two-grid cycle.

Its behavior is shown in the remaining graphs of Fig. 10. We clearly see that, even
though the coarse-grid correction is very effective, the smoother is responsible for
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a growing low-frequency mode, and the two-grid method does not converge. We
explain these two observations in the next section with a detailed two-grid analysis.

3.4 Two-Grid Analysis for the 1D Model Problem

To explain the difficulties of multigrid applied to the Helmholtz equation, we
consider the simplest possible case of the one-dimensional problem

! u00 ! k2u D f in ˝ D .0; 1/; u.0/ D u.1/ D 0; (15)

with constant wave number k and perform a spectral analysis, much along the lines
of [43, Chap. 2] and [10, Chap. 5].

We assume that k2 is not an eigenvalue of the Dirichlet-Laplacian for this domain
and therefore the continuous problem possesses a unique solution, as do sufficiently
accurate discrete approximations. When multigrid is applied to cavity problems like
(15) one must always be careful that all coarse-grid problems are nonsingular. This
is, however, no longer an issue when damping is present, either in the form of an
absorbing medium or radiation boundary conditions.

Using the standard three-point centered finite-difference approximation of the
second derivative on a uniform mesh with N interior grid points and mesh width
h D 1=.N C 1/, (15) is approximated by the linear system of equations Au D f for
the function values u.xj / # uj ; j D 1; : : : ; N , at the grid points xj D jh, where

A D 1

h2
tridiag .!1; 2! k2h2;!1/ 2 RN #N : (16)

The matrix A is symmetric and has the complete set of orthogonal eigenvectors

vj D Œsin j`#h*N`D1; j D 1; : : : ; N: (17)

When it is necessary to rescale these eigenvectors to have unit Euclidean norm this
is achieved by the factor

p
2h (for all j ). The associated eigenvalues are given by

)j D
2.1! cos j#h/

h2
! k2 D 4

h2
sin2 j#h

2
! k2; j D 1; : : : ; N:

The form of the eigenvectors (17) reveals that these become more oscillatory with
increasing index j .

When N is odd, which we shall always assume for the pure Dirichlet problem, we
set n WD .N!1/=2 and refer to the eigenpairs associated with the indices 1 $ j $ n
as the smooth part Ism of the spectrum and the remainder as the oscillatory part Iosc.
Note that the eigenvalue with index j D .N C 1/=2 D n C 1 lies exactly in the
middle, with an associated eigenvector of wavelength 4h.
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3.4.1 Smoothing

The (damped) Jacobi smoother is based on the splitting A D 1
!

D ! . 1
!

D ! A/ of
the matrix A in (16), where D D diag.A/ and ! is the damping parameter, resulting
in the iteration

umC1 D um C !D!1.f !Aum/ (18)

with associated error propagation operator

S! D I ! !D!1A: (19)

Noting that D D .2=h2 ! k2/I , we conclude that A and D are simultaneously
diagonalizable, which gives for S! the eigenvalues

+j D +j .!/ D 1 ! !

!
1 ! 2 cos j#h

2! k2h2

"
DW 1 ! !

)j

ı
; j D 1; : : : ; N; (20)

where we have introduced ı D ı.k; h/ WD .2 ! k2h2/=h2 to denote the diagonal
entry of D, which is constant for this model problem.

In multigrid methods the smoothing parameter ! is chosen to maximize damping
on the oscillatory part Iosc of the spectrum. For the Laplace operator (k D 0) the
eigenvalues of D!1A are given by )j =ı D 1 ! cos.j#h/, j D 1; : : : ; N , resulting
in, up to order h2, the spectral interval Œ0; 2*, with Iosc D Œ1; 2*. Maximal damping
on Iosc thus translates to the requirement of equioscillation, i.e.,

1! ! D !.1 ! 2!/; obtained for ! D !0 WD 2
3
: (21)

