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Abstract
We compare sparse grid stochastic collocation and Gaussian process emulation as sur-
rogates for the parameter-to-observation map of a groundwater flow problem related
to the Waste Isolation Pilot Plant in Carlsbad, NM. The goal is the computation of the
probability distribution of a contaminant particle travel time resulting from uncertain
knowledge about the transmissivity field. The latter is modelled as a lognormal ran-
dom field which is fitted by restricted maximum likelihood estimation and universal
kriging to observational data as well as geological information including site-specific
trend regression functions obtained from technical documentation. The resulting ran-
dom transmissivity field leads to a random groundwater flow and particle transport
problem which is solved realization-wise using a mixed finite element discretization.
Computational surrogates, once constructed, allow sampling the quantities of inter-
est in the uncertainty analysis at substantially reduced computational cost. Special
emphasis is placed on explaining the differences between the two surrogates in terms
of computational realization and interpretation of the results. Numerical experiments
are given for illustration.
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1 Introduction

By their very nature, the earth sciences have had to cope with uncertainty from early
on, and scientists from this field such as Harold Jeffreys and Albert Tarantola have
had foundational and lasting impact on how uncertainty is modeled and merged with
physical models in the interdisciplinary field now known as uncertainty quantification
(UQ). A current account of uncertainty quantification in subsurface hydrology can
be found in Linde et al. (2017). Many UQ studies involve a system governed by a
partial differential equation (PDE) in which one or more input quantities are uncer-
tain. When this uncertainty is described in probabilistic terms we arrive at a PDE with
random data, or random PDE for short. Such random data may be modeled by one
or more scalar random variables or, in case of distributed quantities, random func-
tions which in mathematical terms are stochastic processes indexed by space and/or
time and in this context usually referred to as random fields. In all these cases the
solution of the random PDE is also a random field. The task of determining the proba-
bility distribution of the solution of a random PDE, or of quantities of interest derived
from such solutions, is known as uncertainty propagation or forward UQ (cf. Ernst
et al. 2022). Approximation methods for random fields and their incorporation into
computational solution methods for random PDEs have been actively developed in
the engineering and numerical analysis communities in the past two decades, and
excellent surveys can be found in Ghanem and Spanos (1991); Babuška et al. (2010);
Schwab and Gittelson (2011); Gunzburger et al. (2014). The distinguishing feature
of these approaches is that they parameterize the approximate random PDE solution
or functionals thereof as functions—typically polynomials—of a set of independent
reference random variables whose number can be large or even countably infinite.
Reflecting the construction principles on which these approximations are based, the
approaches are called stochastic Galerkin or stochastic collocation methods. At the
same time, sampling-based simulation techniques known asGaussian process emula-
tors have gained popularity in the statistics community for solving similar problems,
cf. Sacks et al. (1989); Currin et al. (1991); Kennedy and O’Hagan (2001); O’Hagan
(2006). Here the random solution is modeled as a Gaussian process conditioned on
realizations of the solutions obtained for certain realizations of the random inputs.

Our objective in this work is the direct comparison of these two approaches using
Monte Carlo sampling as a reference in a case study on the hydrogeological transport
of radionuclides within the site assessment for a nuclear waste repository. In doing
so, we place particular emphasis on the careful construction of a stochastic model of
the random PDE data—in this case a lognormal random field modeling the uncertain
hydraulic transmissivity—using geostatistical techniques based on observational data
of transmissivity and hydraulic head aswell as additional geological background infor-
mation. Besides the computational efficiency and approximation qualities of the two
approaches, we provide an introduction to both methods highlighting the assumptions
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on which they are based and consequences for interpreting the results obtained with
each.

The uncertainty propagation techniques we shall consider are based on generat-
ing realizations (samples) of the uncertain input parameters, solving the PDE for each
realization and then determining the statistical properties of the quantities of interest in
a post-processing step. As each PDE solution typically requires considerable compu-
tational resources, the mapping of random input parameters to quantities of interest is
often substituted by surrogate models, which are considerably less costly to evaluate,
thus speeding up the uncertainty propagation analysis. The two surrogates we shall
compare, sparse polynomial collocation and Gaussian process emulation are interest-
ing in that they were developed in different fields (numerical analysis and statistics),
display different performance characteristics, and also differ in the interpretations
of the surrogates they produce. Our work is closest in spirit to Owen et al. (2017),
where Gaussian process emulation is compared with polynomial chaos expansion sur-
rogates for two black-box computer simulators. Although different in construction,
polynomial chaos surrogates yield a multivariate polynomial approximation of the
input–output map realized by the computer simulator as does stochastic collocation,
whereas the latter is considerably easier to integrate into PDE solvers. In place of a
small number of discrete parameters in the models considered in Owen et al. (2017),
the random input in our groundwater model is a random field, i.e., its realizations are
functions, which can be considered as parameterized by a countably infinite number
of parameters. The propagation of geometry-induced uncertainties in aerodynamic
modeling using surrogate models based on quasi-Monte-Carlo quadrature as well as
kriging and radial basis techniques is compared in Liu et al. (2017). An overview of
surrogate models for uncertainty quantification can be found in Sudret et al. (2017).

The remainder of the paper is organized as follows: Section 2 presents the prob-
lem of predicting the travel or exit time of radionuclides transported by groundwater
flow through a horizontal layer above the Waste Isolation Pilot Plant, an operational
underground disposal site for nuclear waste, in a scenario where a hypothetical future
accidental breach leads to the release of radioactive material. The physical as well as
the probabilistic model are presented as well as how observational data of hydraulic
transmissivity is incorporated, leading to the generation of samples of the exit time
quantity of interest. Section 3 describes the computational realization for solving the
Darcy flow equations, the construction of the truncated Karhunen-Loève representa-
tion of the random transmissivity field as well as the estimation of the cumulative
distribution function of the exit time quantity of interest. Section 4 gives detailed
description of the two surrogate types to be compared, Gaussian process emulation
and sparse polynomial collocation, emphasising their differences with respect to con-
struction, computation and interpretation. InSect. 5,wepresent the results of numerical
computations with both surrogates using original data from theWIPP site, and present
our conclusions in Sect. 6.
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2 Uncertainty propagation for a groundwater flow problem

In this section we introduce the application setting, physical model, UQ task as well
as the probabilistic model with which this is addressed.

2.1 The waste isolation pilot plant (WIPP)

The Waste Isolation Pilot Plant (WIPP) in Carlsbad, NM, is a long-term deep geo-
logic storage facility for transuranic waste operated by the U.S. Department of Energy
since 1999. One of the issues investigated in the course of an extensive performance
assessment for WIPP was the risk of hazardous materials escaping to the biosphere
in the event of a future accidental breach of the enclosure system. As the most likely
pathway for such contaminants is transport through the subsurface via groundwater,
we are led to the objective of predicting the groundwater flow and transport of con-
taminants released from the storage site. The WIPP disposal area lies within in the
Salado bedded salt formation. The Salado itself as well as the overlying formations
are essentially impermeable to groundwater with the exception of a laterally extensive
but narrow layer of rock known as theCulebra Dolomite. Details of the geological site
characterization can be found in the extensive documentation1 in the WIPP certifica-
tion and recertification applications (U.S. Department of Energy (DOE) 2004, 2014)
which are produced every five years. Figure1, taken from (U.S. Department of Energy
(DOE) 2014), shows the location of theWIPP site within the UTM coordinate system,
the location of boreholes where measurements of transmissivity and hydraulic head
were obtained as well as the boundaries of areas with distinct geological features.

A highly relevant quantity of interest in this context is the travel or exit time of
radionuclides after release from a point within the Culebra layer above the site to
reach the boundary of the repository area, the computation of which requires simulat-
ing the groundwater flow and transport in the Culebra. As the precise transmissivity
properties of the rock are uncertain, the same applies to the exit time. In the remainder
of this section we describe a model for groundwater flow and contaminant transport
in which the uncertain transmissivity is modeled stochastically, incorporating geolog-
ical background information, standard geostatistical assumptions as well as available
measurement data.

2.2 Darcy flow and particle transport

We model the flow of groundwater through the Culebra dolomite geological unit by
stationary single-phase Darcy flow. Denoting by p the hydraulic head (pressure) and
by K the (scalar) hydraulic conductivity, the volumetric flux (Darcy flux) q is given
by

q = −K∇ p. (1)

1 These can be found at https://wipp.energy.gov/epa-certification-documents.asp.
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Fig. 1 Horizontal location of WIPP repository (small black square, land withdrawal boundary LWB),
observation boreholes with markers indicating low and high transmissivity values as well as boundaries
of distinct geological features; these are accounted for in the trend model of the transmissivity field in
Sect. 2.4.1. Source: (U.S. Department of Energy (DOE) 2014)

If u denotes the pore velocity of the groundwater, which is related to the Darcy flux
in terms of the porosity φ as q = φu, conservation of mass in the absence of sources
and sinks leads to the divergence-free condition

∇· u = 0. (2)

Since the aquifer under consideration is essentially horizontal with a much larger
lateral than vertical extent, we model the flow as two-dimensional and consider the
hydraulic transmissivity T = bK in place of conductivity, where b denotes the aquifer
thickness.
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On the boundary ∂D of the bounded computational domain D, we distinguish
impermeable segments�N alongwhich the normal flux vanishes and their complement
�D = ∂D\�N , where we prescribe the value of the hydraulic head p. Denoting by n
the exterior unit normal vector along �N and by g the prescribed head data along �D ,
this leads to the boundary conditions

n · u = 0 on �N , p = g on �D. (3)

The computational domain D as well as the boundary segments �N and �D are
displayed in the left panel in Fig. 2. The Dirichlet data g is obtained by evaluating a
kriging interpolant (cf. Sect. 2.4.4) of observational hydraulic head data taken from
(U.S. Department of Energy (DOE) 2014). As the flux variable u is of primary interest
in view of the subsequent transport calculationwe employ the usualmixed formulation
of the boundary value problem presented by (1), (2) and (3). The associated variational
formulation consists in finding the pair (u, p) ∈ V × W such that

(
φb

T
u, v

)
− (p,∇· v) = −〈g, n · v〉�D ∀v ∈ V, (4a)

(∇· u, q) = 0 ∀q ∈ W (4b)

with suitable boundary data g ∈ H1/2(�D). Here (·, ·) denotes the L2(D) inner
product, the variational spaces are given by

V = {v ∈ H(div; D), n · v|�N = 0}, W = L2(D)

and 〈·, ·〉�D denotes the duality pairing H1/2(�D)× H−1/2(�D). Given the flux solu-
tion u of (4), the trajectory of a particle from a release point x0 ∈ D neglecting
hydraulic dispersion is found as the solution of the initial value problem

ẋ(t) = u(x(t)), t ≥ 0, x(0) = x0. (5)

A discussion of the regularity requirements for the Darcy flow problem (4) needed to
ensure existence and uniqueness of the particle trajectory (5) can be found in (Graham
et al. (2016), Section 5.3). As we shall see below, for the probabilistic model of trans-
missivity with finite-dimensional noise, which we shall employ in our calculations,
these requirements are satisfied. As a quantity of interest derived from the solution of
the random Darcy flow equations, we choose the logarithm of the travel or exit time of
a particle released at a location x0 inside the Culebra layer above the WIPP repository
until it reaches the boundary of the subdomain D0 ⊂ D marking the edge of theWIPP
site projected vertically up to the Culebra layer within the surrounding computational
domain D,

fexit := logmin{t > 0 : x(t) /∈ D0, x0 ∈ D0}.

