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APPLICATION TO ELLIPTIC PDEs)∗
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Abstract. We give a convergence proof for the approximation by sparse collocation of Hilbert-
space-valued functions depending on countably many Gaussian random variables. Such functions
appear as solutions of elliptic PDEs with lognormal diffusion coefficients. We outline a general L2-
convergence theory based on previous work by Bachmayr et al. [ESAIM Math. Model. Numer.
Anal., 51 (2017), pp. 341–363] and Chen [ESAIM Math. Model. Numer. Anal., in press, 2018,
https://doi.org/10.1051/m2an/2018012] and establish an algebraic convergence rate for sufficiently
smooth functions assuming a mild growth bound for the univariate hierarchical surpluses of the
interpolation scheme applied to Hermite polynomials. We specifically verify for Gauss–Hermite nodes
that this assumption holds and also show algebraic convergence with respect to the resulting number
of sparse grid points for this case. Numerical experiments illustrate the dimension-independent
convergence rate.
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1. Introduction. The elliptic diffusion problem

(1) −∇ · (a(ω)∇u(ω)) = f in D ⊂ Rd, u(ω) = 0 on ∂D, P-a.s.,

with a random diffusion coefficient a : Ω → L∞(D) with respect to an underlying
probability space (Ω,A,P) has become a model problem for numerical methods for
solving random PDEs. For modeling reasons the diffusion field is often taken to have a
lognormal probability law, which complicates both the study of the well-posedness of
the problem [8, 25, 20, 31] as well as the analysis of approximation methods. One of the
challenges is that the most common parametrization of a Gaussian random field—the
Karhunen–Loève expansion [2, 23]—involves a countable number of standard normal
random variables

(2) log a(x, ω) = φ0(x) +

∞∑
m=1

φm(x) ξm(ω),

where φ0, φm ∈ L∞(D) and ξm ∼ N(0, 1) i.i.d. for m ∈ N, leading to an elliptic
PDE with a countably infinite number of random parameters ξ = (ξm)m∈N ∈ RN. In
the following we shall also denote by a(ξ) the random field a parametrized by ξ and
likewise for random quantities depending on a such as the solution u of (1).
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878 O. G. ERNST, B. SPRUNGK, AND L. TAMELLINI

Beside the stochastic Galerkin method [23, 29] the most common approach for
approximating the solution u(ξ) of such random or parametric elliptic PDEs is polyno-
mial collocation . Early work on such methods for random PDEs considered a finite (if
large) number of random parameters, a setting also referred to as finite-dimensional
noise [44, 3, 37, 36]. In this case the parametric representation of log a is typically
obtained by truncating a series expansion of the random field such as (2).

The analysis of the problem involving an infinite number of random variables was
first discussed by Cohen, DeVore, and Schwab in [14, 15] in a simpler setting where
the diffusion field a, rather than its logarithm as in (2), is expanded in a series. This
results in an affine dependence of a on the random variables ξm, which are, moreover,
assumed to have bounded support. In this framework the convergence of the best
N -term approximation of the solution of the diffusion equation by Taylor as well as
Legendre series was shown to be independent of the number of random variables;
this result was further refined in the recent paper [5]. Employing the theoretical
concepts stated in [14, 15], Chkifa, Cohen, and Schwab analyze in [11] collocation
methods based on Lagrange interpolation at Leja points for problems with diffusion
coefficients depending linearly on an infinite number of bounded random variables,
which are adaptive in the polynomial degree as well as the number of active dimensions
or random variables, respectively. The adaptive algorithm itself has its origins in the
earlier work [22]. Each interpolatory approximation gives rise to a quadrature scheme,
and in [39] Schillings and Schwab consider sparse adaptive quadrature schemes in the
same setting of [11] in connection with approximating expectations with respect to
posterior measures in Bayesian inference. Extensions to the case where the diffusion
coefficient a depends nonlinearly on an infinite number of random variables with
bounded support are discussed in [12].

Returning to the original lognormal diffusion problem, i.e., with a expanded as in
(2) and depending on random variables with unbounded support, Hoang and Schwab
[27] have obtained convergence results on best N -term approximation by Hermite
polynomials. These were recently extended by Bachmayr et al. [4] using a differ-
ent analytical approach employing a weighted `2-summability of the coefficients of
the Hermite expansion of the solution and their relation to partial derivatives. The
theoretical tools provided in [4] enabled the convergence analysis for adaptive sparse
quadrature given in [9] employing, e.g., Gauss–Hermite nodes for Banach space-valued
functions of countably many Gaussian random variables.

In this paper we address the convergence of sparse polynomial collocation for
functions of a countable number of Gaussian random variables, such as the solution
to the lognormal diffusion problem (1). Specifically, we follow the approach of [4]
and [9] to prove an algebraic convergence rate with respect to the number of grid
points for sparse collocation based on Gauss–Hermite interpolation nodes in the case
of countably many variables. In particular, the result applies to the solution u of
(1) when a is a lognormal random field. In addition, we highlight the common ideas
surrounding sparse collocation found in the works referred to above. The convergence
result in terms of the number of collocation points is obtained in two steps: we first
link the error to the size of the multi-index set defining the sparse collocation and
then derive a bound on the number of points contained in the associated sparse grid.
This procedure has also been followed in all of the above-mentioned works analyzing
the convergence of sparse grid quadrature and collocation schemes. An alternative
strategy, which instead links the error directly to the number of collocation points by
associating so-called profits with each component of a sparse grid, has been discussed
in [34, 26], albeit only in the case of random variables with bounded support.
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SPARSE COLLOCATION FOR LOGNORMAL DIFFUSION 879

We remark that, beside the classical node families such as Gauss–Hermite and
Genz–Keister [21] for quadrature and interpolation on R with respect to a Gaussian
measure, Narayan and Jakeman [32] have introduced weighted Leja points—a gen-
eralization of the classical Leja point construction (see, e.g., [30, 17] and references
therein) to unbounded domains and arbitrary weight functions. Moreover, they have
proved that these node sets possess the correct asymptotic distribution of interpo-
lation nodes and illustrate their computational potential in numerical experiments.
Note that such weighted Leja points provide a nested sequence of interpolation nodes
which can be extended one node at a time. The analysis of sparse collocation based on
normal Leja points, i.e., weighted Leja points for a Gaussian measure, is an interesting
topic for future research.

The remainder of this paper is organized as follows. In the next section we in-
troduce the general setting and notation and construct the sparse grid collocation
operator based on univariate Lagrange interpolation. Section 3 is devoted to the
convergence analysis of such operators. We first outline in section 3.1 the general
approaches to proving algebraic convergence rates as they can be found in the work
mentioned above. Then, in section 3.2 we follow the approach of [4, 9] and derive suf-
ficient conditions on the underlying univariate interpolation nodes in order to obtain
such rates when approximating “countably variate” functions of sufficient smooth-
ness. Finally, in section 3.3 we verify these conditions specifically for Gauss–Hermite
nodes, provide bounds for the number of nodes in the resulting sparse grids, and state
a convergence result with respect to this number. Section 4 returns to our original
motivation and comments on the application to random elliptic PDEs before we ver-
ify our theoretical findings in section 5 for a simple boundary value problem in one
spatial dimension. We draw final conclusions in section 6.

2. Setting and sparse collocation. We consider functions f defined on a
parameter domain Γ ⊂ RN taking values in a separable real Hilbert space H with
inner product (·, ·)H and norm ‖ · ‖H. As our interest lies in the approximation of the
dependence of f : Γ → H on ξ ∈ Γ by multivariate polynomials based on Lagrange
interpolation, a minimal requirement is that point evaluation of f at any ξ ∈ Γ be
well defined. Stronger smoothness requirements on f become necessary when deriving
convergence rate estimates for the approximations.

Denoting by B(R) the σ-algebra of Borel sets on R, we introduce a probability
measure µ on the measurable space (RN,⊗m≥1B(R)) as the countable product measure
of standard Gaussian measures on R, i.e.,

(3) µ =
⊗
m≥1

N(0, 1),

and denote by L2
µ(Γ;H) the space of all (equivalence classes of) functions with finite

second moments with respect to µ in the sense that∫
RN
‖f(ξ)‖2H µ(dξ) <∞.

L2
µ(Γ;H) forms a Hilbert space with inner product

(f, g)L2
µ

=

∫
RN

(f(ξ), g(ξ))H µ(dξ).

In all of the following we make the standing assumption.
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880 O. G. ERNST, B. SPRUNGK, AND L. TAMELLINI

Assumption 2.1. Let f : Γ → H where µ(Γ) = 1. It holds (for a measurable
extension of f to RN) that f ∈ L2

µ(RN;H).

It is shown, e.g., in [40, Theorem 2.5], that the countable tensor products of
Hermite polynomials form an orthonormal basis of L2

µ(RN;H). Under Assumption 2.1
we, therefore, have

(4) f(ξ) =
∑
ν∈F

fν Hν(ξ), fν :=

∫
RN
f(ξ)Hν(ξ)µ(dξ) ∈ H,

where Hν(ξ) =
∏
m≥1Hνm(ξm) and Hνm denotes the univariate Hermite orthonormal

polynomial of degree νm while the multi-index set

F :=
{
ν ∈ NN

0 : |ν|0 <∞
}
, |ν|0 := |{j ∈ N : νj > 0}|

contains all sequences of nonnegative integers with finitely many nonzero elements.

2.1. Sparse polynomial collocation. The construction of sparse collocation
operators below is based on sequences of univariate Lagrange interpolation operators
Uk mapping into the set Pk of univariate polynomials of degree at most k ∈ N0. Thus,

(Ukf)(ξ) =

k∑
i=0

f(ξ
(k)
i )L

(k)
i (ξ), f : R→ R,

where {L(k)
i }ki=0 denotes the Lagrange fundamental polynomials of degree k associated

with a set of k + 1 distinct interpolation nodes Ξ(k) := {ξ(k)
0 , ξ

(k)
1 , . . . , ξ

(k)
k }.

