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Abstract This work is a follow-up to our previous contribution (“Convergence of
sparse collocation for functions of countably many Gaussian random variables (with
application to elliptic PDEs)”, SIAM J. Numer. Anal., 2018), and contains further
insights on some aspects of the solution of elliptic PDEs with lognormal diffusion
coefficients using sparse grids. Specifically, we first focus on the choice of univariate
interpolation rules, advocating the use of Gaussian Leja points as introduced by
Narayan and Jakeman (“Adaptive Leja sparse grid constructions for stochastic
collocation and high-dimensional approximation”, SIAM J. Sci. Comput., 2014)
and then discuss the possible computational advantages of replacing the standard
Karhunen-Loève expansion of the diffusion coefficient with the Lévy-Ciesielski
expansion, motivated by theoretical work of Bachmayr, Cohen, DeVore, and
Migliorati (“Sparse polynomial approximation of parametric elliptic PDEs. part II:
lognormal coefficients”, ESAIM: M2AN, 2016). Our numerical results indicate that,
for the problem under consideration, Gaussian Leja collocation points outperform
Gauss–Hermite and Genz–Keister nodes for the sparse grid approximation and that
the Karhunen–Loève expansion of the log diffusion coefficient is more appropriate
than its Lévy–Ciesielski expansion for purpose of sparse grid collocation.
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1 Introduction

We consider the sparse polynomial collocation method for approximating the
solution of a random elliptic boundary value problem with lognormal diffusion
coefficient, a well-studied model problem for uncertainty quantification in numerous
physical systems such as stationary groundwater flow in an uncertain aquifer.
The assumption of a lognormal diffusion coefficient, i.e., that its logarithm is a
Gaussian random field, is a common, quite simple approach for modeling uncertain
conductivities with large variability in practice (a discussion on this and other, more
sophisticated models for the conductivity of aquifers can be found e.g. in [34],
empirical evidence for lognormality is discussed in [17]), but already yields an
interesting setting from a mathematical point of view. For instance, a lognormal
diffusion coefficient introduces challenges, e.g., for stochastic Galerkin methods
[18, 23, 32] due to the unboundedness of the coefficient and the necessity of solving
large coupled linear systems. By contrast, stochastic collocation based on sparse
grids [1, 36, 37, 48] has been established as a powerful and flexible non-intrusive
approximation method in high dimensions for functions of weighted mixed Sobolev
regularity. The fact that solutions of lognormal diffusion problems belong to this
function class has been shown under suitable assumptions in [2]. Based on the
analysis in [2], we have established in [14] a dimension-independent convergence
rate for sparse polynomial collocation given a mild condition on the univariate node
sets. This condition is, for instance, satisfied by the classical Gauss-Hermite nodes
[14]. In related work, dimension-independent convergence has also been shown for
sparse grid quadrature [10].

This work is a follow-up on our previous contribution [14] and provides
further discussion, insights and numerical results concerning two important design
decisions for sparse polynomial collocation applied to differential equations with
Gaussian random fields.

The first concerns the representation of the Gaussian random field by a series
expansion. A common choice is to use the Karhunen-Loève expansion [21] of the
random field. Although it represents the spectral, and thus L2-optimal, expansion
of the input field, it is not necessarily the most efficient parametrization for
approximating the solution field of the equation. In particular, in [2, 3] the authors
advocate using wavelet-based expansions with localized basis functions. A classical
example of this type is the Lévy-Ciesielski (LC) expansion of Brownian motion
or a Brownian bridge [7, 11], which employs hat functions, whereas the KL
expansion of the same random fields results in sinusoidal (hence smoother and
globally supported) basis functions. A theoretical advantage of localized expansions
of Gaussian random fields is that for these it is easier to verify the (sufficient)
condition for weighted mixed Sobolev regularity of the solution of the associated
lognormal diffusion problem. In this work, we conduct numerical experiments with
the KL and LC expansions of a Brownian bridge as the lognormal coefficient in
an elliptic diffusion equation in order to study their relative merits for sparse grid
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collocation of the resulting solution. We note that finding optimal representations of
the random inputs is a topic of ongoing research, see e.g. [8, 39, 46].

The second design decision we investigate is the choice of the univariate
polynomial interpolation node sequences which form the building blocks of sparse
grid collocation. Established schemes are Lagrange interpolation based on Gauss–
Hermite or Genz–Keister nodes. However, the former are non-nested and the latter
grow rapidly in number and are only available up to a certain level. In recent
work, weighted Leja nodes [33] have been advocated as a suitable nested and
slowly increasing node family for sparse grid approximations, see, e.g., [15, 28, 47]
for recent applications in uncertainty quantification. However, so far there exist
only preliminary results regarding the numerical analysis of weighted Leja points
on unbounded domains, e.g., [27]. We provide numerical evidence that Gaussian
Leja nodes, i.e., weighted Leja nodes with Gaussian weight, satisfy as well the
sufficient condition given in [14] for dimension-independent sparse polynomial
collocation. Moreover, we compare the performance of sparse grid collocation based
on Gaussian Leja, Gauss–Hermite and Genz–Keister nodes for the approximation
of the solution of a lognormal random diffusion equation.

The remainder of the paper is organized as follows. In Sect. 2 we provide the
necessary fundamentals on lognormal diffusion problems and discuss the classical
Karhunen–Loève expansion of random fields and expansions based on wavelets.
Sparse polynomial collocation using sparse grids are introduced in Sect. 3, where
we also recall our convergence results from [14]. Moreover, we discuss the use of
Gaussian Leja points for quadrature and sparse grid collocation in connection with
Gaussian distributions in Sect. 3.2. Finally, in Sect. 4, we present our numerical
results for sparse polynomial collocation applied to lognormal diffusion problems
using the above-mentioned univariate node families and expansion variants for
random fields. We draw final conclusions in Sect. 5.

2 Lognormal Elliptic Partial Differential Equations

We consider a random elliptic boundary value problem on a bounded domain D ⊂
R

d with smooth boundary ∂D,

− ∇ · (a(ω) ∇u(ω)) = f in D, u(ω) = 0 on ∂D, P-a.s. , (1)

with a random diffusion coefficient a : D × Ω → R w.r.t. an underlying
probability space (Ω,A ,P). If a(·, ω) : D → R satisfies the conditions of the
Lax–Milgram lemma [22] P-almost surely, then a pathwise solution u : Ω →
H 1

0 (D) of (1) exists. Under suitable assumptions on the integrability of amin(ω) :=
ess infx∈D a(x, ω) one can show that u belongs to a Lebesgue–Bochner space
L

p

P
(Ω; H 1

0 (D)) consisting of all random functions v : Ω → H 1
0 (D) with ‖v‖Lp :=(∫

Ω
‖v(ω)‖p

H 1
0 (D)

P(dω)

)1/p

.



4 O. G. Ernst et al.

In this paper, we consider lognormal random coefficients a, i.e., where
log a : D × Ω → R is a Gaussian random field which is uniquely determined by
its mean function φ0 : D → R, φ0(x) := E

[
log a(x)

]
and its covariance function

c : D × D → R, c(x, x ′) := Cov(log a(x), log a(x ′)). If the Gaussian random field
log a has continuous paths the existence of a weak solution u : Ω → H 1

0 (D) can be
ensured.

Proposition 1 ([9, Section 2]) Let log a in (1) be a Gaussian random field with
a(·, ω) ∈ C(D) almost surely. Then a unique solution u : Ω → H 1

0 (D) of (1) exists
such that u ∈ L

p

P
(Ω; H 1

0 (D)) for any p > 0.