For this optimal value of ! each eigenmode belonging to the oscillatory modes
spanfvh

nC1; : : : ; vh
N g is reduced by at least a factor of +nC1.!0/ D 1!!0 D 1

3
in each

smoothing step, independently of the mesh size h. Figure 11 displays the spectrum
&.S!/ of S! for the discrete 1D-Laplacian on the unit interval with mesh width
h D 1=50 for the values ! D 1 (undamped) and the optimal value ! D !0 D 2=3,
plotted against the eigenvalues of D!1A, where we have scaled A in order to fix
the spectral interval independently of h. The smooth and oscillatory parts of the
spectrum Ism and Iosc are highlighted, and it can be seen that the eigenvalues of
S! lie on a straight line and that the spectral radius of S! is minimized on Iosc for
! D !0.

For the 1D Helmholtz operator (k > 0) the eigenvalues of D!1A are

)j

ı
D 1 ! 2 cos j#h

2 ! k2h2
; j D 1; : : : ; N;

and therefore, up to O.h2/, these range between the extremal values

)1

ı
D !k2h2

2 ! k2h2
; and

)N

ı
D 4 ! k2h2

2 ! k2h2
:
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Fig. 11 Eigenvalues of the undamped (! D 1) and optimally damped (! D !0) Jacobi smoother
plotted against those of the associated diagonally scaled 1D-Laplacian !!h, h D 1=50, divided
into smooth and oscillatory parts Ism and Iosc. The Vertical dashed lines indicate the spectral radius
of S! restricted to the space of oscillatory eigenfunctions

Assuming the midpoint .)1 C )N /=2 is still positive, maximal smoothing of the
oscillatory modes is again obtained by equioscillation, which fixes ! by requiring

1 ! !
)N

ı
D !

!
1 ! !

)1 C )N

2ı

"
; i.e., ! D !k WD

2! k2h2

3! k2h2
: (22)

Figure 12 shows the analogous quantities of Fig. 11 for the Helmholtz equation
with wave number k D 10# . In contrast with the Laplacian case, the spectrum
of A now extends into the negative real axis. By consequence, any choice of the
relaxation parameter ! will result in amplification of some modes, as we have seen
in our example in Fig. 10. In the case shown, these are precisely the eigenmodes of
A associated with negative eigenvalues. If this constitutes only a small portion of
&.A/, then the coarse grid correction, the second component of multigrid methods
which eliminates smooth error components, can be expected to compensate for this
amplification. It is clear, however, that the amplification will both grow unacceptably
strong and extend over too large a portion of the spectrum for diminishing wave
resolution, i.e., for kh large.

Therefore, fundamentally different smoothing iterations are needed for
Helmholtz problems. For this reason Brandt and Ta’asan [9] proposed using the
Kazmarcz relaxation, which is essentially Gauss-Seidel iteration applied to the
normal equations. This smoother has the advantage of not amplifying any modes,
but at the cost of very weak smoothing. Elman, Ernst and O’Leary [16] proposed
using Krylov subspace methods as smoothers. The difficulty here is that different
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Fig. 12 Same as Fig. 11, here for the Helmholtz operator. Eigenvalues of Jacobi smoother for
! D !k , ! D 1 and ! D !0 against those of the associated diagonally scaled 1D Helmholtz
operator !!h ! k2, h D 1=50 with wavelength-to-mesh ratio )=h D 10

numbers of smoothing steps are necessary at different grid levels, and their optimal
determination is challenging.