Remark 2.2. It may also be of interest to consider sequences of interpolation
operators Uk with a more general degree of polynomial exactness n(k) where n :
N0 → N0 is nondecreasing and n(0) = 0; see, for instance, [44, 3, 37, 36, 35, 34].
However, we restrict ourselves to n(k) = k for simplicity.

We also introduce the detail operators

∆k := Uk − Uk−1, k ≥ 0,

where we set U−1 :≡ 0, and observe that

Uk = Uk−1 + ∆k = ∆0 + ∆1 + · · ·+ ∆k .

Tensorization. For any multi-index k = (km)m∈N ∈ F the (full) tensor product
interpolation operator Uk :=

⊗
m∈N Ukm is defined by

(5) (Ukf)(ξ) =

(⊗
m∈N

Ukmf

)
(ξ) =

∑
i≤k

f(ξ
(k)
i )L

(k)
i (ξ), f : RN → R,

where ξ
(k)
i ∈ RN ranges over all points in the Cartesian product

Ξ(k) :=×
m∈N

Ξ(km), where |Ξ(k)| =
∏
m∈N

(1 + km),(6)

and where

L
(k)
i (ξ) :=

∏
m∈N

L
(km)
im

(ξm)(7)D
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SPARSE COLLOCATION FOR LOGNORMAL DIFFUSION 881

is a multivariate polynomial of (total) degree |k |1 =
∑
m km. Note that L

(0)
0 (ξ) ≡ 1;

in particular, since k ∈ F all but a finite number of factors in (6) and (7) are equal to
one so that the corresponding products can be regarded as finite. The tensor product
interpolation operator Uk maps into the multivariate (tensor product) polynomial
space

(8) Qk := span{ξi : 0 ≤ im ≤ km,m ∈ N}, k ∈ F .

Note that since both the univariate polynomial sets of Lagrange fundamental poly-

nomials {L(k)
i }ki=0 and the Hermite orthonormal polynomials {Hi}ki=0 form a basis of

Pk, equivalent characterizations are

Qk = span{L(k)
i : 0 ≤ im ≤ km,m ∈ N}

= span{Hi : 0 ≤ im ≤ km,m ∈ N}, k ∈ F .

In order for the tensor product interpolation operator Uk to be applicable also to
functions defined only on a subset Γ ⊂ RN, we assume the interpolation nodes to all
lie in Γ.

Assumption 2.3. Let Γ ⊂ RN denote the domain from Assumption 2.1. For all
k ∈ F the Cartesian products of nodal sets Ξ(k) given in (6) satisfy Ξ(k) ⊂ Γ.

In the following we denote by RΓ the set of all mappings from Γ to R. Analogous
to (5) we define for any multi-index k ∈ F the tensorized detail operator

∆k :=
⊗
m∈N

∆km : RΓ → Qk .

Finally, we associate with a finite subset Λ ⊂ F the multivariate polynomial space

(9) PΛ :=
∑
i∈Λ

Qi

and define the associated sparse (polynomial) collocation operator UΛ : RΓ → PΛ by

(10) UΛ :=
∑
i∈Λ

∆i .

We will see that UΛ is exact on PΛ under some natural assumptions on the multi-index
set Λ, for which we first recall some basic definitions given in [13, 11, 12].

Partial orderings and monotone sets of multi-indices. We define a partial ordering
on F by

ν̃ ≤ ν :⇔ ν̃m ≤ νm ∀m ∈ N

as well as

ν̃ < ν :⇔ ν̃ ≤ ν and ν̃m < νm for at least one m ∈ N

and introduce the relation

ν̃ 6≤ ν :⇔ ν̃m > νm for at least one m ∈ N.
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We shall call a set of multi-indices Λ ⊂ F monotone if ν ∈ Λ and ν̃ ≤ ν together
imply that also ν̃ ∈ Λ. For a multi-index ν ∈ F we define its rectangular envelope
Rν by

Rν := {ν̃ ∈ F : ν̃ ≤ ν}.

Note that Rν for ν ∈ F is a finite (and monotone) set with cardinality

(11) |Rν | =
∏
m∈N

(1 + νm) <∞.

Finally, for any j ∈ N, we denote by ej the jth standard unit sequence, i.e., the
sequence whose elements are all 0 except for the jth, which is equal to 1.

2.2. Polynomial exactness of sparse collocation. The introduction of the
rectangular envelope Rν of a multi-index ν ∈ F permits a convenient characterization
of monotone multi-index sets Λ and the associated polynomial spaces PΛ introduced
in (9).

Proposition 2.4. If Λ ⊂ F is monotone, then

Λ =
⋃
ν∈Λ

Rν and PΛ = span{ξν : ν ∈ Λ} = span{Hν : ν ∈ Λ}.

Proof. Since ν ∈ Rν for all ν ∈ Λ the set on the left is obviously a subset of that
on the right. Conversely, given i ∈ Rν for some ν ∈ Λ, the definition of Rν implies
i ≤ ν, which in turn implies i ∈ Λ by the monotonicity of Λ. Moreover, monotonicity
also implies

PΛ =
∑
k∈Λ

Qk = span{ξi : i ≤ k , k ∈ Λ} = span{ξi : i ∈ Λ} = span{Hν : ν ∈ Λ},

where monotonicity is required for the last two equalities.

In view of Proposition 2.4, PΛ for a multi-index set Λ ⊂ Rk represents a sparsi-
fication of Qk , while the full tensor product polynomial space Qk coincides with PΛ

for Λ = Rk . Similarly, the full tensor approximation operator Uk defined in (5) can
be expressed as Uk =

∑
i∈Rk

∆i .

Proposition 2.5. Let Λ ⊂ F be a finite and monotone set. Then UΛp = p for
all p ∈ PΛ. In particular, for all p ∈ PΛ we have ∆ip = 0 for i /∈ Λ.

Proof. Observe first that, for any ν, i ∈ F such that i 6≤ ν, we have

∆iξ
ν =

∏
m∈N

∆imξ
νm
m =

∏
m∈N

(Uim − Uim−1)ξνmm︸ ︷︷ ︸
=ξνmm −ξνmm ≡0 for at least one m

= 0.

It suffices to prove the assertions for all monomials ξν in PΛ. For ν ∈ Λ any i ∈ F \Λ
must satisfy i 6≤ ν and, therefore, ∆iξ

ν = 0, proving the second assertion. We
conclude that

UΛξ
ν =

∑
i∈Λ

∆iξ
ν =

∑
i∈Λ∩Rν

∆iξ
ν =

∑
i∈Rν

∆iξ
ν ,D
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where the third equality follows from the fact that Rν ⊆ Λ for all ν ∈ Λ due to the
monotonicity of Λ. The proof concludes with

UΛξ
ν =

∑
i∈Rν

∆iξ
ν =

∑
i∈Rν

(∏
m∈N

∆imξ
νm
m

)
=
∏
m∈N

(
νm∑
im=0

∆imξ
νm
m

)
=
∏
m∈N

Uνmξ
νm
m

=
∏
m∈N

ξνmm = ξν .

Note that the third equality is obtained by rewriting a (finite) product of sums: Since
ν ∈ F there exists an M ∈ N such that νm = 0 for m > M . For such m we have
∆νm
im
ξνmm = ∆0ξ

0
m ≡ 1 and, therefore,

∏
m∈N

(
νm∑
im=0

∆imξ
νm
m

)
= (∆0ξ

ν1
1 + · · ·+ ∆ν1ξ

ν1
1 ) · · · (∆0ξ

νM
M + · · ·+ ∆νM ξ

νM
M )

=
∑
i∈NM0
im≤νm

∆i1ξ
ν1
1 · · ·∆iM ξ

νM
M =

∑
i∈Rν

(∏
m∈N

∆imξ
νm
m

)
.

Proposition 2.5 can be seen as an extension of [6, Proposition 1] to general mono-
tone multi-index sets as well as an extension of [13, Theorem 6.1] and [11, Theorem
2.1] to interpolation operators Ui with nonnested node sets. As mentioned in [13, p.
89], if the set Λ is not monotone, then UΛ will not be exact on PΛ in general. However,
exactness on PΛ is a crucial property in the subsequent convergence analysis, and we,
therefore, choose to work exclusively with monotone sets Λ.

2.3. Sparse grid associated with UΛ. The construction of UΛf for f : Γ→ R
consists of a linear combination of tensor product interpolation operators requiring
the evaluation of f at certain multivariate nodes. We refer to the collection of these
nodes as the sparse grid ΞΛ ⊂ Γ associated with Λ. For a monotone and finite set
Λ ⊂ F there holds

(12) ΞΛ =
⋃
i∈Λ

Ξ(i),

because for i ∈ F we have

∆if =
[⊗
m≥1

(Uim − Uim−1)
]
f =

∑
i−1≤k≤i

(−1)|i−k |1
[⊗
m≥1

Ukm

]
f,

i.e., for computing ∆if we need to evaluate f at

Ξ(i),∆ :=
⋃

i−1≤k≤i

Ξ(k).

Since Λ is a monotone set, the resulting sparse grid for UΛ =
∑

i∈Λ ∆i is

ΞΛ =
⋃
i∈Λ

Ξ(i),∆ =
⋃
i∈Λ

⋃
i−1≤k≤i

Ξ(k) =
⋃
i∈Λ

Ξ(i).

We remark that the unisolvence on PΛ of point evaluations on ΞΛ is discussed in [13,
Theorem 6.1].
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3. Convergence analysis. In this section we analyze the error

‖f − UΛf‖L2
µ
, f : Γ→ H,

where ‖·‖L2
µ

denotes the norm1 in L2
µ(RN;H), f is assumed to satisfy Assumption 2.1,

and Λ ⊂ F is required to be monotone and finite. Our first goal here is to establish a
convergence rate s > 0 for the error of UΛN f for a nested sequence ΛN of monotone
subsets of F with |ΛN | = N . Specifically, we show that

‖f − UΛN f‖L2
µ
≤ CN−s, f : Γ→ H,(13)

where C <∞ may depend on f as well as the univariate nodal sets. The line of proof
we present here follows and builds upon the works [9, 27, 4]. We complement this
convergence rate with a bound on the number of collocation points associated with a
given multi-index set.