A Gaussian random field log a : D × Ω → R can be represented as a series
expansion of the form

log a(x, ω) = φ0(x) +
∑
m≥1

φm(x) ξm(ω), ξm ∼ N(0, 1) i.i.d., (2)

with suitably chosen φ0, φm ∈ L∞(D), m ≥ 1. In general, several such expansions
or expansion bases {φm}m∈N, respectively, can be constructed, cf. Sect. 2.2—
thus raising the question of whether certain bases {φm}m∈N are better suited for
parametrizing random fields than others. Conversely, given an appropriate system
{φm}m∈N, the construction (2) will yield a Gaussian random field if we ensure
that the expansion in (2) converges P-almost surely pointwise or in L∞(D), i.e.,
that the Gaussian coefficient sequence (ξm)m∈N in R

N with distribution μ :=⊗
m∈N N(0, 1) satisfies

μ(Γ ) = 1 where Γ :=
{
ξ ∈ R

N : ‖
∞∑

m=1

φmξm‖L∞(D) < ∞
}
. (3)

We remark that Γ is a linear subspace of RN. The basic condition (3) is satisfied,
for instance, if

∑
m≥1

‖φm‖L∞(D) < ∞ (4)

and (2) then yields a Gaussian random variable in L∞(D), see [42, Lemma 2.28] or
[43, Section 2.2.1]. Given the assumption (3) we can view the random function a in
(2) and the resulting pathwise solution u of (1) as functions in L∞(D) and H 1

0 (D),
respectively, depending on the random parameter ξ ∈ Γ , i.e., a : Γ → L∞(D) and
u : Γ → H 1

0 (D). In particular, by the Lax–Milgram lemma we have that u(ξ) ∈
H 1

0 (D) is well-defined for ξ ∈ Γ and

‖u(ξ )‖H 1
0 (D) ≤ CD

amin(ξ)
‖f ‖L2(D), amin(ξ) := ess inf

x∈D
a(x, ξ).
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In the following subsection, we provide sufficient conditions on the series represen-
tation in (2) such that (3) holds and that the solution u : Γ → H 1

0 (D) of (1) belongs
to a Lebesgue–Bochner space L

p
μ(Γ ; H 1

0 (D)). Moreover, we discuss the regularity
of the solution u of the random PDE (1) as a function of the variable ξ ∈ Γ , which
governs approximability by polynomials in ξ .

2.1 Integrability and Regularity of the Solution

A first result concerning the integrability of u given log a as in (2) is the following.

Proposition 2 ([42, Proposition 2.34]) If the functions φm, m ∈ N, in (2) satisfy
(4), then (3) holds and the solution u : Γ → H 1

0 (D) of (1) with diffusion coefficient
a as in (2) satisfies u ∈ L

p
μ(Γ ; H 1

0 (D)) for any p > 0.

In [2, Corollary 2.1] the authors establish the same statements as in Proposition 2
but under the assumption that there exists a strictly positive sequence (τm)m∈N such
that

sup
x∈D

∑
m≥1

τm|φm(x)| < ∞,
∑
m≥1

exp(−τ 2
m) < ∞. (5)

Compared with (4), this relaxes the summability condition if the functions φm have
local support. On the other hand, (5) implies that (|φm(x)|)m∈N decays slightly faster
than a general 	1(N)-sequence due to the required growth of τm ≥ C

√
log m.

The authors of [2] further establish a particular weighted Sobolev regularity of
the solution u : Γ → H 1

0 (D) of (1) w.r.t. ξ or ξm, respectively, assuming a stronger
version of (5). To state their result, we introduce further notation. We define the
partial derivative ∂ξmv(ξ ) for a function v : Γ → H 1

0 (D) by

∂ξmv(ξ ) := lim
h→0

v(ξ + hem) − v(ξ )

h
,

when it exists, where em denotes the m-th unit vector in R
N. Higher derivatives

∂k
ξm

v(ξ ) are defined inductively. Thus, for any k ∈ N we have ∂k
ξm

v : Γ → H 1
0 (D),

assuming its existence on Γ . In order to denote arbitrary mixed derivatives we
introduce the set

F := {k ∈ N
N

0 : |k|0 < ∞}, |k|0 := |{m ∈ N : km > 0}|, (6)
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of finitely supported multi-index sequences k ∈ N
N

0 . For k ∈ F we can then define
the partial derivative ∂kv : Γ → H 1

0 (D) of a function v : Γ → H 1
0 (D) by

∂kv(ξ ) :=
⎛
⎝∏

m≥1

∂
km

ξm

⎞
⎠ v(ξ ),

where the product is, in fact, finite due to the definition of F .

Remark 1 It was shown in [2] that the partial derivative ∂ku(ξ ) ∈ H 1
0 (D), k ∈ F ,

of the solution u of (1) can itself be characterized as the solution of a variational
problem in H 1

0 (D):

∫
D

a(ξ )∇[∂ku(ξ)] · ∇v dx =
∫

D

∑
i�k

(
k
i

)
φk−ia(ξ )∇[∂ iu(ξ )] · ∇v dx ∀v ∈ H 1

0 (D)

where i � k denotes that im ≤ km for all m ∈ N but i �= k and φi, i ∈ F , is a
shorthand notation for the finite product

∏
m≥1 φ

im
m ∈ L∞(D).

We now state the regularity result in [2] which uses a slightly stronger assumption
than (5).

Theorem 1 ([2, Theorem 4.2]) Let r ∈ N and let there exist strictly positive
weights τm > 0, m ∈ N such that for the functions φm, m ∈ N, in (2) and for a
p > 0 we have

sup
x∈D

∑
m≥1

τm|φm(x)| <
log 2√

r

∑
m≥1

τ
−p
m < ∞. (7)

Then the solution u : Γ → H 1
0 (D) of (1) with coefficient a as in (2) satisfies

∑
k∈F ,
|k|∞≤r

τ 2k

k! ‖∂ku‖2
L2

μ
< ∞, where τk =

∏
m≥1

τ km
m and k! =

∏
m≥1

km! . (8)

This theorem tells us that, given (7), the partial derivatives ∂ku : Γ → H 1
0 (D)

exist for any k ∈ F with |k|∞ < ∞ and belong to L2
μ(Γ ; H 1

0 (D)). Moreover,

their L2
μ-norm decays faster than τ−2k—otherwise (8) would not hold. In particular,

Theorem 1 establishes a weighted mixed Sobolev regularity of the solution u : Γ →
H 1

0 (D) of maximal degree r ∈ N and with increasing weights τm ≥ Cm1/p. As it
turns out, it is such a regularity which ensures dimension-independent convergence
rates for polynomial sparse grid collocation approximations—see the next section.

Moreover, the condition (7) seems to favor localized basis functions φm for which∑∞
m=1 τm|φm(x)| reduces to a summation over a subsequence

∑∞
k=1 τmk |φmk(x)|
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such that (7) is easier to verify. In view of this, the authors of [2, 3] proposed using
wavelet-based expansions for Gaussian random fields with sufficiently localized φm

in place of the globally supported eigenmodes φm in the Karhunen–Loève (KL)
expansion. In fact, condition (7) fails to hold for the KL expansion of some rough
Gaussian processes (Example 1 below), but can be established if the process is
sufficiently smooth (Example 2). We will discuss KL and wavelet-based expansions
of Gaussian processes in more detail in the next subsection.