The location of the release point x0, the perimeter of the WIPP site D0 as well as a
number of particle trajectory realizations from x0 to ∂D0 are displayed in Fig. 2.
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Fig. 2 Left: Computational domain D with Neumann boundary �N (blue) and Dirichlet boundary �D
(black) as well as the perimeter of the WIPP site D0 (red dashed), location of particle release point x0
(black circle), and boundary of the Salado dissolution zone D1 (yellow), cf. Section2.4.1 below, respected
by the triangular finite elementmesh. Right: Simulation of several realizations of randomparticle trajectories
from x0 to ∂D0 (colour figure online)

2.3 Probabilistic modeling of uncertain transmissivity

The primary source of uncertainty in the modeling of flow and transport in the Cule-
bra dolomite is the spatial variation of hydraulic conductivity, or, in our horizontal
two-dimensional setting, transmissivity T . The prevailing mathematical description
of uncertainty is probabilistic, i.e., the quantities in question are modeled as random
variables following a given probability distribution. The randomness thus introduced
is an expression of uncertainty due to lack of knowledge of the precise spatial variation
of transmissivity throughout the domain D in the sense that some realizations of trans-
missivity across the domain are more likely than others. Rather than a deterministic
value T = T (x), transmissivity at a point x ∈ D (scaled by porosity and thickness)
is thus expressed as a random variable T (x, ω) governed by a probability measure P
defined on a probability space (�,A,P) with elementary outcome set � carrying a
σ -algebra A on which a probability measure P is defined. The collection of all such
random variables {T (x, ω) : x ∈ D} is known as a random field, i.e., a stochastic pro-
cess for which the index variable x is a spatial coordinate.2 The most well-established
probabilistic model for transmissivity in the hydrology literature assumes that T (x, ·)
follows a lognormal distribution, i.e., that Z(x, ·) := log T (x, ·) is a Gaussian ran-
dom field (cf. Freeze (1975), Hoeksema and Kitanidis (1985) and de Marsily (1986),
Chapter 11)). By consequence, realizations of T = exp(Z) are always positive. Such a
Gaussian random field Z is completely specified by its mean and covariance function

2 We will, following statistical convention, omit the random field argument ω (or dot) denoting the ele-
mentary event for typographical convenience except when we wish to emphasize its random nature.
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Z(x) = E [Z(x)] , x ∈ D,

and c(x, y) = E
[
(Z(x) − Z(x))(Z( y) − Z( y))

]
, x, y ∈ D,

respectively, where E [·] denotes mathematical expectation with respect to P.
We assume throughout that the covariance function of Z = log T is isotropic and

that the fluctuation Z − Z is wide-sense stationary such that we have c(x, y) =
c(|x − y|), i.e., the covariance depends only on the (Euclidean) separation distance
r = |x − y|. Moreover, we assume c(r) to belong to theMatérn family of covariance
models

c(r) = σ 2

2ν−1 �(ν)

(
2
√

ν r

ρ

)ν

Kν

(
2
√

ν r

ρ

)
, r = |x − y|, (6)

where Kν denotes the modified Bessel function of order ν > 0. The quantity ν is
called the smoothness parameter, σ 2 = c(0) = Var Z(x) is the (marginal) variance
(constant in x) and the parameter ρ > 0 is called the correlation length, a measure of
how quickly the covariance decays with separation distance. A detailed justification
for using theMatérnmodel as well as a discussion of its properties and scaling variants
can be found in Stein (1999, pp. 48).

For the particular scaling (6), the Matérn covariance coincides with the exponential
covariance for ν = 1

2 , the Bessel covariance for ν = 1 and the squared exponential
covariance in the limit ν → ∞. The smoothness of the realizations of Z increases
with ν, and the spatial scale of variation is described by ρ. We determine the values of
the hyperparameters (σ, ρ, ν) by statistical estimation based on data published in the
WIPP Compliance Recertification Assessment U.S. Department of Energy (DOE)
(2014) documents, which contain measurements of transmissivity in the Culebra
dolomite at 62 boreholes throughout the assessment site (cf. Fig. 1). Figure3 dis-
plays realizations of a Gaussian random field describing Z = log T throughout the
computational domain D representing the Culebra flow domain. It can be seen that
larger values of ν result in realizations that are smoother, and smaller values of ρ lead
to structures which decorrelate faster with separation distance.

2.4 Statistical estimation of transmissivity field

As described in Sect. 2.3, we model the uncertain hydraulic transmissivity T as a
lognormal random field on the bounded simulation domain D ⊂ R

2, so that the
random field

Z := log T = Z(x) + Z̃(x, ω) (7)

is Gaussian with (deterministic) mean Z and (centered) residual field Z̃ . Due to the
complexity and irregular features of geological structures, it is crucial to merge the
stochastic model with available measurement data in a transparent fashion. Below we
summarize the statistical techniques by which available data is incorporated into the
stochastic model of uncertain transmissivity. Its construction proceeds in three steps:
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Fig. 3 Realizations of mean-zero Gaussian random fields with Matérn covariance function for different
values of ρ and ν. All plots use the same color map and σ 2 was set to 1 in each case

(1) The assumptions that T follows a lognormal distribution and that the covariance
function of log T belongs to the Matérn class;

(2) The parameters σ , ν and ρ in the Matérn covariance function (6) are determined
by restricted maximum likelihood estimation (RML);

(3) The lognormal field thus obtained is then further conditioned on the available
observations of transmissivity at the WIPP site.

We present some background on these techniques and how they are applied to our
model of WIPP transmissivity in the following subsections.

2.4.1 Regression model of mean transmissivity

The deterministic mean Z of the log-transmissivity field is constructed as a linear
regression model

Z(x) =
k∑
j=1

β j h j (x) = h(x)�β, h(x) =
⎡
⎢⎣
h1(x)

...

hk(x)

⎤
⎥⎦ , (8)
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in which the k components of h consist of regression functions from which an approx-
imate trend behavior of Z can be obtained by linear combination. Known geological
features of the area under study can be incorporated by choosing the regression
functions as, e.g., indicator functions of subdomains possessing distinguishing char-
acteristics, linear or polynomial trends to be fitted as well as the variation of available
quantities known or believed to affect the transmissivity field. Based on the available
WIPP technical documents, a model comparison was made using the five regression
functions

h1(x) ≡ 1 (constant), h4(x) = d(x) (overburden),

h2(x) = x1 (linear in x1), h5(x) = 1D1(x) (zone indicator).

h3(x) = x2 (linear in x2),

(9)

Thefirst three regression functions allow tofit a basic affine trend.Theoverburden d(x)

denotes the vertical distance between the ground surface and the top of the Culebra
layer above location x. This is an indication of the extent to which erosion has led to
stress relief on the underlying Culebra layer, possibly causing new fracturing or the
opening of pre-existing fractures and thereby enhancing transmissivity. Regression
function h5 is the indicator function of a subdomain D1 ⊂ D to the north, south
and west of the WIPP site, where dissolution of the upper Salado formation has led
to strain in the overlying rock, including the Culebra, leading to larger apertures in
existing fractures, collapse andbrecciation and thus to a generally higher transmissivity
(cf. U.S. Department of Energy (DOE) 2004).

2.4.2 Restricted maximum likelihood estimation

Under the models for the mean (8) and covariance structure (6), the Gaussian log-
transmissivity field (7) has the covariance function cθ (x, y), where θ = (σ 2, ρ, ν)

denotes the triplet of parameters consisting of variance σ 2, correlation length ρ and
smoothness parameter ν. The specification of the probabilistic model for the random
field Z consists in determining the vector β of regression coefficients and the covari-
ance parameter vector θ . It is desired that estimation techniques for these based on
observations be unbiased, i.e., that the average estimation error is zero, and that this
error be optimal in a least squares sense. Another desirable property is consistency,
whereby the estimates converge to the true values as more and more observations are
added.

The restriction of Z to a finite set of observation points {x j }nj=1 ⊂ D forms a
multivariate Gaussian random vector, which we denote by

Z : � → R
n, ω �→ Z(ω) =

⎡
⎢⎣
Z(x1, ω)

...

Z(xn, ω)

⎤
⎥⎦ . (10)
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In view of (7), its expectation is

E [Z] = Hβ, [H]i, j = h j (xi ), i = 1, . . . , n, j = 1, . . . , k,

and its joint probability density function given for ξ ∈ R
n by

p(ξ ;β, θ) = 1√
(2π)n det Cθ

exp

(
−1

2
(ξ − Hβ)�C−1

θ (ξ − Hβ)

)
, (11)

in which Cθ denotes the covariance matrix

Cθ = E
[
(Z − Hβ)(Z − Hβ)�

]
= [

cθ (xi , x j )
]n
i, j=1 ∈ R

n×n

of the random vector Z.
When the covariance parameters θ are known, an unbiased, consistent and optimal

estimate of β, given a vector of observations ζ ∈ R
n , is obtained by minimizing the

(generalized) least squares functional

‖ζ − Hβ‖2
C−1

θ

:= (ζ − Hβ)�C−1
θ (ζ − Hβ),

resulting in the estimate

β̂ = (H�C−1
θ H)−1H�C−1

θ ζ . (12)

If, by contrast, the covariance parameters θ are not known, one approach is to estimate
them from the data along with β by maximum likelihood (ML) estimation, where the
joint probability density function (11) is maximized for the given observation vector
ξ = ζ as a function of the parameters β and θ . To solve this nonlinear optimization
problem one usually minimizes the negative logarithm �(ζ ;β, θ) := − log p(ζ ;β, θ)

of the likelihood given by

�(ζ ;β, θ) = 1

2

[
n log(2π) + log det Cθ + (ζ − Hβ)�C−1

θ (ζ − Hβ)
]
. (13)

As is argued, e.g., in Kitanidis (1987), when random field hydrogeological parameters
are estimated based on data from a finite region where the separation distance of the
measurements is of the same order as the correlation length, the use of fitted means
may introduce a bias in the estimation of the covariance parameters, resulting typically
in an underestimation of both the variance and correlation length parameters. This bias
is the result of strong correlations in the observations, preventing the estimation error
from entering the asymptotic regime asmore observations are added, since the number
of independent measurements does not increase due to these strong correlations.

