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Abstract. We analyze the ensemble and polynomial chaos Kalman filters applied to nonlinear stationary
Bayesian inverse problems. In a sequential data assimilation setting, such stationary problems
arise in each step of either filter. We give a new interpretation of the approximations produced by
these two popular filters in the Bayesian context and prove that, in the limit of large ensemble or
high polynomial degree, both methods yield approximations which converge to a well-defined ran-
dom variable termed the analysis random variable. We then show that this analysis variable is more
closely related to a specific linear Bayes estimator than to the solution of the associated Bayesian
inverse problem given by the posterior measure. This suggests limited or at least guarded use of
these generalized Kalman filter methods for the purpose of uncertainty quantification.
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1. Introduction. Due to increasing attention to uncertainty quantification (UQ) for com-
plex systems, in particular as it relates to the study and solution of partial differential equa-
tions (PDEs) with random data, interest has also focused on inverse problems for random
PDEs. In particular, the Bayesian approach to inverse problems has become popular in this
context. From a UQ perspective the inverse problem is of tremendous interest since incor-
porating any available information into the probability law of an uncertain quantity will, in
general, reduce uncertainty and lead to improved stochastic models.

We consider in this paper the fundamental task of inferring knowledge about an unknown
element u ∈ X from a separable Hilbert space X by observing finite-dimensional noisy data

(1) z = G(u) + ε,

whereG : X → Rd denotes the known (and deterministic) parameter-to-observation map and ε
the observational noise. Adopting the Bayesian perspective, we assume a probability measure
µ0 on X to be given describing our prior knowledge or belief about u which may be based, e.g.,
on physical reasoning, expert knowledge, or previously collected data. We wish to highlight the
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distinction between the two main tasks associated with Bayesian inverse problems, namely
identification and inference, where the latter may include the former. Identification refers
to the task of determining an element û ∈ X which best explains the observed data z in
accordance with given a priori assumptions, yielding a best guess or best single approximation
to the unknown u. By inference we mean the gain in knowledge by merging a prior probabilistic
model µ0 with new information z ∈ Rd to obtain an updated model µz which represents the
new understanding or belief about u.

This incorporation of new information is realized mathematically by conditioning the prior
probability measure µ0 on the event {G(u) + ε = z} and is thus rooted in Kolmogorov’s fun-
damental concept of conditional expectation [35]. Bayes’ rule provides an analytic expression
for the resulting conditioned or posterior distribution in terms of the prior distribution and
provides the main tool in Bayesian inference and Bayesian inverse problems (BIPs).

While BIPs enjoy a number of favorable theoretical properties compared with their deter-
ministic counterparts, i.e., they are well-posed and their solution in the form of the a posteriori
measure is, in a certain sense, explicitly characterized, they do pose significant computational
challenges in that they entail calculations with highly correlated and complex distributions
in high-dimensional spaces. The primary “workhorse” here is the Markov chain Monte Carlo
(MCMC) method [18], whose continued improvement drives a highly active field of research.
However, MCMC simulations can be quite costly, since the chain has to run long enough to
give sufficiently accurate estimates, and each iteration typically requires one evaluation of
the forward map G, e.g., one PDE solve. Thus, for online monitoring or control of complex
dynamical systems such as those that arise in weather forecasting or oil reservoir manage-
ment, MCMC methods are prohibitively expensive, and filtering methods like the Kalman
filter (KF) or the ensemble Kalman filter (EnKF) are often applied to the associated state
or parameter estimation problem. Moreover, in dynamical systems where observational data
arrives sequentially in time, KF-type methods provide the significant advantage that their
recursive structure is adapted to this sequential availability of data (see [41, section 5.4] for
a nice discussion of this issue). So far, the KF [25] and its generalizations have mainly been
used for state estimation, i.e., for identification rather than for Bayesian inference for quan-
tifying uncertainty. In recent years, however, these methods have attracted the attention of
the growing UQ community (cf. [23, 22, 26]) and are increasingly applied also to Bayesian
inverse problems. The point of departure is typically the EnKF [13], an extension of the KF
to nonlinear models, in which an ensemble of random elements in X is propagated through
the nonlinear state equation and, given observational data, updated by a procedure analo-
gous to the KF applied individually to each ensemble member. The empirical distribution of
the updated ensemble can be used for state estimation, and additional extracted statistical
information is often used as an uncertainty indicator. As a further development, the authors
of [5, 34, 37, 36, 39, 38] have combined the idea of the EnKF with the computationally at-
tractive representation of random variables in a polynomial chaos expansion (PCE) with the
goal of an efficient sampling-free method for solving Bayesian inverse problems. This method
models the uncertain state as a random variable approximated by a PCE, for which the co-
efficients are updated with the arrival of each new set of observations. We will refer to this
approach in the following as the polynomial chaos Kalman filter (PCKF). It was the study of
the PCKF method which motivated this work, because, although its authors give a motivation
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for deriving their algorithm, the random variable approximated by the PCKF is not clearly
characterized, and it is sometimes implied that, in the limit of large polynomial degree, these
random variables are distributed according to the posterior measure. Similarly, it is not always
clearly stated which distribution is approximated by the empirical distribution generated by
the EnKF in the limit of large sample size. While convergence results for EnKF have been
established [20, 29, 27], the relation of the limit distribution to the posterior measure is seldom
made explicit beyond occasional hints that the two, in general, will differ [2, 20, 17].