3.4.2 Coarse-Grid Correction

Besides the finite difference discretization on the mesh

˝h WD fxj D jh W j D 0; : : : ; N C 1g

we consider the 1D model problem (15) discretized on a coarser grid with only n
interior mesh points

˝H WD fxj D jH W j D 0; : : : ; nC 1g

with twice the mesh width H D 2h, where N D 2n C 1 denotes the number of
fine-grid interior points. We transfer grid functions uH D ŒuH

1 ; : : : ; uH
n * (we omit

the zero boundary values) from ˝H to the fine grid ˝h using linear interpolation,
which defines the linear mapping

I H
h W ˝H ! ˝h; uH 7! I H

h uH

defined by

ŒI h
H uH *j D

8
<

:
ŒuH *j=2 if j is even;

1
2

#
ŒuH *.j !1/=2 C ŒuH *.j C1/=2

$
if j is odd;

j D 0; : : : ; NC1;

(23)
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with matrix representation

I h
H D

1

2

2

6666666666664

1

2

1 1

2

1
: : : 1

2

1

3

7777777777775

2 RN #n

with respect to the standard unit coordinate bases in Rn and RN , respectively.
Following [43], we analyze the mapping properties of the linear interpolation

operator I h
H on the coarse-grid eigenvectors

vH
j D Œsin.j`#H/*n`D1; j D 1; : : : ; n

of the discrete 1D Dirichlet-Laplacian by way of elementary trigonometric manipu-
lations.

Proposition 1. The coarse-grid eigenvectors are mapped by the interpolation
operator I h

H according to

I h
H vH

j D c2
j vh

j ! s2
j vh

N C1!j ; j D 1; : : : ; n;

where we define

cj WD cos
j#h

2
; sj WD sin

j#h

2
; j D 1; : : : ; n: (24)

In particular, vh
nC1 is not in the range of interpolation.

The coarse-grid modes vH
j are thus mapped to a linear combination of their fine-

grid counterparts vh
j and a complementary mode vh

j 0 with index j 0 WD N C 1 ! j .
Note the relations

cj 0 D sj sj 0 D cj ; j D 1; : : : ; n;

between complementary sj and cj . Interpolating coarse-grid functions therefore
always activates high-frequency modes on the fine grid, with a factor that is less
than one but grows with j (cf. Fig. 13).

To transfer fine-grid functions to the coarse grid we employ the full weighting
restriction operator
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Fig. 13 Coefficients c2
j and

s2
j of the eigenvectors of the

discrete 1D
Dirichlet-Laplacian under the
linear interpolation operator
for N D 31, i.e., n D 15
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I H
h W ˝h ! ˝H ; uh 7! I H

h uh

defined by

%
I H

h uh
&

j
D 1

4

!
Œuh*2j !1 C 2Œuh*2j C Œuh*2j C1

"
; j D 1; : : : ; n: (25)

The associated matrix representation is given by I H
h D 1

2
ŒI h

H *>. The restriction
operator is thus seen to be the adjoint of the interpolation operator if one introduces
on Rn and RN the Euclidean inner product weighted by the mesh size H and h,
respectively. Denoting by N .%/ and R.%/ the null-space and range of a matrix, the
basic relation

RN D R.I h
H /˚N .ŒI h

H *>/ D R.I h
H /˚N .I H

h / (26)

reveals that the range of interpolation and the null-space of the restriction are
complementary linear subspaces of RN , which are also orthogonal with respect
to the Euclidean inner product. Since the columns of I h

H are seen to be linearly
independent, the interpolation operator has full rank, which together with (26)
implies

dim R.I h
H / D n; dim N .I H

h / D N ! n D nC 1:

Elementary trigonometric relations also yield the following characterization of I H
h .

Proposition 2. The fine-grid eigenvectors are mapped by the restriction operator
I H

h according to

I H
h vh

j D c2
j vH

j ; j D 1; : : : ; n; (27a)

I H
h vh

N C1!j D !s2
j vH

j ; j D 1; : : : ; n; (27b)

I H
h vh

nC1 D 0: (27c)
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The coarse-grid correction of an approximation uh to the solution of (15) on the
fine grid ˝h is obtained by solving the error equation Aheh D b ! Ahuh D rh

on the coarse grid. To this end, the residual is first restricted to the coarse grid and
a coarse-grid representation AH of the differential operator is used to obtain the
approximation A!1