A remedy known as restricted maximum likelihood estimation (RML) (cf. Harville
1977; Stein 1999, p. 170) is to apply a transformation to the data which filters out
the mean. In the case of the linear model (8) for the mean, we consider the random
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vector Z′ obtained by projecting Z orthogonally onto the orthogonal complement of
the range of H , hence removing any effect of the estimated regression coefficientsβ on
the estimation of the covariance parameters. Indeed, if the columns of Q ∈ R

n×(n−k)

form an orthonormal basis of range(H)⊥, then Q�H = O and therefore the random
vector

Z′ := QQ�Z

has expectation

E
[
Z′] = E

[
QQ�(Hβ + Z̃)

]
= E

[
Z̃
] = 0

regardless of the value of β. Here Z̃ denotes the random vector obtained by restrict-
ing the residual random field Z̃ to the observation points. RML now maximizes the
likelihood of the transformed random vector Z′, which has an (n − k)-dimensional
multivariate normal distribution with zero mean and covariance matrix Q�Cθ Q ∈
R

(n−k)×(n−k). The minimizing θ can then be inserted into (12) to obtain β.

2.4.3 Hyperparameter estimation andmodel selection

For all combinations of the regression functions (9), a restricted maximum likelihood
(RML) estimation procedure detailed in Sect. 2.4.2 was used to determine the hyperpa-
rametersσ 2, ρ and ν of theMatérn covariancemodel (6) based on the 62 transmissivity
observations published in U.S. Department of Energy (DOE) (2014). Based on this
calibrated covariance structure, a model comparison was carried out following a pro-
cedure proposed in Kitanidis (1997b), in which a significance test is used to determine
whether adding further regression functions to a model better explains the data. The
test computes the sums of the decorrelated squared errors of both regression models
at the observation locations and compares their normalized relative difference. If the
the ratio exceeds a chosen quantile of a suitable F distribution, the smaller regression
model is not considered sufficient, i.e., it is a classical variance ratio test.

In this way, we arrived at a trend model (8) consisting of the regression functions
{h1, h2, h5} from (9). In the following we refer to this parametrization of the mean
as the best model and to that containing only the constant trend function h1 as the
constant model. The resulting estimates of the hyperparameters σ, ρ and ν for both
models are given in Table 1. Note that we have fixed ν = 0.5 in both cases since the
estimates for ν were sufficiently close to this value,3 which also allows amore efficient
evaluation of the associated covariance function. The regression model estimated by
the (generalized) least squares method for the mean is then

Z(x) = 143.98 − 2.55 · 10−4x1 + 3.311D1(x).

Note that the values for x1 (UTM Easting coordinates) are of order 6 · 105 for the
WIPP computational domain D.

3 If we do not fix ν = 0.5 but estimate it as well the RML results are σ̂ 2 = 6.14, ρ̂ = 2005.2, and ν̂ = 0.48.
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Table 1 Restricted maximum
likelihood estimation of
hyperparameters σ 2 (variance or
sill) and ρ (correlation length or
range) for two trend models
based on the 64 observations of
transmissivity

Trend model Sillσ 2 Range ρ Smoothness ν

h1 17.12 6509.8 0.5

h1, h2, h5 6.15 1948.0 0.5

The smoothness parameter was fixed at ν = 1/2, which corresponds
to the exponential covariance kernel

2.4.4 Conditioning on transmissivity data

Once the mean and covariance functions of the Gaussian random field Z = log T
have been determined, the log transmissivity measurements {z(x j )}Nj=1 may be used
to further calibrate the stochastic model to fit the observations in a statistical sense
using the technique known as kriging (cf. Cressie 1991; Kitanidis 1997a; Stein 1999).
Kriging refers to best linear unbiased prediction (BLUP) in which the value of the
random field Z at an arbitrary location x ∈ D is estimated as an affine combination

Ẑ = Ẑ(x, ω) = λ0(x) + λ(x)�Z(ω) (14)

of the (random) realizations Z = (Z(x1), . . . , Z(xN ))�, with spatially varying coef-
ficients λ0 : D → R and λ = (λ1(x), . . . , λN (x)) : D → R

N chosen to make the
estimator unbiased and mean square optimal, which requires that, for all x ∈ D, we
have

E
[
Ẑ(x)

]
= E [Z(x)] and E

[
|Z(x) − Ẑ(x)|2

]
→ min

λ0,λ
!.

For a known mean function Z the solution is given by the (simple) kriging prediction
or interpolation

Ẑ(x) = Ẑ(x, ω) = Z(x) + c(x)�C−1 (
Z(ω) − Z

)
,

where Z := [Z(x1), . . . , Z(xN )]�, c(x) := (c(x, x1), . . . , c(x, xN ))� and C :=
(c(xi , x j ))i, j=1,...,N ∈ R

N×N , with mean square error given via the kriging (error)
covariance

E
[∣∣∣Z(x) − Ẑ(x)

∣∣∣2
]

= ĉ(x, x), ĉ(x, y) := c(x, y) − c(x)�C−1c( y).

Note that for a Gaussian random field Z the kriging prediction Ẑ is again
Gaussian and coincides with the conditioned random field Z(x)|Z = z, where
z = (z1, . . . , zN )� with zi = z(xi ) for i = 1, . . . , N , so that Ẑ(x) ∼
N

(
Z(x) + c(x)�C−1 (

z − Z
)
, ĉ(x, ·)) . It is easily verified that at the observation

sites {x j }Nj=1 we have Ẑ(x j ) = z(x j ) and ĉ(x j , x j ) = 0, hence the kriging estimate

Ẑ of the random field Z interpolates the measurements.
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In the variant called universal kriging, the mean Z is not assumed known and
instead modelled as in (8). Forming the least squares estimate β̂ of β and proceeding
as above with Z(x) = h(x)�β̂ would fail to account for uncertainty in this estimate.
Instead, we require that unbiasedness of the kriging estimate (14) hold for all β ∈
R
k , resp. for all possible mean functions. Applying unbiasedness as a constraint in

the pointwise minimization over λ0,λ via Lagrange multipliers yields the universal
kriging prediction or interpolation

Ẑ(x) =
[
c(x)

h(x)

]� [
C H
H� 0

]−1 [
Z
0

]
, (15)

where

H =
⎡
⎢⎣
h1(x1) . . . hk(x1)

...
...

h1(xN ) . . . hk(xN )

⎤
⎥⎦ ∈ R

N×k,

or, equivalently,

Ẑ(x) = h(x)�β̂ + c(x)�C−1
(
Z − Hβ̂

)
, (16)

where β̂ = (
H�C−1H

)−1
H�C−1Z, with mean square error E

[
|Z(x) − Ẑ(x)|2

]
=

ĉ(x, x) given in this case by the universal kriging (error) covariance

ĉ(x, y) := c(x, y) − c(x)�C−1c( y) + γ (x)�Vγ ( y), (17)

where γ = h(x)−H�C−1c(x) and V = (HTC−1H)−1. Thus, the universal kriging
prediction (16) consists in obtaining the mean as the least squares estimate h(x)�β̂

and proceeding as in simple kriging. However, the universal kriging mean square error
contains the additional term γ (x)�Vγ (x) ≥ 0 compared to that of simple kriging,
which accounts for the additional uncertainty present in the estimated mean and β.
Note further that, even for Gaussian Z , the universal kriging mean and (co)variance do
not, in general, possess an interpretation as those of a conditioned Gaussian random
field as is the case with simple kriging.

We now use the universal kriged Gaussian random field Ẑ obtained from the
available log transmissivity measurements z = {z(x j )}Nj=1 as our final stochastic
model for the uncertain transmissivity field, i.e.,

Ẑ(x) ∼ N
(
ẑ(x), ĉ(x, ·))

with ĉ given in (17) and ẑ resulting by inserting the realization Z = z in (15). The
resulting kriged mean ẑ and pointwise variance ĉ are displayed in Fig. 4.
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Fig. 4 Universal kriging prediction of Z = log T based on 62 available transmissivity observations. Left:
krigedmeanfield ẑ(x). Right: pointwise kriging variance ĉ(x, x). The circularmarkers indicate the locations
(and values) of the observational log transmissivity data. The interpolation property of ẑ(x) is apparent

2.5 Uncertainty propagation for the quantity of interest

For a random transmissivity field T (ω) = T (·, ω), ω ∈ �, we consider individual
realizations of the associated randomboundary value problem in itsmixed formulation
(4), i.e.,

(
φb

T (ω)
u(ω), v

)
− (p(ω),∇· v) = −〈g, n · v〉�D ∀v ∈ V, (18a)

(∇· u(ω), q) = 0 ∀q ∈ W, (18b)

with random solution pair (u(ω), p(ω)) ∈ V × W . The Eq. (18) are now understood
as holding P-almost surely. Under suitable assumptions (cf. Babuška et al. 2007) we
have (u, p) ∈ L2

P(V × W), i.e., the norm of the solution is square integrable against
the probability measure P.

For the quantity of interest under consideration, the exit time for particle trajectories,
each realization of the random flux yields a realization of the associated random initial
value problem

ẋ(t, ω) = u(x(t, ω), ω), t ≥ 0, x(0, ω) = x0. (19)

P-almost surely, and hence, the quantity of interest becomes a random variable

fexit(ω) := logmin{t > 0 : x(t, ω) /∈ D0, x0 ∈ D0}. (20)

A complete characterization of the uncertainty in fexit is given by its cumulative
distribution function (CDF)

F(s) := P( fexit ≤ s), F : R → [0, 1].
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Due to the complexity of the problem, F cannot be given in analytic form and has to
be approximated. We comment on the computational aspects in the next section.

3 Computational realization

In this section we describe (i) the spatial discretization used for solving the Darcy
flow Eq. (4) or (18), respectively, given a realization of the transmissivity field T , (ii)
a discrete representation of the random model for the transmissivity field T as well as
(iii) a Monte Carlo approach for approximating the CDF of the quantity of interest.