2.2 Choice of Expansion Bases

Given a Gaussian random field log a : D × Ω → R with mean φ0 : D → R and
covariance function c : D × D → R we seek a representation as an expansion (2).
We explain in the following how such expansions can be derived in general. To this
end, we assume that the random field has P-almost surely continuous paths, i.e.,
log a : Ω → C(D), and a continuous covariance function c ∈ C(D × D). Thus, we
can view log a also as a Gaussian random variable with values in the separable
Banach space C(D) or, by continuous embedding, with values in the separable
Hilbert space L2(D). The covariance operator C : L2(D) → L2(D) of the random
variable log a : Ω → L2(D) is then given by (Cf )(x) := ∫D c(x, y) f (y) dy. This
operator is of trace class and induces a dense subspaceHC := range C1/2 ⊂ L2(D),
which equipped with the inner product 〈u, v〉C := 〈C−1/2u,C−1/2v〉L2(D), forms
again a Hilbert space, called the Cameron–Martin space (CMS) of log a. The CMS
plays a crucial role for series representations (2) of log a. Specifically, it is shown
in [30] that (2) holds almost surely in C(D) if and only if the system {φm}m∈N
is a so-called Parseval frame or (super) tight frame in the CMS of log a, i.e., if
{φm}m∈N ⊂ HC and

∑
m≥1

|〈φm, f 〉C |2 = ‖f ‖2
C ∀f ∈ HC.

We discuss two common choices for such frames below.

Karhunen–Loève Expansions
This expansion is based on the eigensystem (λm,ψm)m∈N of the compact and self-
adjoint covariance operator C : L2(D) → L2(D) of log a. Thus, let ψm ∈ L2(D)

satisfy Cψm = λmψm with λm > 0. Since the covariance function c is a continuous
function on D × D, we have ψm ∈ C(D) and (2) holds almost surely in C(D)

with φm := λ
−1/2
m ψm, because {φm}m∈N ⊂ HC is a complete orthonormal system

(CONS) of HC . In fact, the KL basis {φm}m∈N represents the only CONS of HC

that is also L2(D)-orthogonal. In addition, as the spectral expansion of log a in
L2
P
(L2(D)), it is the optimal basis in this space in the sense that the truncation
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error after M terms ‖ log a − φ0 −∑M
m=1 φmξm‖L2

P
(L2(D)) is the smallest among all

truncated expansions of length M of the form

log a(x, ω) = φ0(x) +
M∑

m=1

φ̃m(x)ξ̃m(ω).

Under additional assumptions the KL expansion also yields optimal rates of the
truncation error in L2

P
(C(D)), see again [30]. However, the KL modes φm typically

have global support on D, which often makes it difficult to verify a condition like
(7). Nonetheless, for particular covariance functions, such as the Matérn kernels,
bounds on the norms ‖φm‖L∞(D) are known, see, e.g., [24].

Wavelet-Based Expansions
We now consider expansions in orthonormal wavelet bases {ψm}m∈N of L2(D).
Given a factorization C = SS∗, S : L2(D) → L2(D), of the covariance operator
C (e.g., S = S∗ = C1/2), we can set φm := Sψm and obtain a CONS {φm}m∈N
of the CMS HC , see [30]. Thus, (2) holds almost surely in C(D) with φm = Sψm.
The advantage of wavelet-based expansions is that the resulting φm often inherit
the localized behavior of the underlying ψm, cf. Example 1, which then facilitates
verification of the sufficient condition (7) for the weighted Sobolev regularity of the
solution u of (1). For instance, we refer to [3] for Meyer wavelet-based expansions
of Gaussian random fields with Matérn covariance functions satisfying (7). There,
the authors use a periodization approach and construct the φm via their Fourier
transforms. Further work on constructing and analyzing wavelet-based expansions
of Gaussian random fields includes, e.g., [6, 12, 13].

Example 1 (Brownian Bridge) A simple but useful example is the standard Brown-
ian bridge B : D × Ω → R on D = [0, 1]. This is a Gaussian process with mean
φ0 ≡ 0 and covariance function c(x, x ′) = min(x, x ′) − xx ′. The associated CMS
is given by HC = H 1

0 (D) with 〈u, v〉C = 〈∇u,∇v〉L2(D) and we have C = SS∗
with

Sf (x) :=
∫ 1

0

(
1[0,x](y) − x

)
f (y) dy, f ∈ L2(D).

The KL expansion of the Brownian bridge is given by

B(x, ω) =
∑
m≥1

√
2

πm
sin(πmx)ξ(ω), ξm ∼ N(0, 1) i.i.d. , (9)

i.e., we have φm(x) =
√

2
πm

sin(πmx) and ‖φm‖L∞(D) =
√

2
πm

. Although the functions
φm do not satisfy the assumptions of Proposition 2, existence and integrability
of the solution u of (1) for log a = B is guaranteed by Proposition 1, since
B has almost surely continuous paths. Concerning the condition (7) it can be
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shown that
∑

m≥1 τm|φm(x)| converges pointwise to a (discontinuous) function if
τm ∈ o(m−1), i.e., (τ−1

m )m∈N ∈ 	p(N) only for a p > 1, see the Appendix.
However, this function turns out to be unbounded in a neighborhood of x = 0
if (τ−1

m )m∈N ∈ 	p(N) for p ≤ 2, and numerical evidence suggests that it is also
unbounded if (τ−1

m )m∈N ∈ 	p(N) for p > 2, again see the Appendix. Thus, the KL
expansion of the Brownian bridge does not satisfy the conditions of Theorem 1 for
the weighted Sobolev regularity of u : Γ → H 1

0 (D).
Another classical series representation of the Brownian bridge is the Lévy–

Ciesielski expansion [11]. This wavelet-based expansions uses the Haar wavelets
ψm(x) = 2	/2ψ(2	x − j) where ψ(x) = 1[0,1/2](x) − 1(1/2,1](x) is the mother
wavelet and m = 2	 + j for level 	 ≥ 0 and shift j = 0, . . . , 2	 − 1. Since the Haar
wavelets form a CONS of L2(D) we obtain a Parseval frame of the CMS of the
Brownian bridge by taking φm = Sψm, which yields a Schauder basis consisting of
the hat functions

φm(x) := 2−	/2φ(2	x−j), φ(x) := max(0, 1−|2x−1|), m = 2	+j, (10)

with j = 0, . . . , 2	 − 1 and 	 ≥ 0. Hence, for log a = B the series representation
(2) also holds almost surely in C(D)with φm as in (10), see also [7, Section IX.1].
Moreover, we have ‖φm‖L∞ = 2−�log2 m�/2, resulting in

∑
m≥1 ‖φm‖L∞ = ∞. On

the other hand, due to the localization of φm we have that for any fixed x ∈ D and
each level 	 ≥ 0 there exists only one k	 ∈ {0, . . . , 2	 − 1} such that φ2	+k	

(x) �= 0.
In particular, it can be shown that the LC expansion of the Brownian bridge satisfies
the conditions of Theorem 1 for any p > 2, since for τm = κ�log2 m� with |κ | <

√
2

we get

∑
m≥1

κ�log2 m�|φm(x)| =
∑
l≥0

κ	/2|φ2	+k	
(x)| ≤

∑
l≥0

(
√

0.5ρ)	 < ∞

and for p > logκ 2 > 2

∑
m≥1

τ
−p
m =

∑
l≥0

2lκ−	p =
∑
l≥0

(
2κ−p

)	
< ∞.

Example 2 (Smoothed Brownian Bridge) Based on the explicit KL expansion of
the Brownian bridge we can construct Gaussian random fields with smoother
realizations by

Bq(x, ω) =
∑
m≥1

√
2

(πm)q
sin(πmx)ξ(ω), ξm ∼ N(0, 1) i.i.d. , q > 1.