The present paper fills this gap and clarifies the stochastic model underlying the EnKF
and PCKF in the special case of a single update. We show that both methods provide different
types of approximations to the same random variable, which we term the analysis variable
and denote by Ua. Specifically, the empirical distribution of the EnKF ensemble provides an
approximation to the distribution of Ua, while the PCKF constructs an approximating PCE
of Ua. By explicitly characterizing Ua, we can determine the precise quantities approximated
by the EnKF and PCKF and how these relate to the solution of Bayesian inverse problems
and Bayes estimators. In fact, both methods fail to approximate the posterior distribution,
in general.

In addition, we prove convergence results for both methods in the limit of increasing
“resolution,” i.e., for large ensemble size for the EnKF and large polynomial degree for the
PCKF, respectively. In the case of EnKF, our work necessarily focuses on the large ensemble
limit; this contrasts with the typical EnKF application, where computational constraints limit
practitioners to small ensembles. To the best of our knowledge, a convergence analysis for
PCKF is missing in the literature so far. Convergence results for EnKF are given in [20, 29, 27]
in the context of sequential data assimilation for discrete-time dynamical systems with possibly
nonlinear but (locally) Lipschitz-continuous drift and linear observation operators. Under
suitable assumptions the almost sure weak convergence of the random empirical distribution
provided by the EnKF to a limit distribution is shown in [20]. Moreover, the authors establish
the rate of an Lp-type convergence for these empirical measures. In [29] Lp-convergence of
the ensemble members to random variables distributed according to the posterior measure
is proved in the case of linear dynamics. Furthermore, the authors of [27] extend the Lp-
convergence result of [20] to somewhat more general forms of dynamics and state them in
terms of a suitably chosen metric for random measures. In addition, they also propose new
deterministic filtering algorithms with possibly higher efficiency than the EnKF. As the main
issue discussed in this work is the suitability of the filtering methods EnKF and PCKF for
approximating the solution of Bayesian inverse problems, the convergence results given in the
following consider the specific setting of a single Bayesian update. This may be viewed as a
filtering problem without dynamics and a single observation. In contrast with [29, 20, 27],
we consider an abstract Hilbert space setting, and the nonlinear parameter-to-observation
mapping G need not satisfy a Lipschitz condition.

The remainder of this paper is organized as follows: Section 2 briefly recalls the Bayesian
approach to inverse problems as well as Bayes estimators. In section 3 we describe and an-
alyze the PCKF and EnKF. In particular, we prove L2-convergence of the random variable
constructed by the PCKF to the analysis variable Ua and an almost sure weak convergence
of the empirical distributions provided by the EnKF to the distribution of Ua. A charac-
terization of the analysis variable in light of Bayes estimators is further given in section 4,
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where we show that its distribution, in general, differs from the desired posterior measure.
Moreover, we illustrate the performance of the EnKF and PCKF and the difference between
their approximations and the solution of the Bayesian inverse problem for a one-dimensional
boundary value problem and a dynamical system in section 5. Section 6 provides a summary
and conclusion.

2. Bayesian inverse problems and Bayes estimators. In this section we introduce the
basic concepts of the Bayesian approach to inverse problems. Throughout, let | · | denote
the Euclidean norm on Rd, ∥ · ∥ the norm, and ⟨·, ·⟩ the inner product in a general separable
Hilbert space X , and let Y denote a second separable Hilbert space. By L(X ,Y) we denote
the set of all bounded linear operators A : X → Y.