3.1 Finite element solution of Darcy flow problem

We solve the Darcy flow Eq. (4a) – or individual realizations of their random form (18)
– using a mixed finite element discretization consisting of the lowest order Raviart-
Thomas space Vh ⊂ V for the flux variable and piecewise constant space Wh ⊂ W
for the hydraulic head with respect to a triangulation Th of the domain D, where h > 0
is a measure of mesh resolution. This discretization is known to be inf-sup-stable (cf.
Boffi et al. 2013, Chapter 7; Ern and Guermond 2021, Chapter 51).

We choose a fixed triangulation of the two-dimensional computational domain with
meshwidth h chosen such that at least 10 elements correspond to the correlation length
of the random transmissivity field, resulting in a mesh consisting of 28 993 triangles
with the associated finite element spaces containing 72705 degrees of freedom (43712
for flux and 28993 for hydraulic head). Note that a coarser mesh is depicted in Fig. 2
for illustration purposes. The particle tracking is performed by solving the ordinary
differential Eq. (19) for the given realization. For the lowest-order Raviart-Thomas
discretization, the constraint of zero divergence results in an elementwise constant
flux, making this computation trivial and incurring no additional discretization error.

3.2 Conditioned Karhunen–Loève expansion

Various methods exist to generate realizations of random fields, among these the
turning bands method, circulant embedding and Karhunen–Loève expansion, see (cf.
Lord et al. 2014, ). In this work, we generate approximate realizations of the Gaussian
log transmissivity field by truncating its Karhunen–Loève expansion, an orthogonal
expansion of a random field based on the spectral decomposition of its covariance
operator

C : L2(D) → L2(D), u �→ Cu, (Cu)(x) =
∫
D
c(x, y)u( y) d y, (21)

which for continuous covariance functions is compact and selfadjoint, positive definite
and hence possesses a system of orthonormal eigenfunctions (zm)∞m=1 which are com-
plete in L2(D). Denoting by λm ≥ 0 the eigenvalue (ordered descending) associated
with eigenfunction zm , a second-order random field Z on D with mean Z possesses
the expansion
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Z(x) = Z(x) +
∞∑

m=1

√
λm zm(x) ξm, x ∈ D, (22)

converging in L2, where (ξm)m∈N is a sequence of pairwise uncorrelated random vari-
ables and (λm)m∈N is square summable. In the present setting, the log transmissivity
field Z is Gaussian, as stated in Sect. 2.3, therefore we have ξm ∼ N(0, 1) for all m.

An approximation suited for computation is obtained by truncating the infinite
expansion in (22) after a finite number M of terms, hence the accuracy of the resulting
approximation

Z(x) ≈ Z(x) +
M∑

m=1

√
λmzm(x)ξm (23)

for fixed M will depend on the decay rate of the eigenvalues.
Once a truncation index M has been fixed, the random field can be regarded

as parameterized by the uncorrelated M-variate normal random vector ξ =
(ξ1, . . . , ξM )� ∼ N(0, I), which takes values in R

M . We may thus consider all ran-
dom quantities in (18), i.e., the transmissivity field T and the solution (u, p) of the
Darcy flow equations as well as the particle trajectories (19) and exit time fexit in (20)
as parameterized by realizations of this single random vector.

Explicit closed-form solutions to the eigenvalue problem (21) are known only for
a small number of special cases, hence we approximate the eigenpairs numerically.
We approximate the covariance operator C , where the covariance kernel is obtained
from the universal kriging covariance ĉ in (17), by Galerkin projection into a finite-
dimensional subspace Wh of L2(D) consisting of piecewise constant functions with
respect to a triangulation of the domain D, which we assume to be polygonal for
simplicity.4 Denoting by {φ1, . . . , φN } a basis of Wh , we represent functions in Wh

as

u(x) =
N∑
i=1

uiφi (x) (24)

with coefficient vector u = (u1, . . . , uN )�. Substituting (24) into (21), multiplying
it by test functions φ j and integrating over D we arrive at the discrete generalized
eigenvalue problem

Cu = λMu, (25)

where C is a symmetric positive semi-definite matrix with entries

[C]i, j = (Cφi , φ j )L2(D) =
∫
D

φ j (x)

∫
D
c(x, y)φi ( y) d y dx (26)

4 We use the same finite element space as for the piecewise constant discretization of the hydraulic head p
for convenience.
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Fig. 5 Computed eigenfunctions of the kriging covariance function ĉ in (17), cf. Fig. 4

and M is the symmetric positive definite Gram matrix of the piecewise constant basis
with entries

[M]i, j = (φ j , φi )L2(D) =
∫
D

φ j (x)φi (x) dx. (27)

An immediate difficulty with solving (25) is that C is a dense matrix due to the
nonlocal nature of the integral operatorC , hence generating and storing C is computa-
tionally expensive already for problems on two-dimensional domains, and even more
so in three dimensions. Note that M is diagonal due to the disjoint supports of the φi .
Moreover, even if generating and storing C were feasible, solving a dense eigenvalue
problem by the standard symmetric QR algorithm results in excessive computation
costs. We address this problem by first using an iterative method for approximating
only the dominant M eigenvalues of C using a variant of the thick-restart-Lanczos
method of Wu and Simon (2000), which requires only matrix vector products with C
in the course of the iteration. Second, we represent C in hierarchical matrix format (cf.
Hackbusch 2015), which brings the cost of generating, storing andmultuplying C by a
vector fromO(N 2) to a complexityO(N log N ). Further details on using hierarchical
matrices in the context of random field generation with the Galerkin method can be
found in Eiermann et al. (2007) and Khoromskij et al. (2009).

Figure 5 shows a few computed eigenfunctions zm for the kriging covariance func-
tion ĉ in (17) displayed in Fig. 4.

3.3 Empirical estimation of the CDF

A common and straightforwardway to approximate the CDF F of the random quantity
of interest fexit(ξ) := logmin{t > 0 : x(t, ξ) /∈ D0, x0 ∈ D0} is by generating n
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samples f1, . . . , fn of the random fexit by sampling n different realizations ξ1, . . . , ξn
of the random coefficient vector ξ in the KL expansion of log T and solving the
corresponding n boundary and initial value problems to obtain fi = fexit(ξ i ). The
empirical CDF (ECDF) of fexit(ξ) is then given by

Fn(s) = 1

n

n∑
j=1

1(−∞, f j ](s).

The ECDF Fn is a random approximation to the CDF F of the quantity of interest
fexit due to the randomly drawn samples f1, . . . , fn . We denote the error between the
(random) ECDF and the true CDF by

Dn := sup
s∈R

|F(s) − Fn(s)| . (28)

For i.i.d. samples a classical result known as Donsker’s theorem (Athreya and Lahiri
(2006), Corollary 11.4.13) states

√
nDn

d−−−→
n→∞ sup

t∈[0,1]
|B(t)|,

where B denotes a standardBrownian bridge on the unit interval [0, 1]. This theoretical
result can be employed to compute the necessary minimal sample size n for a desired
error criterion, which we fix here by requiring

P (Dn > 0.01) ≤ 0.05. (29)

Using the asymptotic result provided by Donsker’s theorem as well as P
(‖B‖C[0,1] >

1.36) ≈ 0.05, see Williams (2004, p. 343), we obtain for n ≈ 20 000 that
P (Dn > 0.01) ≈ 0.05. Hence, in the present setting this means that, for this level
of accuracy in approximating the CDF of the quantity of interest, we need to solve
n = 20 000 Darcy flow equations and compute the associated particle trajectories.
Thus, the question arises whether we could save computational work by employing
surrogates for the mapping from the random parameter vector ξ to the solution of the
random PDE or the quantity of interest fexit itself.

EstimationofCDFbasedon surrogatesAssumingnow thatwehave an approximation
f̂exit : RM → R to the quantity of interest f seen as mapping from ξ ∈ R

M → R, the
resulting approximate ECDF F̂n(s) based on n samples f̂1, . . . , f̂n of f̂exit resulting
from n samples ξ i of the random KL parameter ξ , where f̂i = f̂exit(ξ i ) is given by

F̂n(s) = 1

n

n∑
j=1

1
(−∞, f̂ j ](s).

The questionwe investigate in thiswork iswhether, for common surrogate construc-
tions such as stochastic collocation andGaussian process emulators, the approximation
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error ‖ fexit − f̂exit‖ (measured in a suitable norm) can be made smaller than the sam-
pling error Dn in the empirical estimation of the CDF. To this end, we evaluate the
quality of the surrogate f̂exit by a two-sampleKolmogorow-Smirnov (KS) test which is
a well-known hypothesis test for checking whether sets of two samples—in our case
f̂1, . . . , f̂n and f1, . . . , fn—are likely to have been drawn from the same distribution.
Specifically, in our case the KS test is passed at significance level α = 0.05 if the
KS-statistic K satisfies

K := sup
s∈R

∣∣∣F̂n(s) − Fn(s)
∣∣∣ ≤ 1.36

√
2

n
,

cf. Williams (2004).

4 Propagation surrogates

In the following, we recall sparse grid polynomial collocation and Gaussian process
emulators (GPE) as surrogate techniques for approximating a function f : � → Y
of M (random or parametric) variables ξ ∈ R

M taking values either in Y = R,
as for scalar quantities of interest such as the exit time, or a function space, e.g.,
Y = V × W , as for the solution of the mixed formulation (18) of the Darcy flow
equations with random conductivity.

Webegin by illustrating the basic principles of polynomial collocation andGaussian
process emulation for approximating a function of a single variable, i.e., � ⊆ R,
before proceeding to the technical details for the multivariate case � ⊆ R

M , where
we assume � to be of product form � = �M with � ⊆ R.

4.1 Univariate collocation and emulation

As a simple example in the style of the GPE tutorial O’Hagan (2006), consider the
function

y = f (ξ) := ξ + 3 sin
3ξ

4
, ξ ∈ � := [0, 6].

The presence of input uncertainty, i.e., uncertainty with regard to the precise value
of the independent variable ξ , is accounted for by modeling it as a random variable
ξ ∼ U[0, 6]. Suppose further that f is only accessible in the form of a finite number of
point evaluations f (ξ), as is the case for the exit time in our WIPP case study, where
each evaluation of the former requires solving the Darcy flow problem followed by
particle tracking up to the exit boundary. The task is to construct a computationally
inexpensive approximation f̂ : � → R of f given n evaluations

y j = f (ξ j ), j = 1, . . . , n.
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The points of evaluation ξ j are often called design points in the emulator literature and
nodes or knots in the context of collocation. Their choice depends on the type of sur-
rogate being constructed. We begin with an elementary numerical analysis procedure
and then contrast this with an approach rooted in the statistics community.