(11)
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Fig. 1 Expansion functions resulting from applying C1/2 as in Example 2 for q = 3 to the Haar
wavelets ψm, m = 2	 + k, with level 	 ∈ {−1, 0, 1} (left), 	 = 2 (middle), and 	 = 3 (right)

Now, the resulting φm =
√

2
(πm)q

sin(πm·) indeed satisfy the assumptions of

Proposition 2 for any q > 1, since ‖φm‖L∞(D) ∝ m−q . Moreover, for p > 1
q−1

the expansion (11) satisfies the assumptions of Theorem 1 with τm = m(1+ε)/p for
sufficiently small ε. For this Gaussian random field Bq the covariance function is
given by c(x, y) = 2

∑
m≥1(πm)−2q sin(πmx) sin(πmy) and we can express C1/2

via

C1/2f (x) =
∫

D

k(x, y) f (y) dy, k(x, y) = 2
∑
m≥1

(πm)−q sin(πmx) sin(πmy).

Thus, we could construct alternative expansion bases for Bq via φm = C1/2ψm

given a wavelet CONS {ψm}m∈N of L2(D). However, in this case the resulting φm

do not necessarily have a localized support. For instance, when taking Haar wavelets
ψm the C1/2ψm have global support in D = [0, 1], see Fig. 1.

3 Sparse Grid Approximation

In [14] we presented a solution approach for solving random elliptic PDEs based
on sparse polynomial collocation derived from tensorized interpolation at Gauss-
Hermite nodes. The problem is cast as that of approximating the solution u of (1)
as a function u : Γ → H 1

0 (D) by solving for realizations of u associated with
judiciously chosen collocation points {ξ j }Nj=1 ⊂ Γ .

Sparse polynomial collocation operators are constructed by tensorizing univari-
ate Lagrange interpolation sequences (Uk)k∈N0 defined as

(Ukf )(ξ) =
k∑

i=0

f (ξ
(k)
i ) L

(k)
i (ξ), f : R → R, (12)
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where {L(k)
i }ki=0 denote the Lagrange fundamental polynomials of degree k associ-

ated with a set of k + 1 distinct interpolation nodes Ξ(k) := {ξ(k)
0 , ξ

(k)
1 , . . . , ξ

(k)
k

} ⊂
R and L0 ≡ 1. For any k ∈ F (cf. (6)), the associated tensorized Lagrange
interpolation operator Uk :=⊗m∈N Ukm is given by

(Ukf )(ξ ) =
(⊗

m∈N
Ukmf

)
(ξ) =

∑
i≤k

f (ξ
(k)
i )L

(k)
i (ξ ), f : RN → R, (13)

in terms of the tensorized Lagrange polynomials L
(k)
i (ξ) := ∏m∈N L

(km)
im

(ξm) with

multivariate interpolation nodes ξ
(k)
i ∈ Ξ(k) :=×m∈N Ξ(km). We thus have Uk :

R
Γ → Qk, where

Qk := span{ξ i : 0 ≤ im ≤ km,m ∈ N}, k ∈ F ,

denotes the multivariate tensor-product polynomial space of maximal degree km in
the m-th variable in the countable set of variables ξ = (ξm) ∈ R

N.
Sparse polynomial spaces can be constructed by tensorizing the univariate detail

operators

Δk := Uk − Uk−1, k ≥ 0, U−1 :≡ 0, (14)

giving

Δk :=
⊗
m∈N

Δkm : RΓ → Qk.

A sparse polynomial collocation operator is then obtained by fixing a suitable set of
multi-indices Λ ⊂ F and setting

UΛ :=
∑
i∈Λ

Δi : RΓ → PΛ, where PΛ :=
∑
i∈Λ

Qi. (15)

It is shown in [14] that if Λ is finite and monotone (meaning that i ∈ Λ implies that
any j ∈ F for which j ≤ i holds componentwise also belongs to Λ), then UΛ is the
identity on PΛ and Δi vanishes on PΛ for any i �∈ Λ.

The construction of UΛf for f : Γ → R consists of a linear combination
of tensor product interpolation operators requiring the evaluation of f at certain
multivariate nodes. It can be shown that for i ∈ F the detail operators have the
representation

Δif =
[⊗

m≥1

(Uim − Uim−1)
]
f =

∑
i−1≤k≤i

(−1)|i−k|1
[⊗

m≥1

Ukm

]
f,
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leading to an alternative representation of UΛ for monotone finite subsets Λ ⊂ F
known as the combination technique:

UΛ =
∑
i∈Λ

c(i; Λ) Ui, c(i; Λ) :=
∑

e∈{0,1}N : i+e∈Λ

(−1)|e|1 . (16)

We refer to the collection of nodes appearing in the tensor product interpolants Ui
as the sparse grid ΞΛ ⊂ Γ associated with Λ:

ΞΛ =
⋃
i∈Λ

Ξ(i). (17)

In the same way, when approximating the solution u : Γ → H 1
0 (D) of (1) by

u(ξ) ≈ (UΛu)(ξ), each evaluation u(ξ j ) at a sparse grid point ξ j ∈ ΞΛ represents
the solution of the PDE for the coefficient a = a(ξ j ).

Remark 2 Let us provide some further comments.

1. The univariate interpolation operators Uk in (12), on which the sparse grid
collocation construction is based, will have degree of exactness k, as the
associated sets of interpolation nodes Ξ(k) have cardinality k + 1. Although we
do not consider this here, allowing nodal sets to grow faster than this may bring
some advantages. Such an example is the sequence of Clenshaw–Curtis nodes
(cf. [37]), for which |Ξ(0)| = 1 and |Ξ(k)| = 1 + 2k.

2. The Clenshaw–Curtis doubling scheme generates nested node sets Ξ(k) ⊂
Ξ(k+1). This has the advantage that higher order collocation approximations may
re-use function evaluations of previously computed lower-order approximations.
Moreover, it was shown in [5] that sparse grid collocation based on nested node
sequences are interpolatory. By contrast, the sequence of Gauss–Hermite nodes
with |Ξ(k)| = k+1 results in disjoint consecutive nodal sets. The number of new
nodes added by each consecutive set is referred to as the granularity of the node
sequence.

3. Two heuristic approaches for constructing monotone multi-index sets Λ for
sparse polynomial collocation for lognormal random diffusion equations are
presented in [14]. Further details are given in Sect. 4.

In [14], a convergence theory for sparse polynomial collocation approximations
f ≈ UΛf of functions in f ∈ L2

μ(Γ,H 1
0 (D)) was given based on the expansion

f (ξ ) =
∑
k∈F

fk Hk(ξ ), fk =
∫

Γ

f (ξ )Hk(ξ )μ(dξ),

in tensorized Hermite polynomials Hk(ξ ) = ∏
m∈N Hkm(ξm), k ∈ F , with Hkm

denoting the univariate Hermite orthogonal polynomial of degree km, which are
known to form an orthonormal basis of L2

μ(Γ ; H 1
0 (D)).
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Under assumptions to be detailed below, it was shown [14, Theorem 3.12] that
there exists a nested sequence of monotone multi-index sets ΛN ⊂ F , where
N = |ΛN |, such that the sparse grid collocation error of the approximation UΛN f

satisfies

∥∥f − UΛN f
∥∥

L2
μ

≤ C(1 + N)
−
(

1
p
− 1

2

)
, (18)

for certain values of p ∈ (0, 2) with a constant C. The precise assumptions under
which (18) was shown to hold are as follows:

(1) The condition μ(Γ ) = 1 on the domain of f (cf. (3)).
(2) An assumption of weighted L2

μ-summability on the derivatives of f : specifi-

cally, there exists r ∈ N0 such that ∂kf ∈ L2
μ(RN; H 1

0 (D)) for all k ∈ F with

|k|∞ ≤ r and a sequence of positive numbers (τ−1
m )m∈N ∈ 	p(N), p ∈ (0, 2),

such that relation (8) holds.
(3) An assumption on the univariate sequence of interpolation nodes: there exist

constants θ ≥ 0 and c ≥ 1 such that the univariate detail operators (14) satisfy

max
i∈N0

‖ΔiHk‖L2
μ

≤ (1 + ck)θ , k ∈ N0. (19)

In order for (18) to hold true, it is sufficient that (8) be satisfied for r > 2(θ +1)+ 2
p

.
It was shown in [14, Lemma 3.13] that (19) holds with θ = 1 for the detail operators
Δk = Uk − Uk−1 associated with univariate Lagrange interpolation operators Uk at
Gauss-Hermite nodes, i.e., the zeros of the univariate Hermite polynomial of degree
k + 1.