In order to regularize the usually ill-posed least-squares formulation

u = argmin
v∈X

|z −G(v)|2

of the inverse problem (1) in the deterministic setting, one incorporates additional a priori
information about the desired u into the identification problem by way of a regularization
functional [10], R : X → [0,∞], and solves for

uα = argmin
v∈X

|z −G(v)|2 + αR(v),

where α ∈ [0,∞) serves as a regularization parameter to be chosen wisely [1]. A further
possibility for regularization is to restrict u to a subset or subspace X̃ ⊂ X , e.g., by using
a stronger norm than ∥ · ∥ as the regularization functional. Broadly speaking, the Bayesian
approach may be viewed as yet another way of modelling prior information on u and adding it
to the inverse problem. In this case we express our prior belief about u through a probability
distribution µ0 on the Hilbert space X , by which a quantitative preference of some solutions
u over others may be given by assigning higher and lower probabilities. However, the goal in
the Bayesian approach is not the identification of one specific u ∈ X , but rather inference on
u; i.e., we would like to learn from the data in a statistical or probabilistic sense by adjusting
our prior belief µ0 about u in accordance with the newly available data z. The task of
identification may also be achieved within the Bayesian framework through Bayes estimates
and Bayes estimators, which are discussed in section 2.3.

In the Bayesian setting the deterministic model (1) becomes

(2) Z = G(U) + ε,

where now ε, and hence Z, are Rd-valued random variables. For the unknown random variable
U with values in X and prior probability distribution µ0, we seek the posterior probability
distribution given the available observations Z = z. Before giving a precise definition of the
posterior distribution we require some basic concepts from probability theory.

2.1. Probability measures and random variables. Let (Ω,F ,P) denote a probability
space, and let B(X ) denote the Borel σ-algebra of X generated by the open sets in X w.r.t.
∥ · ∥. A measurable mapping X : (Ω,F) → (X ,B(X )) is called a random variable (RV),
and the measure PX := P ◦ X−1, i.e., PX(A) = P(X−1(A)) for all A ∈ B(X ), defines the
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KALMAN FILTERS AND BAYESIAN INFERENCE 827

distribution of X as the push-forward measure of P under X. Conversely, given a probability
measure µ on (X ,B(X )), we indicate by X ∼ µ that PX = µ. Further, let σ(X) ⊂ F denote
the σ-algebra generated by X, i.e., σ(X) = {X−1(A) : A ∈ B(X )}.

The Bochner space of p-integrable X -valued RVs, i.e., the space of (equivalence classes of)
RVs X : Ω → X such that

∫
Ω ∥X(ω)∥p P(dω) < ∞, is denoted by Lp(Ω,F ,P;X ) or simply

Lp(X ) when the context is clear.
An element m ∈ X is called the mean of a RV X if for any x ∈ X there holds ⟨x,m⟩ =

E[⟨x,X⟩]. Here and in the following E denotes the expectation operator w.r.t. P. If X ∈
L1(Ω,F ,P;X ), then its mean is given by the Bochner integral m = E[X] =

∫
ΩX(ω)P(dω).

A bilinear form C : X × Y → R is called the covariance Cov(X,Y ) of two RVs X : Ω → X
and Y : Ω → Y if it satisfies C(x, y) = E

[
⟨x,X − E[X]⟩ ⟨y, Y − E[Y ]⟩

]
for all x ∈ X and

y ∈ Y, and we set Cov(X) := Cov(X,X). We shall also employ the identity Cov(X,Y ) =
E[(X−E[X])⊗ (Y −E[Y ])] (see [41, section 6.2]) when convenient. The covariance Cov(X,Y )
can also be equivalently defined as an operator Ĉ : Y → X such that ⟨x, Ĉy⟩ = C(x, y). We
will mainly work with the latter definition in the following, but on occasion will also employ
the tensor product form E[(X −E[X])⊗ (Y −E[Y ])]. The definitions of mean and covariance
extend to RVs with values in separable Banach spaces by considering the topological duals of
X and Y, respectively.

We also require the notion of distance between probability measures, one of which is given
by the Hellinger metric dH : Given two probability measures µ1 and µ2 on the Hilbert space
X , it is defined as

dH(µ1, µ2) :=

⎡

⎣
∫

X

(√
dµ1

dν
(u)−

√
dµ2

dν
(u)

)2

ν(du)

⎤

⎦
1/2

,

where ν is a dominating measure for µ1 and µ2, e.g., ν = (µ1+µ2)/2. Note that the definition
of the Hellinger metric is independent of the dominating measure. For relations of the Hellinger
metric to other probability metrics such as total variation distance, we refer the reader to [19].