Polynomial Collocation In the univariate case polynomial collocation simplifies to
Lagrange interpolation by global polynomials, and the surrogate f̂ for f takes the
familiar form

f̂n(ξ) :=
n∑
j=1

f (ξ j )� j (ξ), � j (ξ) =
∏
k �= j

ξ − ξk

ξ j − ξk

with {� j }nj=1 the Lagrange fundamental polynomials associated with the nodes
{ξ1, . . . , ξn}. Although this expression is well-defined for any set of distinct nodes,
good approximation quality is only achieved if the points are chosen with care. A
classical choice for bounded intervals is the family of Clenshaw–Curtis nodes (also
called Chebyshev nodes). Scaled to the interval [0, 6], the set of n Clenshaw–Curtis
nodes is given by

ξ j = 3 + 3 cos

(
j − 1

n − 1
π

)
, j = 1, . . . , n.

Other common choices, particularly for UQ applications, are the roots of the n-th
orthogonal polynomial associated with the probability density of ξ on �, e.g., Gauss–
Legendre nodes for the uniform distribution or Gauss–Hermite nodes for the normal
distribution, cf. Babuška et al. (2010). For optimal convergence of the interpolants for
smooth functions f it is well known that the spatial distribution of the nodes ξ j ∈ �

should follow the equilibrium distribution in the sense of logarithmic potential theory,
which for the standard interval � = [−1, 1] is given by dμ(ξ) = 1/π

√
1 − ξ2, cf.

Trefethen (2013, Chapter 12). In particular, the nodes should cluster near the interval
endpoints. Figure6 shows two polynomial interpolation surrogates for f as well as
the CDF of the output f (ξ).

The approximation quality of polynomial interpolation depends not only on the
choice of interpolation nodes, but also on the smoothness of f . For example, we have
for f ∈ Cr (�), r ∈ N, that

‖ f − f̂n‖∞ ≤ cr ( f ) n
−r (

1 + �ξ1,...,ξn

)

where ‖ f − f̂n‖∞ = supξ∈�| f (ξ) − f̂n(ξ)|, cr ( f ) is a constant depending only on
r and f , and �ξ1,...,ξn denotes the Lebesgue constant of the nodes ξ1, . . . , ξn . Thus,
we should choose nodes which have a small Lebesgue constant, and one which grows
only slowly with n. This is the case for Chebyshev and Clenshaw–Curtis nodes, for
which

�ξ1,...,ξn ∈ O(log n).
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Fig. 6 The function f (ξ) = ξ +3 sin(3ξ/4) on� = [0, 6] and its Lagrange interpolation f̂n based on n = 3
and n = 5 Clenshaw–Curtis nodes (left) and the resulting CDF for the output y = f (ξ) and ŷ = f̂n(ξ),
resp., if ξ ∼ U(�)

Beside uniform convergence there are also classical results on convergence in the L p

sense Nevai (1976; 1980; 1984), e.g., for Gauss–Legendre and Gauss–Hermite nodes

lim
n→∞ ‖ f − f̂n‖L p

μ
= 0, ‖ f − f̂n‖L p

μ
=

(∫
�

| f (ξ) − f̂n(ξ)|p μ(dx)

)1/p

,

where μ = U(�) or μ = N(0, 1), respectively. However, if f has low regularity or is
discontinuous, then convergence may fail or it may take a very large number of nodes
to approximate f with sufficient accuracy.

In summary, polynomial collocation constructs a (deterministic) interpolating poly-
nomial as a surrogate for f based on evaluations of f at n judiciously chosen nodes,
for which the error decays with n at a rate depending on the smoothness of f .

Gaussian Process Emulation
The GPE approach consists in applying a method originating in geostatistics,

namely the conditioning of Gaussian processes on observations (kriging), to the input–
output map of a computer code. The latter is again represented by a scalar-valued
function f : � → R for now. Again, we assume f is only accessible via selected
point evaluations, i.e., a closed-form expression for f is not known. Thus, as for the
transmissivity of subsurface layers known only at measurement sites, the function f
is unknown but for selected evaluations f (ξ). This initial uncertainty regarding f in
the absence of point evaluations is modelled by a Gaussian process, i.e., a random
function which follows a Gaussian distribution. Then, given finitely many evaluations
f (ξ j ) at design points ξ j ∈ �, we update our knowledge about f by conditioning the
Gaussian process model on the observed data—analogous to the conditioning of the
Gaussian log transmissivity on measurements in Sect. 2.4.4. The resulting conditioned
mean function or kriging prediction is then employed as a (deterministic) surrogate f̂
for f . As an additional feature, the GPE also provides a probabilistic quantification of
the uncertainty in f which remains after conditioning, i.e., the deviation f̂ (ξ)− f (ξ)

of the conditioned Gaussian process mean at points ξ �= ξ j . This is called code or
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output uncertainty in the GPE literature, and is distinct from the input uncertainty
modelled by random ξ : we have

input uncertainty: ξ random and ξ �→ f (ξ) fixed
output uncertainty: ξ fixed and ξ �→ f (ξ) random

Of course, both uncertainty types can be superposed, as we shall see later. Thus, an
emulator provides in fact a random surrogate or statistical approximation of a function
f which in this context is referred to as the simulator (cf. O’Hagan 2006). Before we
provide a more detailed discussion of this form of output uncertainty quantification,
we briefly describe how a GPE surrogate is constructed.

Analogously to Sect. 2.3 we first choose a Gaussian process model G ∼ N(m, c)
on � with a (parametrized) mean function m : � → R, e.g.,

m(ξ) = m(ξ ;β) =
p∑

k=1

βkhk(ξ), β ∈ R
p,

and a (parametrized) covariance function c : � × � → R, e.g., a Matérn covariance
(6) or squared exponential covariance

c(ξ, ξ ′) = c(ξ, ξ ′; σ 2, ρ) = σ 2 exp(−(ξ − ξ ′)2/ρ), ξ, ξ ′ ∈ �. (30)

In a fully Bayesian approach, prior probability distributions are placed on the hyper-
parameters β, σ 2, ρ of m and c. For now, however, we assume the covariance c to be
fixed and m to be given as linear regression model—in analogy to Sect. 2.3. Concep-
tually, the Gaussian process describes our “prior beliefs” about the unknown f in the
form of, e.g., characteristic dependencies reflected in the regression functions hk in the
mean model or smoothness properties encoded in the choice of c. Given evaluations
f (ξ j ) of f at n design points ξ j , we condition the Gaussian process G on this data
and obtain Ĝn ∼ N(m̂n, ĉn) with m̂n and ĉn determined by the relations for (simple or
universal) kriging, see Sect. 2.4.4. The resulting surrogate f̂n is the conditional mean
(or kriging prediction) of Ĝn

f̂n(ξ) = m̂n(ξ) =
p∑

k=1

β̂khk(ξ) +
n∑
j=1

γ̂ j c(ξ, ξ j )

where the coefficients β̂k and γ̂k depend on ξ j and linearly on the f (ξ j ) and are
computed via universal kriging, cf. (16). We illustrate the GPE mean/surrogate for f
as above and the resulting CDF for the output f̂n(ξ) if ξ ∼ U[0, 6] in Fig. 7. Here we
have used, similar to O’Hagan (2006),

m(ξ ;β) = β1 + β2ξ, c(ξ, ξ ′) = exp

(
−1

4
(ξ − ξ ′)2

)
.
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Fig. 7 The function f (ξ) = ξ + 3 sin(3ξ/4) on � = [0, 6] and its GPE surrogates based on n = 3 and
n = 5 design points ξ j ∈ {1, 3, 5} and ξ j ∈ {0, 1, 3, 5, 6} (left) and the resulting CDF for the output

y = f (ξ) and ŷ = f̂n(ξ), resp., if ξ ∼ U(�)

The choice of design points ξ j for GPE follows different considerations than for
polynomial interpolation. It is well known that kriging coincides with kernel inter-
polation, see Scheuerer et al. (2013). If we assume for simplicity that m ≡ 0 and c
is given, then we can straightforwardly apply established approximation results from
kernel interpolation theory by Narcowich et al. (2006, Proposition 3.2); Wendland
(2004, Theorem 11.14), i.e., for f ∈ Hr (�) with r ≥ 1 and suitable5 covariance
functions c such as Matérn kernels (6)

‖ f − f̂n‖∞ ≤ Cr ( f ) Dξ1,...,ξn (�)r−
1
2

where

Dξ1,...,ξn (�) := max
ξ∈�

min
j=1,...,n

|ξ − ξ j |

denotes the fill distance of the node set {ξ1, . . . , ξn}. For the Gaussian covariance
function (30) we even obtain exponential convergence if the function f is analytic,
see Wendland (2004),

‖ f − f̂n‖∞ ≤ C( f ) rDξ1,...,ξn (�), r < 1.

Thus, for good approximation properties, GPE requires a space filling strategy for
choosing design points, i.e., one which minimizes fill distance. In the univariate case
this is achieved by equispaced points, in stark contrast to the optimal equilibrium
distribution for interpolation nodes.

As mentioned, a GPE not only provides a surrogate f̂n but also a probabilistic
quantification of the remaining pointwise error f − f̂n , which represents another

5 “Suitable” means here, that the native or reproducing kernel Hilbert space of c coincides with Hr (�).
For more details we refer to Scheuerer et al. (2013), Wendland (2004).

123



GEM - International Journal on Geomathematics            (2024) 15:11 Page 25 of 41    11 

Fig. 8 The function f (ξ) = ξ+3 sin(3ξ/4) on� = [0, 6], its GPE surrogate and the related 95%credibility
region for f (left) as well as 10 paths (or surrogates) drawn from the conditioned GP Ĝn

important difference to (polynomial) collocation. In order to better understand this
probabilistic error, recall that the conditioned Gaussian process Ĝn can be seen as
our “posterior belief” about the unknown f given n evaluations f (ξ j ). Thus, as for
the transmissivity field in subsurface flow (which is deterministic but unknown) we
model our uncertainty about the true output f (ξ) at a fixed input ξ ∈ � by Ĝn(ξ) ∼
N( f̂n(ξ), ĉn(ξ)). We illustrate the output uncertainty provided by the GPE in Fig. 8:
the left panel shows f , f̂n as well as pointwise error estimates for f − f̂n given by two
times the standard deviation of Ĝn(ξ), which can be also understood as the pointwise
95% credibility region for the unknown f (ξ); the right panel shows 10 realizations
of the Gaussian process Ĝn . Each of these could equally well be used as a surrogate
f̂n in place of m̂n , since they are also valid (random) guesses for f . In this way, Ĝn

provides a random surrogate for f .
Random draws from Ĝn can then be used to quantify the effect of the output

uncertainty about the value f (ξ) �= f̂n(ξ) within an uncertainty analysis for varying
ξ , e.g., for estimating the CDF of f (ξ)when ξ ∼ U(�), see, e.g. Oakley and O’Hagan
(2002). To explain this in more detail: Regarding the input uncertainty modelled by
ξ ∼ U(�) we would like to quantify its effect on the outcome by the CDF

F(y) = P( f (ξ) < y).