3.1 Gaussian Leja Nodes

Leja points for interpolation on a bounded interval I ⊂ R are defined recursively by
fixing an arbitrary initial point ξ0 ∈ I and setting

ξk+1 := arg max
ξ∈I

k∏
i=1

|ξ − ξi |, k ∈ N0. (20)

They are seen to be nested, possessing the lowest possible granularity and have been
shown to have an asymptotically optimal distribution [41, Chapter 5]. The quantity
maximized in the extremal problem (20) is not finite for unbounded sets I , which
arise, e.g., when an interpolation problem is posed on the entire real line. Such
is the case with parameter variables ξm which follow a Gaussian distribution. By
adding a weight function vanishing at infinity faster than polynomials grow, one can
generalize the Leja construction to unbounded domains (cf. [29]). Different ways of
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incorporating weights in (20) have also been proposed in the bounded case, cf. e.g.
[41, p. 258], [4], and [31]. In [33], it was shown that for weighted Leja sequences
generated on unbounded intervals I by solving the extremal problem

ξk+1 = arg max
ξ∈I

√
ρ(ξ)

k∏
i=0

|ξ − ξi |, (21)

where ρ is a probability density function on I , their asymptotic distribution coin-
cides with the probability distribution associated with ρ. This is shown in [33] for
the generalized Hermite, generalized Laguerre and Jacobi weights, corresponding to
a generalized Gaussian, Gamma and Beta distributions. Subsequently, the result of
[45] on the subexponential growth of the Lebesgue constant of bounded unweighted
Leja sequences was generalized to the unbounded weighted case in [27].

If we choose ρ(ξ) = exp(−ξ2/2) and I = R in (21) and set ξ0 = 0, then
we shall refer to the resulting weighted Leja nodes also Gaussian Leja nodes in
view of their asymptotic distribution. Unfortunately, the result in [27] does not
imply a bound like (19) for univariate interpolation using Gaussian Leja nodes.
However, we provide numerical evidence in Fig. 2 suggesting that (19) is also
satisfied for Gaussian Leja nodes with θ = 1. In the next subsection we compare
the performance of Gaussian Leja nodes for quadrature and interpolation purposes
to that of Gauss–Hermite and Genz–Keister nodes [19], which represent another
common univariate node family for quadrature w.r.t. a Gaussian weight. Although a
comparison of Gaussian Leja with Genz–Keister points is already available in [33]
and a comparison between Gauss–Hermite and Genz–Keister points is reported in
[10, 35], the joint comparison of the three choices has not been reported in literature
to the best of our knowledge.

Fig. 2 Comparison of
maxi ‖ΔiHk‖L2

μ
,

k = 1, . . . , 39, for
Gauss–Hermite and Gaussian
Leja nodes
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3.2 Performance Comparison of Common Univariate Nodes

In this section we investigate and compare the performance of numerical quadrature
and interpolation of uni- and multivariate functions (M = 2, 6, 9 variables) using
either Gauss–Hermite, Genz–Keister or Gaussian Leja nodes. As a measure of
performance we consider the achieved error in relation to the number of employed
quadrature or interpolation nodes, respectively. Quadrature is carried out with
respect to a standard (multivariate) Gaussian measure μ and the interpolation error is
measured in L2

μ. The functions we consider in this section were previously proposed
in [44] for the purpose of comparing univariate quadrature with Gauss–Hermite and
Genz–Keister points and are included in the figures displaying the results.

Quadrature results are reported in Fig. 3. In the univariate case, Gauss–Hermite
nodes perform best, and Genz–Keister nodes also show good performance, which is
not surprising given that they are constructed as nested extensions of the Gauss–
Hermite points with maximal degree of exactness. The Gaussian Leja nodes,
by comparison, perform poorly. This should not surprise, however, given that
Gaussian Leja points are determined by minimizing Lebesgue constants, i.e., they
are conceived as interpolation points rather than quadrature points.

In the multivariate case, however, the situation changes and Gauss–Hermite
nodes are the worst performing. This is due to their non-nestedness, which tends
to introduce unnecessary quadrature nodes into the quadrature scheme. Note that
in this case we are simply using the standard Smolyak sparse multi-index set in M

dimensions in Eq. (15),

Λw =
{
i ∈ N

M :
M∑

m=1

im ≤ w

}
, for some w ∈ N,

i.e., we are not tailoring the sparse grid either to the function to be integrated
nor to the univariate points. The Gaussian Leja and Genz–Keister points show a
faster decay of the quadrature error, due to their nestedness. This is remarkable
in particular for Gaussian–Leja, given that they were proposed in literature as
univariate interpolation points, as already discussed. Overall, the Genz–Keister
points show the best performance as expected, but it is important to recall that only
a limited number of Genz–Keister nodes is available, i.e., no nested Genz–Keister
quadrature formula with real quadrature weights and more than 35 nodes is known
in literature, [19, 26, 44]. In particular, the plots report the largest standard sparse
grids that can be built with these rules before running out of tabulated Genz–Keister
points.

We remark that introducing a Genz–Keister quadrature formula with more than
35 nodes is not a simple matter of investing more computational effort and tabulating
more points, but it would entail some “trial and error” phase to look for a suitable
sequence of so-called “generators”, see e.g. [44] for more details. This activity
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Fig. 3 Results for univariate and multivariate quadrature test
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exceeds the scope of this paper. Moreover, Genz–Keister nodes are significantly
less granular, which could be a disadvantage in certain situations: indeed, the
cardinalities of the univariate Genz–Keister node sets are |Ξ(k)| = 1, 3, 9, 19, 35
for k = 0, . . . , 4 (and a sequence of Genz–Keister sets exceeding 35 nodes
might be even less granular, e.g., jumping from 1 to 5 or 7). Next, we turn to
comparing the performance of the different node families for interpolation. Here,
Gaussian Leja nodes are expected to be best (or close-to-best) performing, given
their specific design. Measuring interpolation error on unbounded domains with
a Gaussian measure (or any non-uniform measure for that matter) is a delicate
task, as one would need to choose a proper weight to ensure boundedness of the
pointwise error, see e.g. [25, 35]. In this contribution, we actually discuss the L2

μ

approximation error of the interpolant, which we compute as follows: we sample K

independent batches of M-variate Gaussian random variables, with P points each,
Bk = {ξ i}Pi=1, ξi,m ∼ N(0, 1),m = 1, . . . ,M, k = 1, . . . ,K; we construct a
sequence of increasingly accurate sparse grids UΛw [f ] and evaluate them on each
random batch; we then approximate the L2

μ error for each sparse grid on each batch
by Monte Carlo,

Errk(UΛw [f ]) = 1

P

P∑
i=1

(f (ξ i ) − UΛw [f ](ξ i ))
2

and then we show the convergence of the median value of the L2
μ error for

each sparse grid over the K repetitions.1 The results are reported in Fig. 4. The
plots indicate that the convergence of interpolation degrades significantly as the
number of dimension M increases (due to the simple choice of index-set Λw), and
in particular the convergence of grids based on Gauss–Hermite points is always
the worst among those tested (due again to their non-nestedness), so that using
nested points such as Gaussian Leja or Genz–Keister becomes mandatory. The
performance of Genz–Keister points is surprisingly good, even better than Gaussian
Leja at times, despite the fact that they are designed for quadrature rather than
interpolation. However, the rapid growth and the limited availability of Genz–
Keister points still are substantial drawbacks. To this end, we remark that also in
these plots we are showing the largest grid that we could compute before running
out of Genz–Keister points.