H I H
h rh of the error A!1

h rh on ˝H . The update is then obtained
after interpolating this error approximation to ˝h as

uh  uh C I h
H A!1

H I H
h .b !Ahuh/ (28)

with associated error propagation operator

C WD I ! I h
H A!1

H I H
h Ah: (29)

In view of Propositions 1 and 2 the coarse-grid correction operator C is seen to
possess the invariant subspaces

spanfvh
nC1g and spanfvh

j ; vh
j 0g; j 0 D NC1!j; j D 1; : : : ; n: (30)

Denoting the eigenvalues of the discrete 1D Helmholtz operators on ˝h and ˝H by

)h
j D

4

h2
sin2 j#h

2
! k2; j D 1; : : : ; N

and

)H
j D

4

H 2
sin2 j#H

2
! k2; j D 1; : : : ; n;

respectively, the action of the coarse-grid correction operator on these invariant
subspaces is given by

C Œvh
j vh

j 0 * D Œvh
j vh

j 0 * Cj ; j D 1; : : : ; n;

where

Cj D
'
1 0

0 1

(
!

"
c2

j

!s2
j

#
1

)H
j

h
c2

j !s2
j

i "
)h

j 0

0 )h
j 0

#
D

2

64
1 ! c4

j

)h
j

)H
j

c2
j s2

j

)h
j 0

)H
j

c2
j s2

j

)h
j

)H
j

1 ! s4
j

)h
j 0

)H
j

3

75 (31)

in addition to C vh
nC1 D vh

nC1.
For k D 0 we observe as in [43]

)h
j

)H
j

D
4s2

j

.2sj cj /2
D 1

c2
j

as well as
)h

j 0

)H
j

D
4c2

j

.2sj cj /2
D 1

s2
j

; j D 1; : : : ; n;

(32)
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and therefore

Cj D
"

1 ! c2
j c2

j

s2
j 1 ! s2

j

#
D

"
s2

j c2
j

s2
j c2

j

#
; j D 1; : : : ; n:

A matrix of the form X D
'
' "

' "

(
has the eigenvalues and spectral norm

&.X/ D f0; ' C "g; (33a)

kXk D kXX>k1=2 D
p

'2 C "2

))))

'
1 1

1 1

())))
1=2

D
p

'2 C "2 %
p

2: (33b)

For Cj we thus obtain in the case of the Laplacian

,.Cj / D s2
j C c2

j D 1; kCjk D
q

2.s4
j C c4

j /; j D 1; : : : ; n:

From s2
j 2 Œ0; 1

2
* for j D 1; : : : ; n we infer the bound

kCj k $ max
0"t" 1

2

p
2Œt2 C .1 ! t/2* D

p
2; j D 1; : : : ; n:

In the Helmholtz case k > 0 the spectral analysis of the coarse grid correction
operator Cj becomes more tedious and no simple closed-form expression exists
for the spectral radius and norm of the 2 " 2 blocks Cj . We therefore resort to
computation and consider the case of a fine mesh with N D 31 interior points. The
left of Fig. 14 shows a stem plot of the eigenvalues of the 2 " 2 blocks of C for the
Laplacian, which consist of ones and zeros, as C is an orthogonal projection in this
case, see (33a). On the right of Fig. 14 we see the analogous plot for k D 6:3# . Note
that the unit eigenvalues remain, but that the second eigenvalue of each pair is no
longer zero. In particular, mode number 13 is amplified by a factor of nearly -4. This
mode is well outside the oscillatory part of the spectrum, so that smoothing cannot
be expected to offset such an error amplification. In the example we have shown in
Fig. 9, we had chosen the parameters precisely such that the corresponding mode
was multiplied by the factor -1, which led to the correct shape of the coarse grid
correction, but with the wrong sign.