3.1. General convergence results. The subsequent error analysis for the
sparse collocation operator UΛ is based on the representation of multivariate func-
tions f ∈ L2

µ(RN;H) in the orthonormal basis of multivariate Hermite polynomials
Hν . We shall, therefore, examine the worst-case approximation error of any UΛ ap-
plied to a given multivariate Hermite polynomial Hν . To this end we define

(14) cν := sup
Λ⊂F,|Λ|<∞

‖(I − UΛ)Hν‖L2
µ
, ν ∈ F .

This quantity is finite since ∆iHν = 0 for i 6≤ ν and hence

cν = max
Λ⊆Rν

‖(I − UΛ)Hν‖L2
µ
,

where now the maximum is taken over a finite set. The quantities cν also measure the
deviation of the error of the oblique projection UΛ from that of orthogonal projection,
as these numbers would all be zero or one if UΛ were replaced by the L2

µ-orthogonal
projection onto PΛ. Moreover, we obtain the following bound.

Proposition 3.1. For all ν ∈ F the quantity cν defined in (14) satisfies

cν ≤
∑
i∈Rν

‖∆iHν‖L2
µ
.

In particular, if there exist θ ≥ 0 and K ≥ 1 such that for the univariate Hermite
polynomials there holds

‖∆iHν‖L2
µ
≤ (1 +Kν)θ ∀ i ∈ N0,(15)

where we have again denoted the univariate Gaussian measure by µ, then

cν ≤
∏
m∈N

(1 +Kνm)θ+1, ν ∈ F .(16)

1We shall occasionally also use ‖ · ‖L2
µ

to denote the norm on L2
µ(R;R), where µ is the standard

normal distribution on the real line. The meaning should be clear from the context.
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Proof. In view of Proposition 2.5 we have Hν = UνHν =
∑

i∈Rν
∆iHν and,

particularly, ∆iHν = 0 for i 6∈ Rν , since Hν ∈ PRν . Therefore,

(I − UΛ)Hν =
∑
i∈Rν

∆iHν −
∑
i∈Λ

∆iHν =
∑
i∈Rν

∆iHν −
∑

i∈Λ∩Rν

∆iHν

=
∑

i∈Rν\Λ

∆iHν ,

giving

cν = max
Λ⊆Rν

‖(I − UΛ)Hν‖L2
µ
≤ max

Λ⊆Rν

∑
i∈Rν\Λ

‖∆iHν‖L2
µ
≤
∑
i∈Rν

‖∆iHν‖L2
µ
.

Moreover, if (15) holds, then

cν ≤
∑
i∈Rν

‖∆iHν‖L2
µ

=
∑
i∈Rν

∏
m∈N
‖∆imHνm‖L2

µ
≤
∑
i∈Rν

∏
m∈N

(1 +Kνm)θ

= |Rν |
∏
m∈N

(1 +Kνm)θ ≤
∏
m∈N

(1 +Kνm)θ+1,

where we have used (11) and K ≥ 1 in the last inequality.

Remark 3.2. Bounds such as (15) can often be found in the sparse collocation
or sparse quadrature literature, e.g., for quadrature operators applied to Hermite
polynomials [9], norms of quadrature operators on bounded domains [39], or Lebesgue
constants for Leja points [12]. Numerical estimates for the specific case of Genz–
Keister points are given in [7].

The following lemma provides a natural starting point for bounding the approx-
imation error of UΛf for monotone subsets Λ. The proof follows the same line of
argument as the proof of [9, Lemma 3.2].

Lemma 3.3 (cf. [9, Lemma 3.2]). For a finite and monotone subset Λ ⊂ F there
holds

(17) ‖f − UΛf‖L2
µ
≤

∑
ν∈F\Λ

cν‖fν‖H.

Proof. Due to the monotonicity of Λ we can apply Proposition 2.5 and obtain

‖f − UΛf‖L2
µ

=

∥∥∥∥∑
ν∈F

fν (I − UΛ)Hν(ξ)

∥∥∥∥
L2
µ

=

∥∥∥∥ ∑
ν∈F\Λ

fν (I − UΛ)Hν(ξ)

∥∥∥∥
L2
µ

≤
∑

ν∈F\Λ

‖fν‖H‖(I − UΛ)Hν‖L2
µ
≤

∑
ν∈F\Λ

cν‖fν‖H.

Building on Lemma 3.3 the approximation error ‖f − UΛf‖L2
µ

may be further

bounded given summability properties for the sequence (cν‖fν‖H)ν∈F . The key result
here is known as Stechkin’s lemma which provides a decay rate for the `q-tail of a p-
summable sequence for q > p and is due to Stechkin [41] for q = 2 (cf. also [13, Lemma
3.6]).

Lemma 3.4 (Stechkin). Let 0 < p < q <∞ and let

(aν)ν∈F ∈ `p(F) :=

{
(bν)ν∈F :

∑
ν∈F
|bν |p <∞

}D
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be a sequence of nonnegative numbers. Then with ΛN denoting the set of multi-indices
ν corresponding to the N largest elements aν , there holds

(18)

( ∑
ν /∈ΛN

aqν

)1/q

≤ ‖(aν)ν∈F‖`p(N + 1)−s, s =
1

p
− 1

q
.

The index sets ΛN in Stechkin’s lemma associated with the N largest sequence
elements are not necessarily monotone and, therefore, Lemmas 3.3 and 3.4 cannot
be combined to bound the error without additional assumptions. An obvious way to
ensure monotonicity of the sets ΛN in Stechkin’s lemma is to assume the sequence
(aν) to be nonincreasing, i.e.,

ν ≤ ν̃ ⇒ aν ≥ aν̃ .

This leads to the following theorem.

Theorem 3.5. Let Assumptions 2.1 and 2.3 be satisfied and let there exist a non-
increasing sequence (ĉν)ν∈F ∈ `p(F) with p ∈ (0, 1) such that

cν‖fν‖H ≤ ĉν ∀ν ∈ F .

Then there exists a nested sequence (ΛN )N∈N of finite and monotone subsets ΛN ⊂ F
with |ΛN | = N such that (13) holds with rate s = 1/p− 1.

We provide a proof below. The convergence analysis in [12, 39] for sparse quadra-
ture and interpolation in case of bounded Γ proceeds along the lines of Theorem 3.5,
although sometimes this is hidden in the details. There the authors employ explicit
bounds on the norms of the Legendre or Taylor coefficients of f : Γ→ H to construct
a dominating and nonincreasing sequence (ĉν)ν∈F ∈ `p(F), p ∈ (0, 1).

In our setting, however, it is not always possible to derive explicit bounds on the
norm of the Hermite coefficients ‖fν‖H. In [4] a technique was developed which relies
on somewhat implicit bounds on ‖fν‖H via a weighted `2-summability property. We
adapt this approach to the current setting in the following theorem.

Theorem 3.6. Let Assumptions 2.1 and 2.3 be satisfied and let there exist a se-
quence (bν)ν∈F of positive numbers such that

(19)
∑
ν∈F

bν‖fν‖2H <∞

as well as another nonincreasing sequence (ĉν)ν∈F ∈ `p(F), p ∈ (0, 2), for which

cν

b
1/2
ν

≤ ĉν ∀ν ∈ F .

Then there exists a nested sequence (ΛN )N∈N of finite and monotone subsets ΛN ⊂ F
with |ΛN | = N such that (13) holds with rate s = 1/p− 1/2.

Proof of Theorems 3.5 and 3.6. Let ΛN be the set of multi-indices ν correspond-
ing to the N largest elements of (ĉν)ν∈F . Then each ΛN is monotone and the sequence
(ΛN )N∈N can be chosen to be nested.

If the assumptions of Theorem 3.5 hold, we can apply Lemma 3.3 and Stechkin’s
lemma with q = 1 > p to obtain

‖f − UΛN f‖L2
µ
≤

∑
ν∈F\ΛN

cν‖fν‖H ≤
∑

ν∈F\ΛN

ĉν ≤ C(N + 1)−(1/p−1),D
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where C = ‖(ĉν)ν∈F‖`p .
If the assumptions of Theorem 3.6 hold, Lemma 3.3 combined with the Cauchy–

Schwarz inequality and Stechkin’s lemma for q = 2 > p give

‖f − UΛN f‖L2
µ
≤

∑
ν∈F\ΛN

cν‖fν‖H =
∑

ν∈F\ΛN

(
cν

b
1/2
ν

) (
b1/2ν ‖fν‖H

)

≤

( ∑
ν∈F\ΛN

bν‖fν‖2H

)1/2

·

( ∑
ν∈F\ΛN

c2ν
bν

)1/2

≤

(∑
ν∈F

bν‖fν‖2H

)1/2

·

( ∑
ν∈F\ΛN

ĉ2ν

)1/2

≤ C(N + 1)−(1/p−1/2),

where now C = ‖(b1/2ν ‖fν‖)ν∈F‖`2 · ‖(ĉν)ν∈F‖`p , respectively.

Remark 3.7. Another application of the weighted `2-summability property (19)
is the analysis of sparse quadrature given in [9], where the author employs the slightly
different estimate∑

ν∈F\ΛN

cν‖fν‖H ≤ sup
ν∈F\ΛN

bq−1/2
ν

∑
ν∈F\ΛN

cν

b−qν

b1/2ν ‖fν‖H.

After showing that the series on the right is bounded and applying Stechkin’s lemma

to (b
q−1/2
ν )ν∈F , this yields the same convergence rate as stated in Theorem 3.6.