1 Exchanging the median value with the mean value does not significantly change the plots, which
means that the errors are distributed symmetrically around the median. For brevity, we do not report
these plots here. We have also checked that the distribution of the errors is not too spread, by adding
boxplots to the convergence lines. Again, we do not show these plots for brevity. Finally, observe
that we could have also employed a sparse grid to compute the L2

μ error, but we chose Monte Carlo
quadrature to minimize the chance that the result depends on the specific grid employed.
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Fig. 4 L2
μ error for univariate and multivariate interpolation. The results for the univariate test

were produced with K = 30 repetitions, each with P = 100 samples. The results for the
multivariate test were produced with K = 50 repetitions, each with P = 500 samples
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4 Numerical Results

We now perform numerical tests solving the elliptic PDE introduced in Sect. 2, with
the aim of extending the numerical evidence obtained in [14]. In that paper, we
assessed:

• the sharpness of the predicted rate for the a-priori sparse grid construction (both
with respect to the number of multi-indices in the set and the number of points in
the sparse grids);

• the comparison in performance of the a-priori and the classical dimension-
adaptive a-posteriori sparse grid constructions;

limiting ourselves to Gauss–Hermite collocation points, which are covered by our
theory. The findings indicated that our predicted rates are somewhat conservative.
Specifically, the rates of convergence measured in numerical experiments were
larger than the theoretical ones by a factor between 0.5 and 1, cf. [14, Table 1].
This is due to some technical estimates applied in the proof of the convergence
results which we were so far not able to improve. Concerning the second point, we
observed in [14] that the a-priori construction is actually competitive with the a-
posteriori adaptive variant, especially if one considers the extra PDE solves needed
to explore the set of multi-indices.

We remark in particular that we observed convergence of the sparse grid
approximations even in cases in which the theory predicted no convergence (albeit
with a rather poor convergence rate, comparable to that attainable with Monte Carlo
or Quasi Monte Carlo methods—see also [35, 38] for possible remedies).

In this contribution, our goal is the numerical investigation of additional ques-
tions that so far remain unanswered by existing theory, among these:

1. whether using Gaussian Leja or Genz–Keister nodes yields improvement over
Gauss–Hermite nodes in our framework, see Sect. 4.1;

2. whether changing the random field representation from Karhunen-Loève (KL)
to Lévy-Ciesielski (LC) expansion for the case q = 1 (pure Brownian bridge)
improves the efficiency of the numerical computations, see Sect. 4.2. As
explained above, this is motivated by the fact that LC expansion of the random
field allowed [2] to prove convergence of the best-N-term approximation of the
lognormal problem over Hermite polynomials.

The tests were performed using the Sparse Grids Matlab Kit.2 We briefly recall
the basic approaches of the two heuristics employed for constructing the multi-index
sets Λ. We refer to [14] for the full details of the two algorithms. The first is the
classical dimension-adaptive algorithm introduced by Gerstner and Griebel in [20]
with some suitable modifications to make it work with non-nested quadrature rules
and for quadrature/interpolation on unbounded domains. It is driven by a posteriori

2 v.18-10 “Esperanza”, which can be downloaded under the BSD2 license at https://sites.google.
com/view/sparse-grids-kit.

https://sites.google.com/view/sparse-grids-kit
https://sites.google.com/view/sparse-grids-kit
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Fig. 5 30 realizations of the random field for different values of q. Left: q = 3; center: q = 1.5;
right: q = 1. Note the different scaling of the vertical axis

error indicators computed along the outer margin of the current multi-index set.
The mechanism by which new random variables are activated in the multi-index set
uses a “buffer” of fixed size containing variables whose error indicators have been
computed but not yet selected. The second approach is an a-priori tailored choice of
multi-index set Λ, which can be derived from the study of the decay of the spectral
coefficients of the solution.

We thus consider the problem in Eq. (1) with f = 1. We set the pointwise
standard deviation of log a to be σ = 3; note that this constant does not appear
explicitly in the expression for log a in Sect. 2, i.e., it has been absorbed in φm.
Figure 5 shows 30 realizations of the random field a(ω) for different values of
q , obtained by truncating the Karhunen-Loève expansion of a(ω) at M = 1000
random variables. Specifically, we consider a smoothed Brownian bridge as in
Example 2, with q = 3, 1.5, 1, cf. Eq. (11); for these values of q a truncation at
1000 random variables covers 100%, 99.99996% and 99.93% of the total variance
of log a, respectively. The plot shows how the realizations grow increasingly rough
as q decreases. Upon plotting the corresponding PDE solutions (not displayed for
brevity) one would observe that, by contrast, solutions are much less rough, even in
the case q = 1.

4.1 Gauss–Hermite vs. Gaussian Leja vs. Genz–Keister Nodes

We begin the analysis with the comparison of the performance of Gauss–Hermite,
Gaussian Leja, and Genz–Keister points. To this end, we consider random fields
of varying smoothness, we choose an expansion (KL/LC) for each random field
considered, and we compute the sparse grid approximation of u with the a-priori
and a-posteriori dimension-adaptive sparse grid algorithm, with Gauss–Hermite,
Gaussian Leja and Genz–Keister points (i.e., 6 runs per choice of random field
and associated expansion). Specifically, we consider three different random field
expansions, i.e., a KL expansion of the smoothed Brownian bridge with q = 3, and
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a standard Brownian bridge (q = 1) expanded with either KL or LC expansion,
cf. again Examples 1 and 2. We compute the error in the full L2

μ(Γ ; H 1
0 (D)) norm

again with a Monte Carlo sampling over 1000 samples of the random field, which
has been verified to be sufficiently accurate for our purposes. These samples are
generated considering a “reference truncation level” of the random field with 1000
random variables, which substantially exceeds the number of random variables
active during the execution of the algorithms (which never involve more than a few
hundred random variables). In the first set of results, we report the convergence of
the error with respect to the number of points in the grid. The manner of counting
of the points is a subtle issue and can be done in various ways. Here we consider the
following different counting strategies:

“incremental”: the number of points in the sparse grid ΞΛ as defined in (17),
i.e., the points required to compute the application of UΛ as given in (15),

“combitec”: the number of points necessary for the combination technique
representation of UΛ in (16); since c(i; Λ) may be zero for some i ∈ Λ, we can
omit the corresponding Ui in (16) and consider the possibly smaller combitec
sparse grid Ξ ct

Λ :=⋃i∈Λ : c(i;Λ) �=0 Ξ(i).

These strategies exhaust the counting strategies for the a-priori construction; note
that these two counting schemes yield different values for non-nested points (such
as Gauss–Hermite), while they are identical for nested points (such as Gaussian Leja
and Genz–Keister). For the a-posteriori construction, one should also further decide
whether to apply these counting strategies including or excluding the indices in the
margin of the current set (“I-set” and “G-set” in the legend, respectively). Note that
the “I-set” choice is more representative of the “optimal index-set” computed by the
algorithm, while the “G-set” is more representative of the actual computational cost
incurred when running the algorithm.