This is a deterministic function for uncertainty analysis for random ξ . However, if
we are not able to use f itself to compute F but rather use a GPE Ĝn for f , we
can, besides a deterministic approximation of F based on a deterministic surrogate f̂n
for f

F(y) ≈ Pξ ( f̂n(ξ) < y),

also incorporate our remaining output uncertainty about f via the conditioned Gaus-
sian process Ĝn for f . This then yields a random CDF

F̂n(y) = Pξ (Ĝn(ξ) < y),
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Fig. 9 Resulting CDFs for the output ŷ = f̂ (ξ), ξ ∼ U(�), based on the mean and 10 random draws from
the GPE Ĝn (left), and the resulting 95% credibility region for the CDF of y = f (ξ) derived from the GPE
(right)

due to the random Ĝn where we emphasize that the CDF is only w.r.t. randomness of
the ξ . To illustrate this we show in Fig. 9 the resulting CDFs for f̂n(ξ), ξ ∼ U(�) using
f̂n = m̂n as well as f̂n set to be each of the 10 draws from Ĝn (left) as well as the 95%
credibility region for the true (but unknown) CDF values F(y) = P( f (ξ) < y) based
on 10,000 draws from Ĝn . The credibility region thus quantifies our uncertainty about
the true CDF resulting from using a (random) surrogate instead of the true quantity of
interest f .

Discussion Polynomial collocation and Gaussian process emulators are well-
established surrogate techniques based on point evaluations of the underlying quantity
of interest f , and both approaches rely on a certain smoothness of f . However, they
also differ in several aspects. These include the type of basis functions fromwhich each
surrogate is constructed (polynomials vs. kernel functions or radial basis functions) as
well as the selection strategies for nodes ξ j (potential-theoretic equilibrium distribu-
tion vs. space filling). Moreover, the GPE surrogate f̂n = m̂n is based on minimizing
the average error w.r.t. an assumed probability distribution over a function space,
whereas interpolation error bounds are obtained from aworst-case error analysis over
a function class. We refer to Ritter (2000) for more details on these two contrasting
approaches. In particular, for GPE we explicitly assume a probability distribution for
the unknown function f , given by the prior Gaussian process model G, whereas for
collocation we simply assume that f is sufficiently smooth. This prior probability dis-
tribution for f is then updated given the data f (ξ j ) in a Bayesian fashion. Thus, GPE
can be related to Bayesian numerical analysis, see Diaconis (1988), or probabilistic
numerics, see Hennig et al. (2022), respectively, and be seen as a Bayesian approach
to kernel interpolation. In particular, the conditioned (posterior) distribution for the
unknown f provided by Ĝn yields an indicator for the remaining (output) uncertainty
about f after its evaluation at n nodes ξ j . Of course, the assumption of Gaussianity
for this computer output uncertainty is debatable. We refer to Bastos and O’Hagan
(2009) for diagnostics to validate the GP ansatz as well as to Kracker et al. (2010) for
a performance study of GPE for “Gaussian” as well as “non-Gaussian” f .
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4.2 Polynomial sparse grid collocation

Polynomial collocation in the context of UQ or parametric problems can roughly
be described as computing an M-variate polynomial approximation to f : � → Y ,
� ⊆ R

d , based on multivariate Lagrange interpolation. Sparse grid collocation uses
sparse grids as multivariate interpolation node sets in order to mitigate the curse of
dimensionality associated with straightforward tensor-product interpolation for high-
dimensional parameter spaces.

While more sophisticated sparse grid techniques have been developed in recent
years, in this work we consider a basic and simple construction known as (Smolyak)
sparse grid collocation introduced for UQ settings, e.g., in Xiu and Hesthaven (2005);
Nobile et al. (2008). To this end, assume f ∈ C(�;Y), i.e., the mapping f is contin-
uous, and denote by

Pn(�;Y) = {∑n
k=0 akξ

k : ak ∈ Y
}

the space of all Y-valued univariate polynomials of degree at most n. Then for a
given sequence of univariate node sets �k := {ξ (k)

1 , . . . , ξ
(k)
nk } ⊆ �, k ≥ 1, where

we assume n1 = 1 and nk < nk+1 throughout, we denote the associated univariate
(Lagrange) interpolation operators by

Ik : C(�;Y) → Pnk (�;Y), (Ik f )(ξ) :=
nk∑
j=1

f
(
ξ

(k)
j

)
�
(k)
j (ξ), ξ ∈ �,

with �
(k)
j ∈ Pnk (�;R) the Lagrange fundamental polynomials associated with �k .

The most immediate extension of the interpolation operator to the M-dimensional
parameter domain�would be themultivariate interpolation operatorIk : C(�;Y) →
Pnk (�;Y) obtained by tensorization

(Ik f )(ξ) := (
Ik1 ⊗ · · · ⊗ IkM

)
f (ξ) =

∑
j≤nk

f
(
ξ

(k)
j

)
�
(k)
j (ξ),

with multi-indices j = ( j1, . . . , jM ), nk = (nk1 , . . . , nkM ) ∈ N
M , multivariate nodes

ξ
(k)
j = (ξ

(k1)
j1

, . . . , ξ
(kM )
jM

) ∈ �k := �k1 × · · · × �kM , and tensorized Lagrange

fundamental polynomials �
(k)
j (ξ) = �

(k1)
j1

(ξ1) · · · �(kM )
jM

(ξM ) for ξ = (ξ1, . . . , ξM ) ∈
�. However, this construction suffers heavily from the curse of dimensionality since
the computational work for evaluating f at all points in the Cartesian product grid �k
grows exponentially with dimension M .

Sparse grid constructions, which improve this to polynomial complexity in M , are
based on the univariate detail operators

�i = Ii − Ii−1, i ≥ 1, I0 ≡ 0,
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so that Ik = ∑k
i=1 �i , yielding the tensor product interpolation operator as

Ik f =
∑
i≤k

�i f , �i = �i1 ⊗ · · · ⊗ �iM .

By contrast, the (Smolyak) sparse grid collocation operator is defined by

S�,M f :=
∑

|i−1|1≤�

�i f , |i − 1|1 :=
M∑
j=1

|i j − 1|, � ≥ 0.

By combinatorical arguments, one can obtain the equivalent combination technique
representation

S�,M f =
∑

�−M+1≤|i−1|≤�

(−1)�+M−|i |
(

M − 1

� + M − |i |
)
Ii f ,

which expresses the Smolyak operator as a linear combination of selected M-variate
tensor product interpolation operators. For the associated sparse grid

��,M :=
⋃

�−M+1≤|i−1|≤�

�i

consisting of all multivariate nodes occurring in these representations, the cardinality
|��,M | grows only polynomially w.r.t. M (cf. Novak and Ritter 1999), while the
overall order of accuracy remains close to that of the full tensor product I(�+1,...,�+1).
In particular, it can be shownBaeck et al. (2011, Proposition 1) thatS�,M is a projection
on

P�,M (�;Y):=
∑

|i−1|≤�

Pni1
(�;Y) ⊗ · · · ⊗ PniM

(�;Y).

Note, however, that in general S�,M is not interpolatory unless the univariate nodes
sets are nested �k ⊂ �k+1 Barthelmann et al. (2000, Proposition 6). The latter is the
case for Clenshaw–Curtis nodes with the “doubling sequence” nk = 2k −1 (k ≥ 1), or
(weighted) Leja nodes with linear growth nk = k (Ernst et al. 2021). In the following,
we shall use the non-nested nodal sequence of Gauss-Hermite nodes, i.e., the roots of
Hermite polynomials. This choice is common for collocation applied to functions of
Gaussian random variables, see Babuška et al. (2007), Nobile et al. (2008), Ernst and
Sprungk (2014).

Convergence and Application If f is sufficiently smooth then S�,M f can be shown
to converge to f , specifically

‖ f − S�,M f ‖L2
μ

∈ O
(|��,M |−r ) ,
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for an r < 1 using Gauss-Hermite nodes ξ
(k)
i with linear growth nk = k or doubling

growth nk = 2k−1+1 (k ≥ 1), see, e.g., Ernst and Sprungk (2014); Ernst et al. (2018).
The rate of convergence r w.r.t. the number of collocation points depends, of course,
on the smoothness class of f . In particular, it is well-known that sparse grid techniques
such as Smolyak’s construction above require a dominating mixed smoothness of f
to work well, see, e.g., references Novak and Ritter (1999), Barthelmann et al. (2000),
Sickel and Ullrich (2007), Ernst et al. (2018) for more details.

It was shown in Ernst and Sprungk (2014, Section 3) that the solution (u, p) of the
random/parametric mixed variational problem (4) allows for a holomorphic extension
into C

M under suitable assumptions, which are satisfied by truncated KL expansions
(23) of a lognormal transmissivity field. Thus, applying S�,M to approximate the
solution map (u, p) : � → V × W is justified. By contrast, the quantity of interest
given by the exit time fexit may, in general, not even be a continuous function of
the parameters ξ , as is immediate from considering the case of a particle grazing
the exit boundary and returning into the domain for a particular parameter setting.
Thus, applying S�,M to approximate fexit directly may lead to inaccurate surrogate
approximation or even divergence with increasing |��,M |.

However, a simple remedy is to use the surrogate

f̂exit,� = Gexit
(
S�,Mu

)

where Gexit : V → R denotes the mapping from a velocity field on D to the log
breakthrough time of a particle following this field released at x0 at time t = 0, which
is inexpensive to evaluate compared to solving the Darcy flow equations. Then, since
L2-convergence implies convergence in distribution, assuming that the set of points
of discontinuity of the mapping Gexit has probability measure zero, we have by the
continuous mapping theorem of probability theory

lim
�→∞ ‖F − F̂�‖∞ = 0, F̂�(s) := Pξ∼μ

(
Gexit

(
S�,Mu(ξ)

) ≤ s
)
,

where F denotes the true CDF of fexit Thus, we are assured convergence of the
CDF based on the surrogate S�,Mu for the true velocity u to the true CDF for the
breakthrough time.