In the following, we will use uppercase Latin letters such as X, Y , Z, U to denote RVs
on Hilbert spaces, and lowercase Latin letters such as x, y, z, u for elements in these Hilbert
spaces or realizations of the associated RVs. Greek letters such as ε, η, and ξ will be used
to denote RVs as well as their realizations, and µ and ν (with various subscripts) will denote
measures on the Hilbert space X and on Rd.

2.2. Bayes’ rule and the posterior measure. Bayesian inference consists in updating prior
knowledge on the unknown quantity U , reflecting a gain in knowledge due to new observations.
The distribution of the RV U , characterized by the probabilities P(U ∈ B) for B ∈ B(X ),
quantifies in stochastic terms our knowledge about the uncertainty associated with U . When
new information becomes available, such as knowing that the event Z = z has occurred,
this is reflected in our quantitative description as the “conditional distribution of U given
{Z = z},” denoted P(U ∈ B|Z = z). Unfortunately, P(U ∈ B|Z = z) cannot be defined in an
elementary fashion when P(Z = z) = 0, in which case the conditional distribution is defined
by an integral relation. The key concept here is that of conditional expectation: Given RVs
X ∈ L1(Ω,F ,P;X ) and Y : Ω → Y, we define the conditional expectation E[X|Y ] of X given
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Y as any σ(Y )-measurable mapping E[X|Y ] : Ω → X which satisfies

∫

A
E[X|Y ] P(dω) =

∫

A
X P(dω) ∀A ∈ σ(Y ).

By the Doob–Dynkin lemma [24, Lemma 1.13] there exists a measurable function φ : Y → X
such that E[X|Y ] = φ(Y ) P-a.s. We note that this does not determine a unique function φ
but rather an equivalence class of measurable functions, where φ1 ∼ φ2 iff P(Y ∈ {y ∈ Y :
φ1(y) ̸= φ2(y)}) = 0. For a specific realization y of Y (and a specific φ), we define

E[X|Y = y] := φ(y) ∈ X .

Setting X = 1{U∈B}, one can then define for each fixed B ∈ B(X )

(3) P(U ∈ B|Z = z) := E[1{U∈B}|Z = z]

as an equivalence class of measurable functions Rd → [0, 1]. One would like to view this,
conversely, as a family of probability measures with the realization z as a parameter, giving the
posterior distribution of U resulting from having made the observation Z = z. Unfortunately,
this construction need not, in general, yield a probability measure for each fixed value of z
(cf. [35]). In case X is a separable Hilbert space, a function

Q : B(X )× Rd → R

can be shown to exist (cf. [35]) such that the following hold:

(a). For each z ∈ Rd, Q(·, z) is a probability measure on (X ,B(X )).
(b). For each B ∈ B(X ) the function

Rd ∋ z 0→ Q(B, z)

is a representative of the equivalence class (3); i.e., it is measurable and there holds

P(U ∈ B,Z ∈ A) =

∫

A
Q(B, z) PZ(dz) ∀A ∈ B(Rd).

Such a function Q, also denoted by µU |Z , is called the regular conditional distribution of U
given Z and is defined uniquely up to sets of z-values of PZ -measure zero. We have thus
arrived at a consistent definition of the posterior probability P(U ∈ B|Z = z) as µU |Z(B, z).

It is helpful to maintain a clear distinction between conditional and posterior quantities:
The former contain the—as yet unrealized—observation as a parameter, while in the latter
the observation has been made. Specifically, µU |Z is the conditional measure of U conditioned
on Z, whereas µU |Z(·, z) denotes the posterior measure of U for the observation Z = z.

We now recall how Bayes’ rule yields an explicit expression for the regular conditional
distribution µU |Z . To this end, we make the following assumptions for the model (2).
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Assumption 2.1.
1. U ∼ µ0, ε ∼ νε, and (U, ε) ∼ µ0 ⊗ νε; in particular, U and ε are independent.
2. νε = ρ(ε) dε, where ρ(ε) = Ce−ℓ(ε) with C > 0 and ℓ : Rd → R+

0 measurable and
nonnegative. Here dε denotes Lebesgue measure on Rd.