A simple device for obtaining a more effective coarse-grid correction for
Helmholtz operators results from taking into account the dispersion properties of
the discretization scheme. For our uniform centered finite-difference discretization
of the 1D Helmholtz operator with constant k

L u # 1

h2

#
!uj !1 C 2uj ! uj C1

$
! k2uj ;
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Fig. 14 Eigenvalues of the coarse-grid correction operator with respect to a fine mesh with h D
1=32 for k D 0 (left) and k D 6:3# (right)

plane-wave solutions eikhxj of the discrete homogeneous Helmholtz equation
possess a discrete wave number kh characterized by

kh

k
D 1

kh
arccos

!
1 ! k2h2

2

"
> 1:

As a result, the discrete solution exhibits a phase lead with respect to the true
solution, which grows with h. In the same way, coarse grid approximations in
a multigrid hierarchy will be out of phase with fine-grid approximations. This
suggests “slowing down” the waves on coarse grids in order that the coarse-grid
correction again be in phase with the fine-grid approximation. For our example,
this is achieved by using a modified wave number Qk in the coarse-grid Helmholtz
operator defined by the requirement

QkH D k; which is achieved by Qk D
r

2.1! cos.kh//

h2
:

An even better adjustment of the coarse-grid correction results from matching the
coarse-grid discrete wave number kH to the fine-grid discrete wave number kh by
choosing the modified wave number Qk on the coarse grid to satisfy

QkH D kh which is achieved by Qk D k
p

1 ! k2h2=4: (34)

Choosing a modified wave number according to (34) is also equivalent to avoiding
a possible “singularity” in the term )h

j =)H
j in (31) by forcing the vanishing of )H

j

as a continuous function of j to occur in the same location as for )h
j .
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Fig. 15 Eigenvalues of the coarse-grid operator with respect to a fine mesh with h D 1=32 for
k D 6:3# using the modified wave number Qk given in (34) in the coarse-grid Helmholtz operator

Figure 15 shows the eigenvalues of the coarse-grid correction operator depicted
on the right of Fig. 14 with the modified wave number (34) used on the coarse grid.
The strong amplification of mode number 13 is seen to be much less severe, all
non-unit eigenvalues now being less than one in modulus.

Such a dispersion analysis can be carried out for all standard discretization
schemes, and it is found that higher order schemes have much lower phase error (cf.,
e.g., [3]), making them a favorable choice also from the point of view of multigrid
solvers. In higher dimensions higher order methods also possess nearly isotropic
dispersion relations, a necessary requirement for (scalar) dispersion correction.

3.4.3 Two-Grid Operator

Two-grid iteration combines one or more smoothing steps with coarse-grid cor-
rection. If %1 and %2 denote the number of presmoothing and postsmoothing steps
carried out before and after coarse-grid correction, the error propagation operator
of the resulting two-grid operator is obtained as T D S%2CS%1 : Choosing damped
Jacobi iteration with relaxation factor ! as the smoothing operator, the results on the
spectral analysis of the damped Jacobi smoother and coarse-grid correction allow us
to decompose the analysis of the two-grid operator into the subspaces

spanfv1; vN g; spanfv2; vN !1g; : : : ; spanfvn; vnC2g; spanfvnC1g

of n pairs of complementary modes and the remaining “middle mode” vnC1. The
action of T on these one- and two-dimensional subspaces is represented by the
block diagonal matrix

T D diag.T1; : : : ; Tn; TnC1/
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with

Tj D
'
+j 0

0 +j 0

(%2

2

64
1 ! c4

j

)h
j

)H
j

c2
j s2

j

)h
j 0

)H
j

c2
j s2

j

)h
j

)H
j

1 ! s4
j

)h
j 0

)H
j

3

75
'
+j 0

0 +j 0

(%1

j D 1; : : : ; n; (35)

and

TnC1 D .1 ! !/%1C%2 ;

the latter resulting from +nC1 D 1 ! ! (cf. (20)).
We begin again with the case k D 0, in which, due to (32), the 2 " 2 blocks in

(35) simplify to (see also [43])