Remark 3.8. We mention that sparse collocation attains a smaller convergence
rate than best N -term approximation in case the assumptions of Theorem 3.6 hold.
Namely, under these assumptions the best N -term rate is s = 1

p ; see [4, Theorem

1.2]. This reduced convergence rate is not due to the additional factors cν in the error
analysis of sparse collocation. The reason for the slower rate is lack of orthogonality:
in the proof of Lemma 3.3 we could not apply Parseval’s identity and had to use the
triangle inequality to bound the error. This led to bounds in terms of ‖fν‖H rather
than ‖fν‖2H as in the case of orthogonal projection, e.g., best N -term approximation.

We emphasize that the construction of such a nonincreasing, p-summable domi-
nating sequence is by no means trivial. Without the first property we cannot conclude
that the multi-index sets ΛN occurring in Stechkin’s lemma are monotone, which in
turn is needed to apply Lemma 3.3 as the starting point of our error analysis. Of
course, we could consider monotone envelopes ΛN ⊂ Λ̃N of ΛN , but their size can
grow quite rapidly with N (e.g., polynomially or even faster; see the counterexample
below). Moreover, it is not at all obvious that for a sequence (aν)ν∈F ∈ `p(F) there
exists a dominating and nonincreasing (âν)ν∈F ∈ `p(F). In particular, we provide
the following counterexample: let F = N and define an, n ∈ N, by

an =

{
1
m2 , n =

∑m
k=1 k,

0 otherwise,

i.e., a1 = 1, a2 = 0, a3 = 1
4 , a4 = 0, a5 = 0, a6 = 1

9 , a7 = 0, . . . , a9 = 0, a10 = 1
16 , a11 =

0, . . . . Then (an)n∈N ∈ `1(N). The smallest positive nonincreasing sequence (ân)n∈N
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dominating (an)n∈N is given by ân := supm≥n |am|; see [13, section 3.8]. In our case,
we get

ân =
1

m2
for each n such that 1 +

m−1∑
k=1

k ≤ n ≤
m∑
k=1

k

and, thus,
∞∑
n=1

|ân| =
∞∑
m=1

m
1

m2
=∞.

Although the example is somewhat pathological, it does illustrate that for (aν) ∈
`p(F) a p-summable nonincreasing dominating sequence need not exist.

3.2. Sufficient conditions for majorization and weighted summability.
We now follow the strategy of Theorem 3.6 and study under which requirements the
assumptions of Theorem 3.6 hold. To this end we recall a result from [4] for weighted
`2-summability of Hermite coefficients ‖fν‖H under the following smoothness condi-
tions on f .

Assumption 3.9. Let f satisfy Assumption 2.1. There exist an integer r ∈ N0

and a sequence of positive numbers (τ−1
m )m∈N ∈ `p(N), p ∈ (0, 2), such that

(a) for any α ∈ F with |α|∞ ≤ r the (weak) partial derivative ∂αf exists and satisfies
∂αf ∈ L2

µ(RN;H);
(b) there holds

(20)
∑
|α|∞≤r

τ 2α

α!
‖∂αf‖2L2

µ
<∞, where τα =

∞∏
m=1

ταmm and α! =

∞∏
m=1

αm!.

Observe that the sum in (20) is, in general, an infinite series since there are
countably many multi-indices such that |α|∞ ≤ r. Assumption 3.9(a) states that we
require a finite order of partial differentiability of f , i.e., up to order r with respect to
each variable ξm, and, maybe more importantly, Assumption 3.9(b) demands weighted
square-summability of the L2

µ-norms of the corresponding partial derivatives. The
latter, in particular, implies bounds of the form

‖∂αf‖L2
µ
≤ K
√
α! τ−α, |α|∞ ≤ r,

since otherwise the summability requirement (20) would not hold. Recalling that the
sequence (τ−1

m )m∈N belongs to `p(N) this bound implies that, e.g., the L2
µ-norm of the

derivative ∂αξmf , α ≤ r, decays as m→∞.
The following result shows that the smoothness condition of Assumption 3.9 im-

plies the first condition (19) of Theorem 3.6.

Theorem 3.10 (cf. [4, Theorem 3.3]). Let Assumption 3.9 be satisfied. Then,
with the weights

bν = bν(τ , r) =
∑
|α|∞≤r

(
ν

α

)
τ 2α =

∏
m≥1

(
r∑
l=0

(
νm
l

)
τ2l
m

)
, ν ∈ F ,(21)

where (
ν

α

)
:=
∏
m≥1

(
νm
αm

)
and

(
νm
αm

)
:= 0 if αm > νm,
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there holds

(22)
∑
ν∈F

bν‖fν‖2H =
∑
|α|∞≤r

τ 2α

α!
‖∂αf‖2L2

µ
<∞.

(We mention in passing that in [4] the assertion of Theorem 3.10 was actually
proven without requiring that both series in (22) be finite.) To apply Theorem 3.6 it
remains to establish the existence of a nonincreasing and p-summable sequence which

dominates cν/b
1/2
ν , ν ∈ F .2 Since the bν are explicitly given in (21), this boils down

to the question of how fast the projection errors cν are allowed to grow. As it turns
out, a polynomial growth w.r.t. ν as given in (16) in Proposition 3.1 is sufficient.
We therefore state the following lemma, which is strongly based on the techniques
developed in the proofs of [4, Lemma 5.1] and [9, Lemma 3.4].

Lemma 3.11. Let there exist θ ≥ 0 and K ≥ 1 such that

cν ≤
∞∏
m≥1

(1 +Kνm)θ+1, ν ∈ F .

Then for any increasing sequence (τm)m∈N such that
∑
m≥1 τ

−p
m <∞ for a p > 0 and

for any r > 2(θ + 1) + 2
p there exists a nonincreasing sequence (ĉν)ν∈F ∈ `p(F) such

that
cν

b
1/2
ν

≤ ĉν ∀ν ∈ F ,

with bν = bν(τ, r) as given in (21).

Proof. We begin by constructing the dominating sequence (ĉν)ν∈F and then show
that it belongs to `p(F) and is nonincreasing. We also introduce the notation a∧ b :=
min(a, b) and a ∨ b := max(a, b).

Step 1: Construction of ĉν . As(
νm

νm ∧ r

)
τ2(νm∧r)
m ≤

r∑
l=0

(
νm
l

)
τ2l
m ,

since the term on the left is part of the sum on the right, we obtain

c2ν
bν
≤
∏
m≥1

(1 +Kνm)2(θ+1)∑r
l=0

(
νm
l

)
τ2l
m

≤
∏
m≥1

(1 +Kνm)2θ+2(
νm
νm∧r

)
τ

2(νm∧r)
m

=
∏
m≥1

τ−2(νm∧r)
m h(νm),(23)

where we have introduced the auxiliary function

h(n) :=
(1 +Kn)2θ+2(

n
n∧r
) , n ∈ N.

We now bound h(n) as well as τ
−2(νm∧r)
m to construct a dominating sequence ĉν .

For n ≤ r we have h(n) = (1 +Kn)2θ+2, but for n > r there holds

h(n) =
(1 +Kn)2θ+2(

n
r

) =
r! (1 +Kn)2θ+2

(n+ 1) · · · (n+ r)
.

2Note that, while b
−1/2
ν is obviously nonincreasing, the sequence cν is generally not monotonic.
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Thus, we have h ∈ O(n2θ+2−r), i.e., there exists Ch ∈ [1,∞) such that

h(n) ≤ Chn2θ+2−r =: ĥ(n) ∀n ∈ N.

By setting ĥ(0) := 1 = h(0), we obtain h(n) ≤ ĥ(n) for all n ∈ N0.
Furthermore, since (τ−1

m )m∈N ∈ `p(N) we have τm →∞ as m→∞. Thus, there
exists an M ∈ N such that τm ≥

√
Ch for m ≥ M and τm ≤

√
Ch for m < M . We

define

τ̂m :=
√
Ch ∨ τm, m ∈ N,

and note that τ̂m ≥ 1 as well as (τ̂−1
m )m∈N ∈ `p(N) by assumption. Moreover, we

obtain for m ≥M

τ2(νm∧r)
m = τ̂2(νm∧r)

m ≥ τ̂2(νm∧1)
m ∀νm ∈ N0,

since τm = τ̂m ≥
√
Ch ≥ 1 in this case. Further, we define

Cτ := min
m≥1

min
n=0,...,r

τ2n
m

Cn∧1
h

> 0,

which then yields for 1 ≤ m < M

τ2(νm∧r)
m ≥ Cτ Cνm∧1

h = Cτ τ̂
2(νm∧1)
m ∀νm ∈ N0

since τ̂m =
√
Ch for m < M . We now define

(24) ĉ2ν := C−Mτ
∏
m≥1

τ̂−2(νm∧1)
m ĥ(νm)

and note that ĉ2ν dominates
c2ν
bν

by (23).
Step 2: Show that (ĉν)ν∈F ∈ `p(F). As for the p-summability, there holds∑

ν∈F
ĉpν = C−pM/2

τ

∑
ν∈F

∏
m≥1

τ̂−p(νm∧1)
m ĥp/2(νm)

= C−pM/2
τ

∏
m≥1

∑
n≥0

τ̂−p(n∧1)
m ĥp/2(n).