Results are reported in Figs. 6 and 7. Throughout this section, we use the
following abbreviations in the legend of the convergence plots: GH for Gauss–
Hermite, LJ for Gaussian Leja, GK for Genz–Keister. Figure 6 compares the
performance of the three choices of points for the three choices of random field
expansions and the two sparse grid constructions mentioned earlier (a-posteriori/a-
priori), in terms of L2

μ-error vs. number of collocation points. Different colors
identify different combination of grid constructions and counting (light blue for
a-priori-incremental; red for a-posteriori-I-set-incremental; gray for a-posteriori-G-
set-incremental). The results for Gauss–Hermite points are indicated by solid lines
with square filled markers, those for Gaussian Leja points by solid lines with empty
triangle markers, and those for Genz–Keister by dashed lines with empty diamond
markers.

The first and foremost observation to be made is that the Gaussian Leja
performance is consistently better than Genz–Keister and Gauss–Hermite across
algorithms (a-priori/a-posteriori) and test cases, while Gauss–Hermite and Genz–
Keister performance is essentially identical, in agreement with what reported e.g.
in [10, 35]. Only the Genz–Keister performance for the a-priori construction in the
case q = 3 is surprisingly good; we do not have an explanation for this, and leave it
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Fig. 6 Comparison of performance for Gaussian Leja, Genz–Keister, and Gauss–Hermite points
for different test cases and different sets of multi-indices. The plots report error versus number of
points. To make the visual comparison easier we split the presentation into three parts. The top row
shows the two different sets produced by the a-posteriori algorithm (a-posteriori-I-set-incremental
and a-posteriori-G-set-incremental). The middle row compares a-priori and a-posteriori algorithms
in terms of the optimal sets produced (a-priori-incremental and a-posteriori-I-set-incremental). The
bottom row compares a-priori and a-posteriori algorithms in terms of bare computational cost (a-
priori-incremental and a-posteriori-G-set-incremental)

to future research. Secondly, we observe that the a-priori algorithm performs worse
than the a-posteriori for q = 3 (both considering the “G-set” and the “I-set”—left
panel in the middle and bottom rows), while for the case q = 1 it performs worse
than the a-posteriori “I-set” but better than the a-posteriori “G-set” (regardless of
type of expansion—mid and right panels in the central and bottom rows). This
means that while there are better choices for the index set than a-priori one (e.g.,
the a-posteriori “I-set”), these might be hard to derive, so that in practice it might
be convenient to use the a-priori algorithm. This is in agreement with the findings
reported in [14] and not surprising, given that in the case q = 1 features a larger
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Fig. 7 Top row: further analysis of influence of counting strategies in assessing the performance
of Gaussian Leja, Genz–Keister, and Gauss–Hermite points. Middle and bottom rows: plot of error
versus number of indices in the sparse grid set for different test cases. The plots in these two rows
are grouped in the same way as in Fig. 6

number of random variables and therefore is harder to be handled by the a-posteriori
algorithm.

In Fig. 7 we analyze in more detail the relatively poor performance of Gauss–
Hermite points. In the top row we want to investigate whether the “incremen-
tal”/“combitec” counting (which we recall produces different results only for
Gauss–Hermite points) explains at least partially the gap between the Gauss–
Hermite and the Gaussian Leja results in Fig. 6. To this end, we focus on the
a-posteriori “I-set”. For such grid and counting, we report the convergence curves
from Fig. 6 for both the Gauss–Hermite and the Gaussian Leja collocation points
and add in black with filled markers the “combitec” counting, which is more
favorable to Gauss–Hermite points. The plots show, however, that the counting
method accounts for only a small fraction of the gap.
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Fig. 8 Comparison of performance for LC and KL expansions

In the middle and bottom rows instead we investigate whether the set of multi-
indices chosen by the algorithm also has an influence—in other words, could it be
that because of the family of points, the algorithms are “tricked” into exploring
less effective index sets? To this end, we redo Fig. 6 by showing the convergence
with respect to the number of multi-indices in the set Λ, instead of with respect
to the number of points. The plots show that in this setting, there is essentially
no difference in performance between Gauss–Hermite, Gaussian Leja and Genz–
Keister points (again, excluding the case of Genz–Keister points for a-priori
construction in the case q = 3), which means that the sets obtained by the a-
priori/a-posteriori algorithm, while different, are “equally good” in approximating
the solution.3 Thus, the consistent difference between Gaussian Leja, Genz–Keister
and Gauss–Hermite nodes is really due to the nestedness of the former two choices.
Between the two choices of nested points, the Gaussian Leja points are more
granular and easier to compute up to an arbitrary number: in conclusion, they appear
to be a more suitable choice of collocation points for the lognormal problem in terms
of accuracy versus number of points.

4.2 KL vs. LC Expansion

The second set of tests aims at assessing whether expanding the random field over
the wavelet basis (LC expansion) brings any practical advantage in convergence of
the sparse grid algorithm over using the standard KL expansion. Since from the
previous discussion we know that Gaussian Leja nodes are more effective than
Gauss–Hermite and Genz–Keister points, we only consider Gaussian Leja points
in this section.

Results are reported in Fig. 8. In the left plot, we compare the convergence of
the error versus number of points for the a-priori and a-posteriori “I-set” for LC

3 Incidentally, note that the a-priori algorithm doesn’t take into account the kind of univariate nodes
that will be used to build the sparse grids. Also note that of course the convergence of Gaussian
Leja with respect to either number of points or number of multi-indices is identical, given that each
multi-index adds one point.



Expansions and nodes for sparse grid collocation for Lognormal elliptic PDE 25

and KL expansion; we employ the same color-coding as in Fig. 6 (blue for prior
construction, red for the “I-set” of the a-posteriori construction), using filled markers
for LC results and empty markers for KL results. The lines with filled markers are
always significantly above the lines with empty markers, i.e., the convergence of the
sparse grid adaptive algorithm is significantly faster for the KL expansion than for
the LC expansion. This can easily be explained by the implicit ordering introduced
by the KL expansion in the importance of the random variables: because the modes
of the KL are ordered in descending order according to the percentage of variance
of the random field they represent, they are already ordered in a suitable way for
the adaptive algorithm, which from the very start can explore informative directions
of variance (although the KL expansion is optimized for the representation of the
input rather than for the output). The LC expansion instead uses a-priori choices of
the expansion basis functions and in particular batches (of increasing cardinality) of
those basis functions are equally important (i.e., the wavelets at the same refinement
level). On the other hand, the adaptive algorithm explores random variables in
the expansion order, which means that sometimes the algorithm has to include
“unnecessary” modes of the LC expansion before finding those that really matter.

Of course, a careful implementation of the adaptive algorithm can, to a certain
extent, mitigate this issue. In particular, increasing the size of the buffer of random
variables (cf. the description at the beginning of Sect. 4) improves the performance
of the adaptive algorithm. The default number of inactive random variables is 5—
the convergence lines in the left plot are obtained in this way. In the middle plot
we confirm that, as expected, increasing the buffer from 5 to 20 random variables
improves the performance of the sparse grid approximation when applied to the LC
case (black line with filled markers instead of red line with filled markers). Note,
however, that a significant gap remains between the convergence of the sparse grid
approximation for the LC expansion with a buffer of 20 random variables and the
convergence of the sparse grid for the KL expansion. This means that not only does
the buffer play a role, but the KL expansion is overall a more convenient basis to
work with.