Tj D
'
+j 0

0 +j 0

(%2
"

s2
j c2

j

s2
j c2

j

# '
+j 0

0 +j 0

(%1

with +j D 1 ! 2!s2
j ; +j 0 D 1 ! 2!c2

j :

Fixing %1 D % and %2 D 0 (pre-smoothing only) and ! D !0 (cf. (21)), this becomes

Tj D
"

s2
j +%

j c2
j +%

j 0

s2
j +%

j c2
j +%

j 0

#
; j D 1; : : : ; n; TnC1 D

!
1

3

"%

;

where

+j D
1

3

*
3 ! 4s2

j

+
; +j 0 D 1

3

*
4s2

j ! 1
+

; j D 1; : : : ; n:

Using (33a) we obtain for the spectral radius

,.Tj / D s2
j +%

j C c2
j +%

j 0; j D 1; : : : ; n; ,.TnC1/ D 3!%:

Noting that c2
j D 1 ! s2

j and s2
j 2 Œ0; 1

2
* for all j , we obtain the upper bound

,.Tj / $ R% WD max
0"t" 1

2

R%.t/; R%.t/ WD t

!
3 ! 4t

3

"%

C .1 ! t/

!
4t ! 1

3

"%

for j D 1; : : : ; n. Since R%. 1
2
/ D

#
1
3

$%
this bound holds also for TnC1. A common

upper bound for the spectral norms kTj k is obtained in an analogous way using
(33b) as

kTj k $ N% WD max
0"t" 1

2

N%.t/; N%.t/ WD

vuut2

"
t2

!
3 ! 4t

3

"2%

C .1! t/2

!
4t ! 1

3

"2%
#

;
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Table 7 Spectral radius of the two-grid operator for the Helmholtz equation with h D 1=32 for
varying wave number k and (pre) smoothing step number %. Left: standard coarse-grid operator,
right: with modified wave number on coarse grid

%n,.T / k D 0 k D 1:3# k D 4:3# k D 6:3#

1 0:3333 0:3364 0:4093 0:8857

2 0:1111 0:1170 0:2391 1:8530

3 0:0787 0:0779 0:2623 1:6455

4 0:0617 0:0613 0:2481 1:6349

5 0:0501 0:0493 0:2561 1:5832

10 0:0263 0:0256 0:2668 1:3797

%n,.T / k D 1:3# k D 4:3# k D 6:3#

1 0:3365 0:5050 0:6669

2 0:1173 0:1648 0:1999

3 0:0779 0:1012 0:1542

4 0:0614 0:0568 0:1761

5 0:0493 0:0591 0:2012

10 0:0257 0:0790 0:3916

which holds for all j D 1 : : : ; nC 1 due to N%. 1
2
/ D

#
1
3

$%
.

Table 7 (left) gives the spectral radius of the two-grid operator for the Helmholtz
equation with % steps of presmoothing using damped Jacobi for a range of wave
numbers k. We observe that the iteration is divergent for k D 6:3# , which
corresponds to a resolution of roughly 10 points per wavelength. Moreover, while
additional smoothing steps resulted in a faster convergence rate for k close to zero,
this is no longer the case for higher wave numbers. Table 7 (right) gives the spectral
radius of the same two-grid operator using the modified wave number according
to (34) on the coarse grid. We observe that, even for the unstable damped Jacobi
smoother, this results in a convergent two-grid method in this example. A more
complete analysis of the potential and limitations of this approach is the subject of
a forthcoming paper.