We get ∑
n≥0

τ̂−p(n∧1)
m ĥp/2(n) = 1 + C

p/2
h τ̂−pm

∑
n≥1

n−p(r−2θ−2)/2

︸ ︷︷ ︸
=:S

,

where the sum S is finite due to the assumption p
2 (r − 2θ − 2) = p

2 (r − 2θ − 2) > 1.
The rest follows by using log(1 + x) ≤ x for x positive in order to get

∑
ν∈F

ĉpν = C−pM/2
τ

∏
m≥1

(1 + C
p/2
h Sτ̂−pm ) ≤ C−pM/2

τ exp

Cp/2h S
∑
m≥1

τ̂−pm

 <∞

since (τ̂−1
m )m∈N is in `p(N) by construction.
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Step 3: Show that (ĉν)ν∈F is nonincreasing. Let ν ∈ F be arbitrary. If m ∈
suppν = {m ∈ N : νm > 0}, then

ĉ2ν+em = ĉ2ν ·
ĥ(νm + 1)

ĥ(νm)
≤ ĉ2ν ,

since ĥ(n) is nonincreasing for n ≥ 1. Now let m /∈ suppν. Then

ĉ2ν+em = ĉ2ν · τ̂−2
m · ĥ(1) = ĉ2ν · Chτ̂−2

m ≤ ĉ2ν · Ch(
√
Ch)−2 ≤ ĉ2ν .

In summary, we obtain
ĉν+em ≤ ĉν ∀m ∈ N;

hence, (ĉν)ν∈F is nonincreasing.

Observe that the proof of Lemma 3.11 is actually constructive and provides the
basis for a computational technique for generating suitable multi-index sets to be
introduced in section 5.

We can now state our main convergence result for sparse collocation.

Theorem 3.12 (convergence of sparse collocation). Assume that for θ ≥ 0 and
K ≥ 1 there holds

(25) ‖∆iHν‖L2
µ
≤ (1 +Kν)θ, i ∈ N0.

Then for any function f satisfying Assumption 3.9 with r > 2(θ + 1) + 2
p , p ∈ (0, 2),

and Assumption 2.3, there exists a nested sequence of monotone finite subsets ΛN ⊂ F
with |ΛN | = N such that for the sparse collocation error there holds

‖f − UΛN f‖L2
µ
≤ C(1 +N)−( 1

p−
1
2 ).

Proof. We prove the assertion by verifying the assumptions of Theorem 3.6. Since
f satisfies Assumption 3.9 with r > 2(θ+ 1) + 2

p , condition (19) of Theorem 3.6 holds
due to Theorem 3.10. Moreover, we can apply Lemma 3.11 to verify the remaining
assumption of Theorem 3.6 about a nonincreasing dominating sequence (ĉν)ν∈F ∈
`p(F), p ∈ (0, 2): due to Proposition 3.1 the bound (25) implies

cν ≤
∞∏
m≥1

(1 +Kνm)θ+1, ν ∈ F ,

and the sequence (τm)m∈N appearing in Assumption 3.9 can w.l.o.g. be assumed to
be increasing (otherwise one can permute the dimensions accordingly).

3.3. Convergence of sparse collocation at Gauss–Hermite nodes. In the
following, we verify the assumption (25) in Theorem 3.12 for the interpolation oper-
ators Ui based on Gauss–Hermite nodes. Moreover, we bound the number of sparse
grid points |ΞΛN | associated with a multi-index set ΛN allowing us to relate the
convergence rate previously derived to a quantity which reflects the computational
effort of the collocation approximation. For nested univariate node sets, i.e., when

Ξi+i = Ξi ∪ {ξ(i+1)
i+1 }, we have |ΞΛN | = |ΛN |. This simple relation, however, fails

to hold for nonnested interpolation sequences such as those based on Gauss–Hermite
nodes.
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Lemma 3.13. For Ui being the interpolation operator based on the zeros of the
(i+ 1)th Hermite polynomial, we have for each ν ∈ N that

‖UiHν‖2L2
µ
≤ c2 e

√
2ν − 1 ∀i ∈ N0,

where c = 1.086435 is the constant appearing in Cramér’s inequality for Hermite
functions. In particular, there holds

‖∆iHν‖L2
µ
≤ (1 +Kν)

with K = 2c
√

e > 1.

Proof. We start by recalling the L2
µ-orthogonality (µ refers here to the univariate

standard Gaussian measure N(0, 1)) of Lagrange basis polynomials L
(i)
k constructed

from the zeros {ξ(i)
k }ik=0 of the Hermite polynomial of degree i+ 1 (see [42, Theorem

14.2.1]). This orthogonality yields

‖UiHν‖2L2
µ

=

∫
R

(
i∑

k=0

Hν(ξ
(i)
k )L

(i)
k (ξ)

)2

µ(dξ) =

i∑
k=0

H2
ν (ξ

(i)
k )

∫
R

(
L

(i)
k (ξ)

)2

µ(dξ)

=

i∑
k=0

H2
ν (ξ

(i)
k )w

(i)
k ,

where {w(i)
k }ik=0 denotes the weights of the Gauss quadrature formula based on the

zeros of the (i+ 1)th Hermite polynomial; see also [42, Theorem 14.2.1].
Next, we recall Cramér’s inequality for the physicists’ Hermite polynomials H̃ν

taken w.r.t. the weight function ρ̃(ξ) = exp(−ξ2), i.e.,

|H̃n(ξ)| ≤ cπ−1/4 exp(ξ2/2);

see, e.g., [1, Chapter 22, p. 787]. From the relation H̃n(ξ) = π−1/4Hn(ξ
√

2) [1,
Chapter 22, p. 778], we conclude that

|Hn(ξ)| ≤ c exp(ξ2/4)

and thus

‖UiHν‖2L2
µ
≤ c2

i∑
k=0

exp(ξ2
ki/2)wki,

where we have switched the notation to ξki := ξ
(i)
k and wki := w

(i)
k for convenience.

Furthermore, we use a consequence of [33, Lemma 4]. The latter states, for ξ̃kn
denoting the zeros of H̃n and w̃kn the Christoffel numbers of the corresponding Gauss–
Hermite quadrature (i.e., Gauss–Hermite weights for ρ̃), that

n∑
k=1

w̃kn exp(ξ̃2
kn) ≤ e

√
π(2n+ 1).

It can be easily verified that

ξkn =
√

2ξ̃kn and wkn = π−1/2w̃kn.
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Hence, we get

i∑
k=0

exp(ξ2
ki/2)wki ≤ e

√
2(i+ 1) + 1,

and by noticing that for i ≥ ν we have UiHν = Hν and, thus, ‖UiHν‖2L2
µ

= 1, and for

i = ν − 1 we get UiHν ≡ 0 and the first assertion is shown.
For the second statement we observe

‖UiHν‖2L2
µ
≤ c2 e ν ∀i ∈ N0, ∀ν ≥ 1

since ν ≥
√

2ν − 1 for ν ≥ 1. And, because of ∆iH0 ≡ 0 for i ≥ 1 and ∆0H0 ≡ H0,
we get

‖∆iHν‖L2
µ
≤ 1 +Kν ∀i, ν ∈ N0.

Hence, interpolation at Gauss–Hermite points satisfies the assumptions of Theo-
rem 3.12 with θ = 1 and we obtain the following theorem.

Theorem 3.14 (convergence of sparse collocation, Gauss–Hermite nodes). For
any function f satisfying Assumption 3.9 with r > 4 + 2

p , p ∈ (0, 2), and Assumption

2.3 there exists a nested sequence of monotone finite subsets ΛN ⊂ F with |ΛN | = N
such that for the error of the sparse collocation operator UΛN based on Gauss–Hermite
nodes there holds

‖f − UΛN f‖L2
µ
≤ C(1 +N)−( 1

p−
1
2 ).

Remark 3.15. In numerical experiments we have actually observed for ν = 0, . . . , 39
that

‖UiHν‖L2
µ
≤ 1 ∀i ∈ N0;

see Figure 1. This would imply

‖∆iHν‖L2
µ
≤

{
1 if ν = 0,

2 otherwise
∀i, ν ∈ N0.

Again, we even observed a smaller bound numerically; see the right plot in Figure 1.
However, we have not been able to prove ‖UiHν‖L2

µ
≤ 1, and the improvement in the

statement of Theorem 3.14 would have been minor, i.e., the assertion would also hold
with the same rate for functions f : Γ→ H satisfying Assumption 3.9 with r > 2 + 2

p .

Note that similar numerical evidence was presented in [9] for quadrature operators
applied to Hermite polynomials. See also [7] for analogous numerical bounds in the
case of Genz–Keister points.

3.4. Convergence rate with respect to the number of collocation nodes.
We now derive bounds for the number of nodes in the sparse grid ΞΛ associated
with UΛ. Consider first the following simple monotone index set of cardinality N :
ΛN = {0ej , . . . , (N − 1)ej} for some j ∈ N. Then due to |Ξ{kej}| = (k+ 1) we get for
this ΛN that

|ΞΛN | ≤
N−1∑
k=0

(k + 1) =
N(N + 1)

2
∈ O(N2).

The quadratic complexity is essentially sharp, since 0 is the only reoccurring Gauss–
Hermite node. We show in the subsequent proposition that this complexity holds also
for arbitrary monotone multi-index sets.
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Fig. 1. Computed values of ‖UiHν‖L2
µ

(left) and ‖∆iHν‖L2
µ

(right) for Gauss–Hermite nodes.

Each color represents the trend of ‖UiHν‖L2
µ

(resp., ‖∆iHν‖L2
µ

) for a fixed polynomial Hν as i

increases. The dashed, black line in the right plot indicates the value
√

2.

Proposition 3.16. Let Λ ⊂ F be finite and monotone. Then there holds

(26) |ΞΛ| ≤ |Λ|2.

Proof. We obtain due to |Ξ(i)| =
∏
m≥1(1 + im) = |Ri | that3

|ΞΛ| ≤
∑
i∈Λ

|Ξ(i)| =
∑
i∈Λ

∏
m∈N

(1 + im) =
∑
i∈Λ

|Ri | ≤ |Λ|max
i∈Λ
|Ri | ≤ |Λ|2.

Thus, employing nonnested points such as Gauss–Hermite nodes yields at most
a quadratic growth of the number of sparse grid points

|ΞΛ| ∈ O(|Λ|2),

whereas in the nested case one has |ΞΛ| = |Λ|.
Remark 3.17. We provide some numerical validation of the bound (26). More

precisely, we consider the following two families of multi-index sets Λ (cf. [6]):
• Total Degree (TD):

Λ = Λ(w,M) =

{
ν ∈ F :

M∑
m=1

νm ≤ w, νm = 0 for m > M

}
.