This aspect is further elaborated in the right plot of Fig. 8. Here we show
the convergence of the sparse grid approximation for KL (5-variable buffer) and
LC (either 5-variable or 20-variable buffer) against the number of indices in the
sparse grids (dashed lines with markers), and compare this convergence against
an estimate of the corresponding best-N-term (bNt) expansion of the solution in
Hermite polynomials (full lines without markers); different colors identify different
expansions. Of course, the convergence of the bNt expansion also depends on
the LC/KL basis, therefore we show two bNt convergence curves. The bNt was
computed by converting the sparse grid into the equivalent Hermite expansion
(see [16, 40] for details) and then rearranging the Hermite coefficients in order
of decreasing magnitude. The plot shows that the sparse grid approximation of
the solution by KL expansion is quite close to the bNt convergence (blue lines),
which means that there is not much room for “compressibility” in the sparse grid
approximation. Conversely, the 5-variable-buffer sparse grid approximation of the
problem with LC expansion is somehow far from the bNt (red lines) and only the
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Fig. 9 Evolution of the multi-index set Λ for LC and KL expansions along iterations of the
dimension-adaptive algorithm

20-variable-buffer (black dashed line) gets reasonably close: this means that the
5-variable-buffer is “forced” to add to the approximation “useless” indices merely
because the ordering of the variables in the LC expansion is not optimal and the
buffer is not large enough.

Finally, we report in Fig. 9 some performance indicators for the construction of
the index set for the KL and LC cases, which offer further insight towards explaining
the superior KL performance. The figure on the left shows the growth of the size of
the outer margin of the dimension-adaptive algorithm at each iteration, where we
recall that one iteration is defined as the process of selecting one index from the
outer margin and evaluating the error indicator for all its forward neighbors; this in
particular means that the number of PDE solves per iteration is not fixed. All three
algorithms (KL, 5-variable-buffer LC and 20-variable-buffer LC) stop after 10,000
PDE solves. KL displays the fastest growth in the outer margin size, followed by
LC20 and then LC5, which is perhaps counter-intuitive; on the other hand, the more
indices are considered, the more likely it is to find ones “effective” in reducing
the approximation error. The figure in the center shows the growth in the number
of explored dimensions: again, KL has the quickest and steadiest growth, which
means that the algorithm favors adding new variables over exploring those already
active. This might be again counter-intuitive, but there is no contradiction between
this observation and the superior performance of KL: the point here is actually
precisely the fact that the LC random variables are not conveniently sorted, so the
algorithm is obliged to explore those already available rather than adding new ones;
this is especially visible for the LC5 case, which displays a significant plateau in
the growth in the number of variables in the middle of the algorithm execution. The
three plots on the right finally show the largest component of multi-index ν∗

N that has
been selected from the reduced margin at iteration N for the three algorithms (from
the top: KL, LC5, LC20): a large maximum component means that the algorithm
has favored exploring variables already activated, while if the maximum component
is equal to 2 the algorithm has activated a new random variable (indices start from
1 in the Sparse Grids Matlab Kit). Most of the values in these plots are between 2
and 3, which again shows that the algorithms favor adding new variables rather than
exploring those already available. Finally, we mention (plot omitted for brevity)
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that despite the relatively large number of random variables activated, each tensor
grid in the sparse grid construction is at most 4-dimensional,4 which means that
interactions between five or more of the random variables appearing in the KL or
LC expansion, respectively, are considered negligible by the algorithm.

5 Conclusions

In this contribution we have investigated some practical choices related to the
numerical approximation of random elliptic PDEs with lognormal diffusion coef-
ficients by sparse grid collocation methods. More specifically, we discussed two
issues, namely (a) whether it pays off from a computational point of view to replace
the classical Karhunen–Loève expansion of the log-diffusion field with the Lévy–
Ciesielski expansion, as advocated in [2] for theoretical purposes and (b) what
type of univariate interpolation node sequence should be used in the sparse grid
construction, choosing among Gauss—Hermite, Gaussian Leja and Genz—Keister
points. Following a brief digression into the issue of convergence of interpolation
and quadrature of univariate and multivariate functions based on these three
classes of nodes, we compared the performance of sparse grid collocation for the
approximate solution of the lognormal random PDEs in a number of different cases.
The computational experiments suggest that Gaussian Leja collocation points, due
to their approximation properties, granularity and nestedness, are the superior
choice for the sparse grid approximation of the random PDE under consideration,
and that the Karhunen–Loève expansion offers a computationally more effective
parametrization of the input random field than the Lévy–Ciesielski expansion.
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Appendix

We show that the Karhunen–Loève expansion of the Brownian bridge discussed in
Example 1 does not satisfy the conditions of Theorem 1 for p > 0. To this end, we
first state

4 In other words, out of the M random variables considered, only four are simultaneously activated
to build the tensor grids—which four of course depends on each tensor grid.



28 O. G. Ernst et al.

Proposition 3 Let (bm)m∈N be a monotonically decreasing sequence of real num-
bers with limm→∞ bm = 0. Then for any θ ∈ [0, 2π] we have

∑
m≥1

bm sin(mθ) < ∞.

Proof Dirichlet’s test for the convergence of series implies the statement if there
exists a constant K < ∞ such that

∣∣∣∣∣
M∑

m=1

sin(mθ)

∣∣∣∣∣ ≤ K ∀M ∈ N.

Now, Lagrange’s trigonometric identity tells us that

M∑
m=1

sin(mθ) = 1

2
cot(0.5θ) − cos ((M + 0.5)θ)

2 sin(0.5θ)
, θ ∈ (0, 2π).

Hence, since sin(m0) = sin(m2π) = 0 the statement follows easily. ��
Proposition 4 Given the Karhunen–Loève expansion of the Brownian bridge as in
(9), the function

kτ (x) :=
∞∑

m=1

τm

√
2

πm
sin(mπx), x ∈ D = [0, 1],

is pointwise well-defined for τm = m1/q with q > 1 in which case (τ−1
m )m∈N ∈

	p(N) for any p > q > 1. However, assuming that kτ : [0, 1] → R is well-defined
for a sequence τ = (τm)m∈N with (τ−1

m )m∈N ∈ 	p(N) for a p ≤ 2, then kτ /∈
L∞(D).

Proof The first statement follows by Proposition 3 and
√

2
πm

τm = Cm1/q−1 → 0
as m → ∞. The second statement follows by contracdiction. Assume that kτ ∈
L∞(D), then also kτ ∈ L2(D) and via ‖kτ‖L2(D) = 1

π2

∑∞
m=1

τ 2
m

m2 we have that

τ 2
m ≤ cm for a c ≥ 0—otherwise ‖kτ‖L2(D) = +∞. Thus, τ

−p
m ≥ c−p/2m−p/2 and

since
∑

m≥1 m−p/2 < +∞ if and only if p > 2, we end up with (τ−1
m )m∈N /∈ 	2(N).

��
For values p > 2 we provide the following numerical evidence: we choose τm =

m1/p, i.e., (τ−1
m )m∈N ∈ 	p+ε(N), ε > 0, and compute the values of the function

κτ (x) as given in Proposition 4 in a neighborhood of x = 0 numerically. The reason
we are interested in small values of x is the fact that κτ (x), x �= 0, can be bounded
by 1

2 cot(0.5πx) + 1
2 sin(0.5πx)

by means of Proposition 3. Thus, we expect a blow-

up for small values of x. Indeed, we observe numerically that κτ (x) for τm = m1/p
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Fig. 10 Growth of κτ (x) as
given in Proposition 4 for
decaying x → 0+ and
choices τm = m1/p with
various values of p—the
observed growth matches
x−1/p
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behaves like x−1/p for small values of x > 0, see Fig. 10. This implies that κτ is
unbounded in a neighborhood of x = 0 for any of the above choices of τm and,
therefore, does not satisfy the conditions of Theorem 1.
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