3.5 The Shifted Laplacian Preconditioner

An idea proposed in [21], going back to [5], which has received a lot of attention
over the last few years, see for example the references in [41], is to precondition the
Helmholtz equation (1) using a Helmholtz operator with a rescaled complex wave
number,

Ls WD !.!C .˛ C iˇ/k2/; (36)

i.e., where damping has been added. The main idea here is that if the imaginary
shift ˇ is large enough, standard multigrid methods are known to work again,
and, if the shift is not too large and ˛ # 1, the shifted operator should still
be a good preconditioner for the original Helmholtz operator, where ˛ D 1 and
ˇ D 0. We show here quantitatively these two contradicting requirements for the
one-dimensional case on the unit interval with homogeneous Dirichlet boundary
conditions and a finite difference discretization. In that case, both the Helmholtz
operator and the shifted Helmholtz preconditioner can be diagonalized using a
Fourier sine series, as we have seen in Sect. 3.4, and we obtain for the corresponding
symbols (or eigenvalues)
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OL h D 2

h2
.1 ! cos j#h/ ! k2; OL h

s D
2

h2
.1 ! cos j#h/ ! .˛ C iˇ/k2;

j D 1; : : : ; N:

Hence the preconditioned operator .L h
s /!1L h has the symbol

OL h

OL h
s

D !2C 2 cos j#hC h2k2

!2C 2 cos j#hC h2k2.˛ C iˇ/
:

The spectrum of the preconditioned operator therefore lies on a circle in the complex
plane, which passes through .0; 0/, and if ˛ D 1, the center is at . 1

2
; 0/ and the

radius equals 1
2
, as one can see using a direct calculation. Examples are shown in

Fig. 16. Since the circle passes through .0; 0/ when the numerator of the symbol of
the preconditioned operator vanishes, i.e., when

2 cos j#hC h2k2 D 2; (37)

the spectrum of the preconditioned operator is potentially unfavorable for a Krylov
method, as one can see in Fig. 16 on the right. For ˛ D 1 and ˇ small, we have

OL h

OL h
s

D 1 ! i
k2h2

!2C 2 cos j#hC k2h2
ˇ CO.ˇ2/;

which shows that the spectrum is clustered on an arc of the circle around .1; 0/, as
illustrated in Fig. 16 on the left, provided ˇ& minj D1;:::;n j!2C2 cos j#hCh2k2j.
How small must we therefore choose ˇ? A direct calculation shows that we must
choose ˇ < 1

k
in order to obtain a spectrum clustered about .1; 0/. We show in

Fig. 16 Spectrum of the Helmholtz operator preconditioned with the shifted Laplacian precondi-
tioner with ˛ D 0 and ˇ D 0:01 on the left, and ˇ D 1 on the right. The spectrum clustered
around the point (1,0) on the left is favorable for a Krylov method, while the spectrum on the right
is not, due to the eigenvalues close to zero
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Fig. 17 an illustration of this fact: from (37), we can compute a critical j where the
spectrum vanishes,

jc D
1

#h
.# ! arccos.!1C 1

2
k2h2//:

The spectrum being restricted to integer j , we can plot

d WD !2C 2 cos jc#hC k2h2;

in order to get an impression of the size of this quantity. We see in Fig. 17 that the
minimum distance d (oscillatory curve) behaves like 1=k (smooth curve), and thus
ˇ needs to be chosen smaller than 1=k for a given problem if one wants to obtain a
spectrum of the preconditioned operator close to .1; 0/.

Now, is it possible to solve the shifted Helmholtz equation effectively with
multigrid for this choice of ˇ? In order to investigate this, we use the two-grid
analysis from Sect. 3.4, now applied to the shifted Laplace problem. We show in
Fig. 18 the spectral radius of the two grid iteration operator for each frequency pair
in (30), for k D 10; 100; 1000 using 10 points per wavelength on the fine grid,
choosing in each case ˇ D 1=k. This numerical experiment shows clearly that,