• Hyperbolic Cross (HC):

Λ = Λ(w,M) =

{
ν ∈ F :

M∏
m=1

(νm + 1) ≤ w, νm = 0 for m > M

}
.

In Figure 2 we fix the number of (active) dimensions M and display the cardinality
of ΞΛ(w,M) for both choices of Λ(w,M) and increasing values of w ∈ N. The plot
shows that estimate (26) is valid but slightly pessimistic for the two specific examples
considered.

We finally arrive at the resulting error-cost theorem.

3We remark that the sharper bound |ΞΛ| ≤ 1
2
|Λ|2 + 1

2
|Λ| can also be shown with a little more

effort; see [18, section 3.4].
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Fig. 2. Numerical verification of estimate (26) for “Total Degree” sparse grids (left) and
“Hyperbolic Cross” sparse grids (right).

Theorem 3.18 (convergence rate of Gauss–Hermite sparse grid collocation in
terms of nodes). For any function f satisfying Assumption 3.9 with r > 4 + 2

p ,

p ∈ (0, 2), and Assumption 2.3 there exists a nested sequence of monotone finite
subsets ΛN ⊂ F with |ΛN | = N such that for the error of the sparse collocation
operator UΛN based on Gauss–Hermite nodes there holds

‖f − UΛN f‖L2
µ
≤ C|ΞΛN |

−( 1
2p−

1
4 ),

where C depends on f .

To achieve an approximation error ‖f − UΛN f‖L2
µ
≤ ε, Theorem 3.18 states that

this corresponds to

(27) cost(ε) ∈ O
(
ε

1
2p−

1
4

)
number of function evaluations of f . The cost complexity (27) does not account for
the computational work necessary to construct the associated multi-index sets ΛN .
This is a very important issue. Typically, these are constructed employing adaptive
algorithms; see [11, 39, 35] and also section 5. Our result makes no statement about
the actual computational work these involve.

Remark 3.19 (on sparse collocation employing weighted Leja points). As men-
tioned in the introduction, weighted Leja points [32] seem to be a promising node
family for interpolation and sparse collocation. So far, we have, however, been unable
to prove bounds like (25) for these. Possibly a more suitable approach for analyzing
convergence in the case of weighted Leja nodes is to measure the approximation error
in the L∞µ -norm instead of the L2

µ-norm and to estimate the corresponding Lebesgue
constant. See [28] for first results on the latter—which does not yet imply an analo-
gous estimate to (25)—and [12, 11] for the convergence analysis of sparse collocation
using Leja points on [−1, 1] via estimates of the associated Lebesgue constant [10].

4. Application to elliptic PDEs. We recall our motivation from the introduc-
tion: Approximating the weak solution u of an elliptic boundary value problem with
lognormal diffusion coefficient as in (1) where f ∈ L2(D) and a(ξ) ∈ L∞(D) is given
as in (2). We will discuss now under which conditions the mapping ξ 7→ u(ξ) ∈ H1

0 (D)
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satisfies Assumptions 2.1, 2.3, and 3.9 and can therefore be approximated by sparse
grid collocation methods based on Gauss–Hermite nodes as outlined in the previous
section. We mainly cite results from [4] but try to emphasize those details which are
sometimes omitted in the literature.

Verifying Assumption 2.1. We first investigate the domain Γ of the mapping
ξ 7→ u(ξ). Note that Γ 6= RN since for arbitrary ξ ∈ RN the expansion (2) need not
converge. A natural domain Γ for the mapping ξ 7→ u(ξ) is

(28) Γ :=

{
ξ ∈ RN :

∥∥∥∥ ∞∑
m=1

φmξm

∥∥∥∥
L∞(D)

<∞
}
.

Further, a natural condition on the decay of the φm is

(29)

∞∑
m=1

‖φm‖L∞(D) <∞

since (29) implies that the series (2) converges P-a.s. in L∞(D); see [40, Lemma 2.28].
Thus, if (29) holds, then µ(Γ) = 1. It remains to state conditions under which
we can ensure that ξ 7→ u(ξ) belongs to L2

µ(Γ;H1
0 (D)). Measurability follows from

the continuous dependence of the weak solution u ∈ H1
0 (D) on exp(a) ∈ L∞(D); see

[24]. Moreover, if we can ensure that for a(ξ) := essinfx∈D exp(a(x, ξ)) we have a−1 ∈
L2
µ(Γ;R) (e.g., by Fernique’s lemma, as shown in [8]), then the ξ-pointwise application

of the Lax–Milgram lemma [24] yields for the random solution u ∈ L2
µ(Γ;H1

0 (D)). The
latter can be guaranteed by an even weaker assumption than (29).

Assumption 4.1 (see [4, Assumption A]). There exists a sequence (τm)m∈N of
strictly positive numbers such that

sup
x∈D

∞∑
m=1

τm|φm(x)| <∞,
∞∑
m=1

exp(−τ2
m) <∞.

Under Assumption 4.1, it is shown in [4, Corollary 2.1] that u ∈ L2
µ(Γ;H1

0 (D))
with µ(Γ) = 1; hence u : Γ→ H1

0 (D) satisfies Assumption 2.1.
Verifying Assumption 2.3. It is obvious that for Gauss–Hermite nodes there holds

Ξ(i) ⊂ Γ, i ∈ F , with Γ as in (28), because due to i ∈ F there exists an M ∈ N
such that for ξ ∈ Ξ(i) we have ξm = ξ

(0)
0 for any m ≥ M and ξ

(0)
0 = 0. Actually, by

Assumption 4.1 there holds for any ξ ∈ `∞(N) that ξ ∈ Γ:∥∥∥∥∥
∞∑
m=1

φmξm

∥∥∥∥∥
L∞(D)

≤ ‖ξ‖`∞ sup
x∈D

∞∑
m=1

|φm(x)| ≤ ‖ξ‖`∞
minm τm

sup
x∈D

∞∑
m=1

τm |φm(x)| <∞,

where minm τm > 0, because Assumption 4.1 implies τm →∞ as m→∞.
Verifying Assumption 3.9. Again, we refer to results from [4], namely, [4, Theorem

4.2], where the authors show that the (weak) solution u of (1) satisfies Assumption
3.9 for any r ∈ N0 given the following assumption holds.

Assumption 4.2. There exists a strictly positive sequence (τ−1
m )m∈N ∈ `p(N),

p ∈ (0, 2), such that

sup
x∈D

∞∑
m=1

τm|φm(x)| <∞.
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Note that Assumption 4.2 implies Assumption 4.1; see [4, Remark 2.2]. Hence,
we obtain the following theorem.

Theorem 4.3. Let a be given as in (2) and satisfy Assumption 4.2. Then there
exists a nested sequence of monotone finite subsets ΛN ⊂ F with |ΛN | = N such that
for the sparse collocation operator UΛN based on Gauss–Hermite nodes applied to the
solution u of (1) there holds

‖u− UΛNu‖L2
µ
≤ C1N

−( 1
p−

1
2 ) ≤ C2|ΞΛN |

−( 1
2p−

1
4 ).

5. Numerical experiments. We apply the sparse collocation outlined and an-
alyzed in the previous sections to approximate the solution u of a simple boundary
value problem taken from [4, section 7]. In particular, we verify numerically the
statement of Theorem 4.3 and provide some comments on algorithms for constructing
sparse grid approximations.

5.1. Problem setting. We consider the following boundary value problem on
the unit interval D = [0, 1]:

(30) − d

dx

(
a(x, ξ)

d

dx
u(x, ξ)

)
= f(x), u(0, ξ) = u(1, ξ) = 0, µ-a.e.,

where we choose f(x) = 0.03 sin(2πx) and employ for log a the following expansion:

(31) log a(x, ξ) = 0.1

∞∑
m=1

√
2

(πm)q
sin(mπx) ξm, ξm ∼ N(0, 1) i.i.d., q ≥ 1.

For q = 1 the random field log a is a Brownian bridge (cf. [4, section 7]), and for q > 1

it represents a smoother random field. In particular, for φm(x) :=
√

2
(πm)q sin(mπx)

and k = q − 1− ε with ε > 0 we obtain the bound

sup
x∈D

∑
m≥1

mk|φm(x)| ≤
√

2

πq

∑
m≥1

m−(q−k) ∝
∑
m≥1

m−(1+ε) <∞.

Thus, given q > 1 the expansion (31) satisfies Assumption 4.2 with τm = mq−1 for all
p > 1

q−1 and by Theorem 4.3 there exists for q > 1.5 a nested sequence of monotone

finite subsets ΛN ⊂ F , |ΛN | = N , such that for the sparse collocation operator UΛN

based on Gauss–Hermite nodes there holds

(32) ‖u− UΛNu‖L2
µ(RN;H1

0 (D)) ≤ CN−(q−1.5) ≤ C|ΞΛN |
−( q−1.5

2 ).

In the following we will verify these rates numerically for various values of q.

5.2. Numerical algorithms. The multi-index sets ΛN appearing in Theorem
4.3 and (32) correspond to the largest entries in a p-summable decreasing sequence

(ĉν)ν∈F which dominates
(
cν/b

1/2
ν

)
ν∈F . Such a dominating sequence was constructed

in Lemma 3.11 and can be employed in the subsequent a priori algorithm in order to
obtain the multi-index sets ΛN numerically. However, in practice we employ a slightly
modified dominating sequence (d̂ν)ν∈F in the a priori algorithm which shows a better
performance, as well as an a posteriori algorithm for adaptively constructing the sets
ΛN .
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A priori algorithm. The following greedy algorithm is based on [22] and appears
in a similar form in the recent work [9]. It successively adds to the set of multi-indices
Λ a new multi-index ν from the set of neighbors N (Λ) which maximizes ĉν with ĉν
as given in (24). A constraint mbuffer restricts the index of dimensions considered for
admissible neighbors:

1. Initialize N = 1 and Λ̃N := {0}; choose mbuffer ∈ N and Nmax ∈ N.
2. For N = 2, . . . , Nmax set

Λ̃N := Λ̃N−1 ∪ {ν∗N}, ν∗N := argmax
ν∈N (Λ̃N−1)

ĉν ,(33)

where, with supp (ν) := {m ∈ N : νm > 0} and supp (Λ) :=
⋃

ν∈Λ supp (ν),
we define

N (Λ) := {ν ∈ F \ Λ : ν − em ∈ Λ ∀m ∈ supp (ν) and

νm = 0 for m > max(supp (Λ)) +mbuffer}.