4.3 Gaussian process emulators

Having described basic GPEmethodology in Sect. 4.1, we now turn to the construction
of GPEs for multivariate scalar-valued functions f : � → R. Again, the approach is
similar to multivariate geostatistics. We shall consider the full Bayesian approach to
GPE (cf. Kennedy and O’Hagan 2001, O’Hagan 2006), which also entails specifying
prior distributions for the hyperparameters contained in the mean and covariance
functions which are also conditioned on the evaluations of f at the design points ξ j .
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As before, we start with a linear regression model for the mean

m : � → R, m(ξ) = m(ξ ;β) =
p∑

k=1

βkhk(ξ), β ∈ R
p,

with known regression functions h = (h1, . . . , h p), hk : � → R (h1 ≡ 1 and
h2(ξ) = ξ are common choices) and unknown coefficients β = (β1, . . . , βp)

�. For
the emulator’s covariance function c : � × � → R we fix the squared exponential
kernel

c(ξ , ξ ′) = c(ξ , ξ ′; σ 2, B) = σ 2 exp(−(ξ − ξ ′)�B(ξ − ξ ′)), ξ , ξ ′ ∈ �, (31)

where σ 2 > 0 is themarginal variance and B = diag(b1, . . . , bM ) ∈ R
M×M , bi > 0 is

a matrix of so-called smoothness parameters. For the squared exponential covariance
(31) and choices for h1 and h2 mentioned above, it is known that the realizations of the
Gaussian process are almost surely analytic w.r.t. ξ . For other covariance functions,
such as the family ofMatérn kernels, one obtains Gaussian processes with realizations
of different smoothness orders.6

Thus, for fixed given β, σ 2, and B, the (prior) Gaussian process model for the
output of f for an arbitrary input ξ ∈ � is

f (ξ) ∼ N(m(ξ ;β), c(ξ , ξ ; σ 2, B)).

Similarly, for fixed β, σ 2, and B, the vector f = (
f (ξ1), . . . , f (ξn)

)� of values of
the Gaussian process at a set of design points {ξ1, . . . , ξn} has the n-variate Gaussian
distribution

f = (
f (ξ1), . . . , f (ξn)

)� ∼ N(Hβ,Cσ 2,B)

where H = (hk(ξ j )) ∈ R
n×p and Cσ 2,B = (c(ξi , ξ j ; σ 2, B)) ∈ R

n×n . We denote
the probability density of this random vector f ∈ R

n by

p( f | β, σ 2, B) ∝ exp

(
−1

2
( f − Hβ)�C−1

σ 2,B
( f − Hβ)

)
.

Suitable values for the parameters β, σ 2, and B are usually not known a priori and
should be inferred based on the evaluations f . This is typically done in a Bayesian
fashion, i.e., we choose hyperpriors for these parameters which are then conditioned
on the data f = (

f (ξ1), . . . , f (ξn)
)�. Common choices for (β, σ 2) are a normal-

inverse-gamma prior or a Jeffreys prior with density p(β, σ 2) ∝ σ−2 (cf. Oakley
and O’Hagan 2002, Stone 2011) since these allow for closed-form expressions for the

6 We have also explored other covariance models such as the Matérn kernels for GPE surrogates; however,
the overall conclusions in the numerical experiments were about the same as for the squared exponential
(31).
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resulting (marginal) posteriors. Given evaluations f , the resulting posterior for the
parameters (β, σ 2) is then

p(β, σ 2 | f , B) ∝ p( f | β, σ 2, B) p(β, σ 2).

For the estimation of the smoothness parameters B a “full” Bayesian inference based
on data f would require Markov chain Monte Carlo simulations. Instead, one often
simply computes a point estimate based on maximizing the marginal likelihood p( f |
B) ∝ ∫

p(β, σ 2 | f , B)p(β, σ 2) dβ dσ 2 for which analytic formulas are available
Stone (2011, Section 2.3.4). This often yields competitive results to a full Bayesian
inference Kracker et al. (2010).

Given f , the posterior density for the output f (ξ) at new location ξ is then

p( f (ξ) | f ,β, σ 2, B) ∝ p( f | β, σ 2, B)p(β, σ 2 | f , B).

Marginalization by integrating out β and σ 2 can be done analytically for a normal-
inverse-gamma or Jeffreys prior p(β, σ 2) and results in a Student-t process (cf. Shah
2014) for the prediction of the output of f , i.e.,

f (ξ) | f ∼ tn−p

(
m̂n(ξ), σ̂ 2ĉn(ξ , ξ)

)
, (32)

where m̂n and ĉn are the mean and covariance obtained by universal kriging applied to
f given the observations f (see (16) and (17)) with σ 2 = 1, respectively, and where
σ̂ 2 is given by

σ̂ 2 = 1

n − p
f�C−1/2

(
I − C−1/2H

(
H�C−1H

)−1
H�C−1/2

)
C−1/2 f .

For the prediction of f at multiple new points we obtain a multivariate Student-
t-distribution with mean vector given by the evaluation of m̂n at those points and
covariance matrix given by evaluating σ̂ 2ĉn .

Regarding the choice of the design points for multivariate GPE we require again
space filling designs. For compact � ⊂ R

M these are, e.g., Sobol’ points (Owen et al.
2017) or Latin hypercube designs (Viana 2015). The latter extend also to � = R

M

w.r.t.μ = N(0, I) as we require for theWIPP problem. As for the appropriate number
n ∈ N of training points �n = {ξ1, . . . , ξn} ⊂ �, a common rule of thumb calls for
n = cM (Loeppky et al. 2009) with a factor c ≥ 10.

Convergence and Application Since the GPE surrogate f̂n = m̂n and its covariance
ĉn are derived by universal kriging, we can again exploit the relation between kriging
and kernel interpolation (Scheuerer et al. 2013). Again, assume m ≡ 0 for simplicity
and c fixed as in (31). Then for compact � ⊂ R

M and analytic f : � → R we have

‖ f − f̂n‖∞ ≤ C( f ) rDξ1,...,ξn (�),
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for a 0 < r < 1 as well as

ĉn(x, x) ≤ C r2Dξ1,...,ξn (�).

Thus, besides uniform convergence of the surrogate f̂n → f , we also have vanishing
output uncertainty regarding f (ξ) as n → ∞—which is a consistency statement for
the posterior for f here given by the Gaussian or Student-t process Ĝn . However, to
our knowledge, no L2-convergence statements are available for the case of unbounded
� = R

M , as the setting of the WIPP problem would require.
In the next section we will apply GPE to approximate the quantity of interest fexit

directly. Thus, for convergence with n → ∞, we require fexit to be sufficiently smooth
(see above) which may not be the case in general. However, it may well be that the
surrogate f̂n and the related output uncertainty provided by the GPE for finite n = cM
design points is sufficiently accurate for CDF estimation. We note that also vector-
valued GPE are available, see Álvarez et al. (2012), Bilionis et al. (2013), Cleary et al.
(2021), Higdon et al. (2008). Hence, we could apply a GPE to approximate the FE
solution of the random parametric variational problem (which depends analytically on
ξ , see comment above) and proceed as for polynomial collocation to provide approx-
imate samples of fexit(ξ). We do not consider this option in this work, since the FE
space is very high dimensional (of order 104) and thus the GPE would involve too
many parameters to estimate based on not more than 20, 000 design points.

5 Numerical results

We now perform a numerical study comparing sparse grid polynomial collocation and
Gaussian process emulators as surrogates for the task of approximating the CDF of
the exit time fexit(ξ) using M terms and coefficients ξ ∼ N(0, I) in the truncated KL
expansion of the log transmissivity field Z = log T . We vary M = 10, 20, 30 and
apply the following three surrogate approaches:

• SGC-PDEWe apply Smolyak sparse grid polynomial collocationS�,M to approxi-
mate the solution pair (u, p) of themixed formulation and then obtain approximate
samples f̂exit(ξ i ) of the exit time by simulating the particle transport given the
approximate velocity field S�,Mu(ξ i ), i.e., f̂exit(ξ i ) = Gexit(S�,Mu(ξ i )) where
ξ i ∼ N(0, I), i = 1, . . . , N iid.

• SGC-QoI We apply Smolyak sparse grid polynomial collocation S�,M directly to
approximate the exit time fexit(ξ i ) and in this way obtain approximate samples
via f̂exit(ξ i ) = S�,M fexit(ξ i ) where ξ i ∼ N(0, I), i = 1, . . . , N iid.

• GPE We apply Gaussian process emulation to approximate the exit time fexit(ξ i )
and obtain approximate samples via f̂exit(ξ i ) = m̂n(ξ i ) where ξ i ∼ N(0, I),
i = 1, . . . , N iid and m̂n denotes the GPE mean.