Fig. 17 Illustration of how small ˇ has to be chosen in the shifted Helmholtz preconditioner in
order to remain an effective preconditioner for the Helmholtz equation. Note the log scale on the
y-axis
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Fig. 18 Spectral radius of the two grid iteration operator for all frequency pairs. On the left for
k D 10, in the middle for k D 100 and on the right for k D 1;000, with the shift ˇ D 1=k in
order to guarantee a spectrum away from .0; 0/ of the Helmholtz operator preconditioned by the
shifted Laplace preconditioner

unfortunately, for the multigrid method to converge when applied to the shifted
Laplace operator, ˇ can not be chosen to satisfy ˇ < 1=k, since already for
ˇ D 1=k the contraction factor , of multigrid grows like , ' k (note the different
scaling on the axes in Fig. 18) and thus the method is not convergent. One can
furthermore show that ˇ must be a constant, independent of k, in order to obtain a
contraction factor , < 1 and a convergent multigrid algorithm. These results suggest
a linear dependence on the wave number k of such a method, which is also observed
numerically, see for example [20].

3.6 Wave-Ray Multigrid

In [8] Brandt and Livshits proposed a variant of multigrid especially tailored to
the Helmholtz equation by exploiting the structure of the error components which
standard multigrid methods fail to eliminate. These are the so-called characteristic
components, which are discrete representations of functions of the form

u.x; y/ D v.x; y/eik1xCik2y; k2
1 C k2

2 D k2: (38)

Such factorizations are common in geometrical optics (see, e.g. [49, 52]), and from
there the terminology ray function for the amplitude term v.x; y/ and phase for the
exponent k1x C k2y is adopted. Characteristic components of the error are nearly
invisible to standard smoothing techniques since they have very small residuals on
grids which resolve these oscillations. On coarser grids they are contaminated by
phase errors and ultimately by approximation errors.

The ray functions, however, are smooth, and satisfy a convection-diffusion-type
PDE, called the ray equation, which is obtained by inserting (38) into the Helmholtz
equation. In their wave-ray multigrid method, Brandt and Livshits add so-called ray
cycles to the standard multigrid scheme, in which the ray functions of principal
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components are approximated by performing smoothing with respect to the ray
equation on auxiliary grids which they call ray grids.

We describe the basic idea for the simple 1D model problem (15) with constant
wave number k as first described in Livshits’ Ph.D. thesis [55]. Multidimensional
generalizations such as described in [8] introduce a considerable number of
technical and algorithmic complications. In 1D principal error components have
the form

v.x/ D a.x/eikx C b.x/e!ikx;

which, when inserted into the homogeneous Helmholtz equation, yields the equation

#
a00.x/C 2ika0.x/

$
eikx C

#
b00.x/ ! 2ikb0.x/

$
e!ikx D 0

which we separate into

LCa D a00 C 2ika0 D 0; L!b D b00 ! 2ikb0 D 0:

The wave-ray method employs a standard multigrid scheme, say, a V-cycle, to
first eliminate the non-characteristic components from the error eh, such that the
associated residual rh D Aheh is approximately of the form

rh
j D .rh

a /j eikxj C .rh
b /j e!ikxj ;

with smooth ray grid functions rh
a and rh

b . By a process called separation the two
components of the residual are first isolated, resulting in the right hand sides of the
two ray equations

Lh
Cah D f h

C; Lh
!bh D f h

b ;

which are each solved on separate grids and then used to construct a correction of
the current approximation.

Details of the separation technique, the treatment of multidirectional rays
necessary for higher space dimensions, suitable cycling schedules as well as the
incorporation of radiation boundary conditions can be found in [8, 55].

4 Conclusions

Solving the indefinite Helmholtz equation by iterative methods is a difficult task. In
all classical methods, the special oscillatory and non-local structure of the associated
Green’s function leads to severe convergence problems. Specialized methods exist
for all well known classes of iterative methods, like preconditioned Krylov methods
by incomplete factorizations, domain decomposition and multigrid, but they need
additional components tailored for the indefinite Helmholtz problem, which can
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become very sophisticated and difficult to implement, especially if one wants to
achieve a performance independent of the wave number k.
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63. R. V. Southwell. Relaxation Methods in Theoretical Physics. Oxford University Press, 1946.
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