The set of admissible neighbors N (Λ) of Λ is defined such that adding any ν ∈ N (Λ)
to Λ maintains monotonicity. The restriction in the definition of N (Λ) above is that
we do not allow the activation of any dimension m ∈ N, i.e., including ν = em
for arbitrarily (large) m ∈ N, but restrict the selection to the “next” mbuffer higher
dimensions. If the assumptions of Lemma 3.11 are satisfied, in particular that τm is
increasing, a buffer of mbuffer = 1 is sufficient to construct the multi-index sets ΛN
consisting of the largest entries of (ĉν)ν∈F .

However, for our numerical simulations, we choose a slightly different sequence

d̂ν :=
∏
m≥1

(νm)2θ+2−rτ−2(1∧νm)
m

with θ = 1 and a suitable value4 for r > 2(θ + 1) + 2
p , and modify (33) by ν∗N :=

argmaxν∈N (Λ̃N−1) d̂ν . Besides omitted multiplicative constants the only difference

between ĉν and d̂ν is that ĉν employs τ̂m =
√
Ch ∨ τm instead of5 τm—the former

can yield a longer preasymptotic behavior of the resulting numerical algorithm.
A posteriori algorithm. In addition to this a priori construction which requires

little overhead to construct the monotone multi-index sets ΛN , we also apply a more
costly a posteriori algorithm for generating monotone multi-index sets ΛN . Such an
algorithm already appeared in [39, 11, 12, 9, 35] and is motivated by using a posteriori
heuristics for estimating the improvement of including ∆νu in the sparse collocation
approximation. In particular, the a posteriori algorithm works exactly as the a priori
algorithm except for substituting the choice (33) by

ν∗n := argmax
ν∈N (Λ̃n−1)

‖∆νu‖L∞µ (Γ;H1
0 (D))

|Ξ(ν)|
,(34)

where ‖f‖L∞µ (Γ;H1
0 (D)) = supξ∈Γ ‖ρ(ξ) f(ξ)‖H1

0 (D) and ρ(ξ) = exp(− 1
2

∑
m≥1 ξ

2
m) rep-

resents the (unnormalized) product density function of µ =
⊗

m≥1N(0, 1); see, e.g.,

[35]. The ratio ‖∆νu‖L∞µ (Γ;H1
0 (D))/|Ξ(ν)| represents the profitability or profit of the

4We used r = 2 (2(θ + 1) + 2/p+ 1) = 10 + 4(q − 1) in the numerical simulations.
5The choice of τ̂m ensures that (ĉν)ν∈F is nonincreasing, but since the a priori algorithm always

constructs monotone multi-index sets, we can ignore this property.
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multi-index ν ∈ F , i.e., the associated gain in approximation ‖∆νu‖L∞µ (Γ;H1
0 (D)) rel-

ative to the associated computational cost |Ξ(ν)|. By choosing the most profitable
multi-index in the neighborhood of Λ̃n−1 we may obtain a better sparse collocation
approximation than when applying the a priori construction (33), although the theory
developed above does not apply to the multi-indices generated in this way. Observe
that the idea of “profit-driven” adaptive sparse grids is not bound to the current
specific choice of norms, and other alternatives might be envisaged, as is indeed the
case in [39, 11, 12, 9, 35]. Here we follow, in particular, [35] and choose to use
‖∆νu‖L∞µ (Γ;H1

0 (D)) instead of ‖∆νu‖L2
µ(Γ;H1

0 (D)) employed in the convergence theo-

rems stated earlier, due to its convenient implementation and in analogy with the
algorithms for the uniform random variables case. Note also that ‖∆νu‖L∞µ (Γ;H1

0 (D))

is a stronger norm than ‖∆νu‖L2
µ(Γ;H1

0 (D)). Again, we remark at this juncture that

all possible choices of norms here are motivated just by heuristic arguments, and no
claim is made on the convergence of the resulting algorithm. Specifically, we have
estimated ‖∆νu‖L∞µ (Γ;H1

0 (D)) as in [35] by

‖∆νu‖L∞µ (Γ;H1
0 (D)) ≈ max

ξk∈Ξ(ν)
‖ρ(ξk ) [∆νu] (ξk )‖H1

0 (D).

Thus, for the a posteriori algorithm we have to evaluate u on a much larger grid than
just ΞΛ̃N

, namely, ΞΛ̃N
∪ ΞN (Λ̃N−1), ΞN (Λ̃N−1) :=

⋃
ν∈N (Λ̃N−1) Ξ(ν). We will refer to

ΞΛ̃N
as the a posteriori grid (associated with ΛN ) and to ΞΛ̃N

∪ ΞN (Λ̃N−1) as the

extended grid (associated with ΛN ). The latter represents the “true” computational
cost of the sparse collocation approximation generated by the a posteriori algorithm.

Remark 5.1. For our numerical simulations we choose a maximal number of pa-
rameter dimensions M , which may be arbitrarily large,6 to construct the reference
solution. Then, for a given ξ ∈ RM we approximate the solution u(x, ξ) to (30) by
evaluating its exact representation

u(x, ξ) =

∫ x

0

K(ξ)− F (y)

a(y, ξ)
dy, F (x) :=

∫ x

0

f(y) dy, K(ξ) :=

∫ 1

0
F (y)
a(y,ξ) dy∫ 1

0
1

a(y,ξ) dy
,

by numerical quadrature, particularly the trapezoidal rule based on an equidistant
spatial grid with spacing ∆x = 2−10.

5.3. Results. We now present the details and results of numerical experiments.
The tests are divided into two parts: in the first set of experiments we aim at validating
the sharpness of our analysis, i.e., whether we can actually observe numerically the
rate predicted by Theorem 4.3 for the case of countably many random variables;
in the second set of experiments, we will instead gradually increase the number of
random variables and see if the observed rate of convergence is actually dimension-
independent. Concerning the first set of experiments, we recall that the convergence
results in Theorem 4.3 strictly apply only to the sparse collocation constructed by
the a priori index selection algorithm. However, we will assess whether the set of
indices generated by the a posteriori construction, i.e., the a posteriori grid, achieves
the same rate and also examine the convergence rate with respect to the number of
points in the extended grid.

6This is because the exact solution to the random PDE is known and inexpensively evaluated.
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Table 1
Statistics for numerical results in Tests—Part I. See (32) for the theoretical rates.

q % of total variance Rate w.r.t. |ΛN | Rate w.r.t. |ΞΛN |
theory a post. a priori theory a post. a priori

1 99.91% N.A. 0.5 0.5 N.A. 0.5 0.4
1.5 99.9999% 0 0.9 0.8 0 0.8 0.7
2 99.9999999% 0.5 1.2 1.1 0.25 1.1 1.0
3 100% 1.5 2 2 0.75 1.7 1.7

Tests—Part I. In this section we compare the numerical convergence rate of both
the a priori and the a posteriori versions of the proposed algorithm against the the-
oretical convergence rate for q = 1, 1.5, 2, 3 to verify the sharpness of our theoretical
analysis. For each tested value of q, the errors will be computed against a reference
solution uref based on the first 640 random variables which captures more than 99%
of the log-diffusion variance for every value of q (see Table 1 for the precise value). The
error is computed with a Monte Carlo sampling over NMC = 1000 random samples:

‖u− UΛNu‖L2
µ(RN;H1

0 (D)) ≈ ‖uref − UΛNu‖L2
µ(RN;H1

0 (D))

≈ 1

NMC

NMC∑
k=1

‖uref (ξk)− UΛNu(ξk)‖H1
0 (D),(35)

where ξk are samples drawn from
⊗640

m=1N(0, 1). We remark that we have verified
that NMC is large enough for our purposes7 and that the numerical algorithms never
activate all 640 random variables during execution.

We begin by reporting in Figure 3 the convergence of the error measure (35)
with respect to the number of collocation points needed to construct the sparse grid
approximation for each value of q. The convergence plots in Figure 3 show a monotone,
well-established decreasing trend for the error for all the variations of the sparse grid
considered. As expected, the errors get larger in size and the convergence rate gets
worse as q decreases for all the reported sparse grids (a posteriori grid, extended grid,
a priori). In particular, the convergence rate appears to be similar for the a priori
and the a posteriori algorithms, with the rate of the latter being actually slightly
larger, thus validating the a posteriori construction. On top of this, the error of the
a posteriori algorithm appears to be smaller in size than the a priori construction.
We also remark that the rate that we measure numerically is better than the one
predicted by our theory; cf. Table 1. The quite significant difference between the rate
of convergence of the a posteriori grid and the extended grid is also to be expected.
These results are consistent with those detailed in [9], although there the a priori
construction is a bit different from the one we propose. At this junction, two factors
can explain the suboptimality of our theoretical result: A conservative estimate of the
growth of the number of points in the sparse grid with respect to the number of indices
in the set ΛN and a conservative link between the summability of the log-diffusion
field representation and the convergence of the sparse grid. As will be clearer later,
both issues turn out to actually affect our analysis. The numerical results we show
were obtained with mbuffer = 5.8

7That is, repeating the same analysis with NMC = 5000 produced identical results.
8We report (not shown) that we have also run the same simulations with a larger buffer mbuffer =

20 and the results were identical (i.e., same a posteriori grid and same number of activated random
variables).
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Fig. 3. From top-left to bottom-right: Convergence with respect to the number of points in the
sparse grid for q = 1, 1.5, 2, 3.