For each surrogate we generate N = 20 000 approximate samples of the quantity of
interest and compare these to N = 20 000 samples of the “true” fexit evaluated by solv-
ing the Darcy flow equations and particle transport problem each time (denoted MC
forMonte Carlo in the following). The number N = 20 000 of samples is derived from
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Fig. 10 Empirical CDFs obtained by Monte Carlo, SGC and GPE surrogates for different lengths M of the
KLE

the error criterion outlined in Sect. 3.3. For SGCweuse different levels � = 1, 2, 3, and
for the GPE different numbers of design points n = cM with c = 10, 20, 30, 50, 100.
We show the resulting empirical CDFs for the log exit time in Fig. 10. It is apparent
that, for each M = 10, 20, 30, all surrogate methods yield a very good fit to the ref-
erence ECDF obtained by the plain Monte Carlo approach. Slight deviations can be
seen for the lowest level � = 1 for SGC-QoI, but, at least for � ≥ 2, it is difficult
to distinguish the four ECDFs. Therefore, we take a closer look at the performance
of the surrogates in Table 2, where we report the resulting values of the KS statis-

tic K = sups∈R
∣∣∣F̂n(s) − Fn(s)

∣∣∣ of the empirical CDF Fn obtained by Monte Carlo

sampling of fexit and the empirical CDF F̂n obtained by Monte Carlo sampling of the
surrogate f̂exit. Moreover, we indicate by an asterisk that the error K in the ECDFs
is negligible, i.e., that the Kolmogorov–Smirnov test is passed (at significance level
α = 0.05), and hence there is no indication that the samples were drawn from different
distributions. We make the following observations:

• For M = 10, 20 all three surrogates pass the KS-test at least for level � ≥ 2
(SGC) or n ≥ 30M design points (GPE). For M = 30 this is also the case
for SGC-PDE with � ≥ 2 and GPE with n = 100M . Thus, by employing the
considered surrogates we can obtain an ECDF for the exit time which is essentially
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Table 2 Performance of the SGC andGPE surrogates for different lengthsM of theKL expansionmeasured
by the value of the resulting KS statistic K

Surrogate M = 10 M = 20 M = 30

n K n K n K

SGC-PDE � = 1 21 0.0128* 41 0.0281 61 0.0495

SGC-PDE � = 2 241 0.0028* 881 0.0045* 1921 0.0118∗
SGC-PDE � = 3 2001 0.0019* 13,201 0.0023* 41,601 0.0052∗
SGC-QOI � = 1 21 0.0271 41 0.0293 61 0.0435

SGC-QOI � = 2 241 0.0065* 881 0.0088* 1921 0.0196

SGC-QOI � = 3 2001 0.0048* 13,201 0.0089* 41,601 0.0138

GPE c = 10 100 0.0136 200 0.0245 300 0.0309

GPE c = 20 200 0.0092* 400 0.0191 600 0.0228

GPE c = 30 300 0.0062* 600 0.0116* 900 0.0171

GPE c = 50 500 0.0041* 1000 0.0070* 1500 0.0141

GPE c = 100 1000 0.0031* 2000 0.0064* 3000 0.0087∗
Here, n refers to the number of PDEs to be solved for building the surrogate and an asterisk denotes that
the KS-test was passed at significance level α = 0.05

indistinguishable (for α = 0.05) from the “true” ECDF but which required just a
fraction of the computational cost of the latter. Indeed, compared to N = 20 000
solutions of theDarcy flow equations, we requiremerely between≈ 200 (M = 10)
and ≈ 2000 (M = 30) PDE solves when a surrogate is used.

• For SGC-PDE as well as SGC-QOI we observe a steep increase in the number of
PDE solves n with M but overall a robust and good performance.

• For the SGC-QoI approach we observe a significantly worse performance for
M = 30 which may be due to insufficient (mixed) smoothness of fexit.

• For the GPE approach we observe deteriorating performance for increasing M ,
i.e., we require a larger factor c for the number of design points n = cM in order
to pass the KS test and have small values of K (c = 20 for M = 10, c = 30 for
M = 20 and c = 100 for M = 30). This may be due to the curse of dimensionality
for kernel interpolation methods.

Changing the trend model for log T
Despite the overall positive observations for the employed surrogates made so far we
report how the outcome may change if we simply use a different trend model for
the mean of the log transmissivity field log T . Instead of using the constant, linear in
x1, and zone indicator regression functions h1, h2, and h5, respectively, see (9), we
only use the constant h1. This leads to a different Matérn covariance function used
for log T , see Table 1 and thus also to different eigenvalues and eigenfunctions in the
KL expansion. Moreover, the smoothness properties of the mapping ξ �→ fexit(ξ)

may change as well. In fact, in Table 3 we observe a much diminished performance
of all three surrogate techniques: Now only SGC-PDE passes the KS test and only
for the shorter KL truncation kength M = 10, 20. However, SGC-PDE and GPE
provide a visually acceptable fit to the reference ECDF in Fig. 11, whereas we clearly
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Table 3 Rerun of Table 2 but for constant mean for log T

Surrogate M = 10 M = 20 M = 30

n K n K n K

SGC-PDE � = 1 21 0.0537 41 0.0653 61 0.0621

SGC-PDE � = 2 241 0.0123* 881 0.0130* 1921 0.0146

SGC-PDE � = 3 2001 0.0121* 13,201 0.0345 41,601 0.0387

SGC-QOI � = 1 21 0.1099 41 0.1340 61 0.1301

SGC-QOI � = 2 241 0.0485 881 0.0798 1921 0.0697

SGC-QOI � = 3 2001 0.0369 13,201 0.0577 41,601 0.1711

GPE c = 10 100 0.0366 200 0.0546 300 0.0815

GPE c = 20 200 0.0373 400 0.0415 600 0.0591

GPE c = 30 300 0.0153 600 0.0368 900 0.0615

GPE c = 50 500 0.0188 1000 0.0405 1500 0.0415

GPE c = 100 1000 0.0192 2000 0.0258 3000 0.0422

An asterisk denotes that the KS test was passed at significance level α = 0.05

Fig. 11 Rerun of Fig. 10 but for constant mean for log T
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Fig. 12 95% credibility region for CDF of breakthrough time based on GPE with n = 300 for M = 30 KL
terms for different trend models

see a deterioration for the SGC-QoI surrogate. This distinctly worse performance of
SGC-QoI may be due to insufficient smoothness of ξ �→ fexit(ξ) in this case.

For the GPE surrogate we also evaluate to what extent the accompanying Gaussian
model for this surrogate’s output uncertainty covers the deviation from the reference
CDF. To this end, we focus on the setting where the GPE surrogate performs worst,
i.e., M = 30 using n = 300 design points, and compute a 95% credibility region
for the CDF based on 10000 random draws of surrogates from the trained GPE. The
results are reported in Fig. 12 for both trend models. We observe that the Gaussian
output uncertaintymodel appears overconfident in the case of the constant trendmodel.
Thus, this experiment indicates that a sufficiently good performance of the surrogates
for CDF estimation of exit times may depend on various aspects of the problem—such
as the choice of the trend model for the log transmissivity field.

Convergence StudyThe negative results for the constant trendmodel raise the question
whether we simply did not use enough design points n or sufficiently high sparse
collocation level � for the GPE and SGC surrogates, respectively, or whether the
quantity of interest is simply too rough to be approximated well by these methods.
To this end, we perform a convergence study for both scenarios: constant trend model
and “best” trend model using h1, h2, and h5 in (9). We report the associated L2

μ-
errors of the SGC surrogates for the flux u and the quantity of interest in Tables 4
and 5, respectively. We notice significantly larger errors for the constant trend model.
In order to allow for a sufficiently high polynomial degree for SGC to observe a
significant error decay, we restrict ourselves to the low-dimensional case of M = 2
and M = 5 KL terms. We report the resulting errors of the velocity and the quantity of
interest in Fig. 13. There we clearly observe a decaying error for increasing level � and
number of sparse grid nodes |��,M |, respectively. Moreover, we observe that the rate
of convergence for both quantities is affected by the larger number of KL terms and
the choice of the trend model. The former was already observed in Ernst and Sprungk
(2014). The latter is also related to an observation made in Ernst and Sprungk (2014):
since the constant trend model yields a larger estimated value for the variance σ 2, this
in turn leads to a slower convergence rate of SGC.
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Table 4 L2μ(�, H(div; D)) error of SGC surrogates for the flux u for the two different trend models

Trend model Surrogate M = 10 M = 20 M = 30

h1,h2,h5 SGC � = 1 5.9897E-3 1.2933E-2 1.6810E-2

SGC � = 2 2.1354E-3 6.3868E-3 9.3400E-3

SGC � = 3 6.1168E-4 2.5686E-3 4.3738E-3

SGC � = 1 4.0723E-2 1.1149E-1 1.7963E-1

h1 SGC � = 2 4.0331E-2 1.1113E-1 1.7329E-1

SGC � = 3 3.9595E-2 1.0598E-1 1.6928E-1

Table 5 L2μ(�,R) error of SGC surrogates for the exit time fexit for the two different trend models

Trend model Surrogate M = 10 M = 20 M = 30

h1, h2, h5 SGC � = 1 1.2296E-3 2.7434E-3 6.0602E-3

SGC � = 2 1.2699E-4 4.8917E-4 2.1426E-3

SGC � = 3 2.0075E-5 9.6514E-5 4.4401E-4

h1 SGC � = 1 7.0990E-3 1.5259E-2 2.8396E-2

SGC � = 2 2.9464E-3 7.7314E-3 1.5502E-2

SGC � = 3 1.9730E-3 9.2632E-3 1.8001E-2

Fig. 13 L2μ-error of SGC surrogates for the velocity u (left) and exit time fexit (right). For the flux we used
the norm in H(div; D) to quantify the difference between u(ξ) and S�,Mu(ξ)

Regarding the application of GPE to approximate the quantity of interest, we per-
form a similar study as for SGC using M = 2 and M = 5 KL terms. The results
are displayed in Fig. 14. We observe that the L2

μ-error (left panel) does not decay
with increasing number of design points, at least not in the applied regime of up to
n = 1000M design points. Despite this, we observe a decay of the KS test statistic
value K , i.e., the L∞-error of the ECDF for the quantity of interest, except for M = 5
and the constant trend model.
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Fig. 14 L2μ-error (left) and K-S test value K (right) of GPE surrogates for exit time fexit

6 Conclusion

In this work we have presented a complete uncertainty propagation workflow for
groundwater flow and particle transport simulations based on a real-world application
related to the site performance assessment for a nuclear waste repository.We described
in detail the construction of a stochastic model for an uncertain transmissivity field by
geostatistical methods using the available observational data. Our main focus was the
direct comparison of two established surrogate approaches for uncertainty propaga-
tion analysis: sparse grid stochastic collocation and Gaussian process emulation. Both
methods originate from different communities, i.e., numerical analysis and computa-
tional statistics, respectively.Our purposewas to describe and contrast the fundamental
ideas and principles underlying both methods and compare their performance for the
UQ problem under consideration, specifically for CDF estimation for scalar quantities
of interest, in this case the travel time of groundwater-borne radionuclides. The over-
all conclusion is that both methods can achieve significant reduction in computational
cost over naiveMonte Carlo simulation, reducing the computational burden by a factor
of 10 to even 100 in some cases considerered. Moreover, we have observed that the
GPE surrogate seems to be more adversely affected by the high dimensionality of the
input space compared with sparse grid collocation, which is not surprising given the
unfavorable scaling of the filling distance with dimension. On the other hand, stochas-
tic collocation must also be applied with care, since the quantity to be approximated
has to depend sufficiently smoothly on the random inputs—such as the solution of the
random PDE. However, the remarkable performance of both surrogates seems to be
affected by modelling choices for the random log transmissivity field such as choice
of the trend or regression model for the mean. Although this effect could be explained
mathematically in our case, it does place limitations on the practical benefits of UQ
surrogate methods for CDF estimation in groundwater flow applications.
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