We then report in Figure 4 the convergence of the error (35) with respect to the
number of indices in the set ΛN . In this figure, we show the convergence of both the
a priori and the a posteriori algorithms, as well as an estimate of the convergence
of the best N -term approximation of u (we detail below how this approximation was
computed). Also in this case, the convergence plots show a monotone, well-established
decreasing trend for the error. The results are similar to the previous case: (a) the
convergence rate of the sparse grid gets worse as q decreases; (b) the convergence rate
seems to be identical for both the a priori and the a posteriori constructions, and again
quite larger than the theoretical estimate; cf. Table 1; (c) the error of the a posteriori
algorithm is substantially smaller than the one of the a priori algorithm. It is also
relevant to note that the measured convergence rate here is essentially identical to the
one observed with respect to the number of sparse grid points. This is in agreement
with the results in [9] and implies that for the sparse grids constructed here the growth
of the number of points w.r.t. the number of indices is essentially linear, and therefore,
our Lemma 3.16 is quite conservative.

The numbers in the plot show the number of activated random variables in the a
posteriori grid and in the a priori grid, i.e., in how many random variables these grids
allocate at least one nontrivial point (observe that by construction the numbers for
the extended grid are the ones of the a posteriori grid plus the buffer mbuffer). It can
be seen that this number steadily increases.

We now turn our attention to the best N -term approximation presented in Figure
4. To compute this approximation, we follow [19, 38, 43] and convert the extended
grid first into its combination technique form, i.e., as a linear combination of Lagrange
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Fig. 4. From top-left to bottom-right: Convergence with respect to the number of indices in the
set ΛN for q = 1, 1.5, 2, 3.

polynomials, and then we further convert this expression into the equivalent linear
combination of Hermite polynomials; see also [16]. By sorting in decreasing order the
coefficients of the Hermite expansion thus computed and picking them one at a time,
we obtain an approximation of the sequence of best N -term approximations.9 The
comparison of the best N -term and the a posteriori grid in Figure 4 reveals that the
two approximations are actually very close for every value of q, which suggests that
the a posteriori algorithm is producing an excellent approximation.

Tests—Part II. In this set of experiments, we fix q = 2 and we consider log-
diffusion coefficients with M = 10, 20, 40, 80, 120, 160 random variables. For each
M , the reference solution uses M random variables as well, contrary to the previous
experiment, where the reference solution was based on 640 random variables. In
this way, we aim at assessing the behavior of the convergence rate as M increases:
indeed, the previous experiment was only intended to verify that we obtain a nonzero
limiting rate for M → ∞. We report our results in Figure 5, where we display the
convergence with respect to the cardinality of the index set ΛN . It is clearly visible
that the convergence curves coincide initially and then depart from each other: The
point of departure is actually that where all M variables have been activated. The
result seems to suggest that the convergence rate with respect to the cardinality of
ΛN for finite M actually depends on M and decreases as M increases, until reaching

9Of course, this approximation is as good as the original extended grid; however, we found the
results to be stable as the number of points in the extended grid grows, and therefore, we deemed
this approximation to be sufficient for our purposes.
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Fig. 5. Convergence of the sparse grid approximation with an increasingly larger number of
dimensions: The asymptotic rate is not constant with respect to M .

the asymptotic rate for M →∞.

6. Conclusions. We have presented a general convergence analysis of sparse
grid collocation based on Lagrange interpolation for functions of countably many
Gaussian variables. In particular, we have stated sufficient conditions on the underly-
ing univariate interpolation nodes such that for functions of a certain smoothness we
obtain an algebraic rate of convergence for the sparse collocation approximation with
respect to the number of multi-indices. Moreover, we verified these assumptions for
the classical Gauss–Hermite nodes and were able to also state a convergence result
in terms of the resulting number of collocation points. We finally discussed in detail
that these methods can be applied to weak solutions of lognormal diffusion problems
and illustrated our theory with numerical tests, which show that the convergence rate
achieved by a priori sparse grid constructions is actually higher than predicted, both
with respect to the number of multi-indices and the number of collocation points.
The classical adaptive a posteriori sparse grid construction is also seen to achieve
such rates, although it is not covered by our theory.
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[6] J. Bäck, F. Nobile, L. Tamellini, and R. Tempone, Stochastic spectral Galerkin and colloca-
tion methods for PDEs with random coefficients: A numerical comparison, in Spectral and
High Order Methods for Partial Differential Equations, Lect. Notes Comput. Sci. Eng. 76,
Springer, Heidelberg, 2011, pp. 43–62.

[7] J. Beck, F. Nobile, L. Tamellini, and R. Tempone, A quasi-optimal sparse grids proce-
dure for groundwater flows, in Spectral and High Order Methods for Partial Differential
Equations - ICOSAHOM 2012, Lect. Notes Comput. Sci. Eng. 95, Springer, Cham, 2014,
pp. 1–16.

[8] J. Charrier, Strong and weak error estimates for elliptic partial differential equations with
random coefficients, SIAM J. Numer. Anal., 50 (2012), pp. 216–246, https://doi.org/10.
1137/100800531.

[9] P. Chen, Sparse quadrature for high-dimensional integration with Gaussian measure, ESAIM
Math. Model. Numer. Anal., in press, 2018, https://doi.org/10.1051/m2an/2018012.

[10] A. Chkifa, On the Lebesgue constant of Leja sequences for the complex unit disk and of their
real projection, J. Approx. Theory, 166 (2013), pp. 176–200.

[11] A. Chkifa, A. Cohen, and C. Schwab, High-dimensional adaptive sparse polynomial interpo-
lation and applications to parametric PDEs, Found. Comput. Math., 14 (2014), pp. 601–
633.

[12] A. Chkifa, A. Cohen, and C. Schwab, Breaking the curse of dimensionality in sparse polyno-
mial approximation of parametric PDEs, J. Math. Pures Appl. (9), 103 (2015), pp. 400–428.

[13] A. Cohen and R. DeVore, Approximation of high-dimensional parametric PDEs, Acta Nu-
mer., 24 (2015), pp. 1–159.

[14] A. Cohen, R. DeVore, and C. Schwab, Convergence rates of best N-term Galerkin approxi-
mations for a class of elliptic sPDEs, Found. Comput. Math., 10 (2010), pp. 615–646.

[15] A. Cohen, R. DeVore, and C. Schwab, Analytic regularity and polynomial approximation of
parametric and stochastic elliptic PDEs, Anal. Appl. (Singap.), 9 (2011), pp. 11–47.

[16] P. Constantine, M. S. Eldred, and E. T. Phipps, Sparse pseudospectral approximation
method, Comput. Methods Appl. Mech. Engrg., 229/232 (2012), pp. 1–12.

[17] S. De Marchi, On Leja sequences: Some results and applications, Appl. Math. Comput., 152
(2004), pp. 621–647.

[18] O. G. Ernst, B. Sprungk, and L. Tamellini, Convergence of Sparse Collocation for Func-
tions of Countably Many Gaussian Random Variables (with Application to Elliptic PDEs),
preprint, https://arxiv.org/abs/1611.07239, 2017.

[19] L. Formaggia, A. Guadagnini, I. Imperiali, V. Lever, G. Porta, M. Riva, A. Scotti,
and L. Tamellini, Global sensitivity analysis through polynomial chaos expansion of a
basin-scale geochemical compaction model, Comput. Geosci., 17 (2013), pp. 25–42.

[20] J. Galvis and M. Sarkis, Approximating infinity-dimensional stochastic Darcy’s equations
without uniform ellipticity, SIAM J. Numer. Anal., 47 (2009), pp. 3624–3651, https://doi.
org/10.1137/080717924.

[21] A. Genz and B. D. Keister, Fully symmetric interpolatory rules for multiple integrals over
infinite regions with Gaussian weight, J. Comput. Appl. Math., 71 (1996), pp. 299–309.

[22] T. Gerstner and M. Griebel, Dimension-adaptive tensor-product quadrature, Computing,
71 (2003), pp. 65–87.

[23] R. G. Ghanem and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-
Verlag, New York, 1991.

[24] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Springer-Verlag, Berlin, Heidelberg, 2001.

[25] C. J. Gittelson, Stochastic Galerkin discretization of the log-normal isotropic diffusion prob-
lem, Math. Models Methods Appl. Sci., 20 (2010), pp. 237–263.

[26] A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone, Multi-index stochastic collocation
convergence rates for random PDEs with parametric regularity, Found. Comput. Math.,
16 (2016), pp. 1555–1605.

[27] V. H. Hoang and C. Schwab, N-term Wiener chaos approximation rates for elliptic PDEs
with lognormal Gaussian random inputs, Math. Models Methods Appl. Sci., 24 (2014),
pp. 797–826.

[28] P. Jantsch, C. G. Webster, and G. Zhang, On the Lebesgue constant of weighted Leja
points for Lagrange interpolation on unbounded domains, IMA J. Numer. Anal., in press,
https://doi.org/10.1093/imanum/dry002, 2017.

[29] O. P. Le Maitre and O. M. Knio, Spectral Methods for Uncertainty Quantification: With
Applications to Computational Fluid Dynamics, Scientific Computation, Springer, New
York, 2010.D

ow
nl

oa
de

d 
04

/1
5/

18
 to

 1
34

.1
09

.1
99

.1
77

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

https://doi.org/10.1137/100800531
https://doi.org/10.1137/100800531
https://doi.org/10.1051/m2an/2018012
https://arxiv.org/abs/1611.07239
https://doi.org/10.1137/080717924
https://doi.org/10.1137/080717924
https://doi.org/10.1093/imanum/dry002


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SPARSE COLLOCATION FOR LOGNORMAL DIFFUSION 905
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