3. G : X → Rd is continuous.
By Assumption 2.1, the distribution νZ of Z in (2) is determined as νZ = Cγ(z)dz, where

C > 0 and

γ(z) :=

∫

X
e−ℓ(z−G(u)) µ0(du).

We note that γ(z) > 0 is well defined since 0 < |e−ℓ(z−G(u))| ≤ 1 and γ ∈ L1(Rd) due to
Fubini’s theorem [24, Theorem 1.27]. In particular, we have that (U,Z) ∼ µ with µ(du,dz) =
Ce−ℓ(z−G(u)) µ0(du) ⊗ dz, where dz again denotes Lebesgue measure on Rd. Further, we
introduce the potential

Φ(u; z) := ℓ(z −G(u)),

for which we assume the following Lipschitz-like property.
Assumption 2.2. The potential Φ is continuous in z in a mean-square sense w.r.t. µ0; i.e,

there exists a nondecreasing function ψ : [0,∞) → [0,∞) with lims→0 ψ(s) = ψ(0) = 0 such
that

E
[
|Φ(U ; z1)−Φ(U ; z2)|2

]
=

∫

X
|Φ(u; z1)− Φ(u; z2)|2 µ0(du) ≤ ψ(|z1 − z2|).

For instance, there may exist a function θ ∈ L2(X ,B(X ), µ0;R) such that

|Φ(u; z1)− Φ(u; z2)| ≤ θ(u)ψ(|z1 − z2|).

Before stating the abstract version of Bayes’ rule in Theorem 2.3, we recall the finite-
dimensional case X ≃ Rn, where it can be stated in terms of densities: Here µ0(du) = π0(u)du,
and Bayes’ rule takes the form

πz(u) =
1

γ(z)
exp(−Φ(u; z))π0(u),

where e−Φ(u;z) = e−ℓ(z−G(u)) represents the likelihood of observing z when fixing u. The
denominator γ(z) can be interpreted as a normalizing constant to ensure

∫
X π

z(u) du = 1.
We now show that, in the general setting, Bayes’ rule yields (a version of) the (regular)
conditional measure µU |Z of U w.r.t. Z. The statement of Theorem 2.3 differs from related
results in [41, Theorems 4.2 and 6.31] insofar as we explicitly characterize the posterior measure
as a version of the regular conditional distribution, and as we also allow for a general prior µ0

and log-likelihood ℓ.
Theorem 2.3. Let Assumptions 2.1 and 2.2 be satisfied, and define for each z ∈ Rd a

probability measure on (X ,B(X )) by

(4) µz(du) :=
1

γ(z)
exp(−Φ(u; z)) µ0(du).

Then the mapping Q : B(X )× Rd → [0, 1] given by

Q(B, z) := µz(B) ∀B ∈ B(X )
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is a regular conditional distribution of U given Z. We call µz the posterior measure (of U
given Z = z). Moreover, µz depends continuously on z w.r.t. the Hellinger metric; i.e., for
any z1, z2 ∈ Rd with |z1 − z2| ≤ r, there holds

dH(µz1 , µz2) ≤ Cr(z1)ψ(|z1 − z2|),

where Cr(z1) = C(1 + min{γ(z′) : |z1 − z′| ≤ r}3)−1 < +∞.
Proof. Continuity with respect to the Hellinger metric is a slight generalization of [41,

Theorem 4.2] and may be proved in the same way with obvious modifications. To show that
Q is a regular conditional distribution, we verify the two properties (a) and (b). The first
follows from the construction of µz. For the second property, note that measurability follows
from continuity. The continuity of µz w.r.t. z in the Hellinger metric also implies that µz(B)
depends continuously on z due to the relations between Hellinger metric and total variation
distance (see [19]). Finally, we have for any A ∈ B(Rd) and B ∈ B(X ) that

P(U ∈ B,Z ∈ A) =

∫

A×B
µ(du,dz) =

∫

A

∫

B
Ce−ℓ(z−G(u)) µ0(du) dz

=

∫

A
Cγ(z)Q(B, z) dz =

∫

A
Q(B, z) PZ(dz),

which completes the proof.
Remark 2.4. Theorem 2.3 shows that the Lipschitz-like property of the potential stated

in Assumption 2.2 carries over to the posterior for a general prior µ0 and an additive noise ε
with Lebesgue density proportional to e−ℓ(ε). Roughly speaking, the negative log-likelihood ℓ
and the posterior µz share the same local modulus of continuity.

By Theorem 2.3 the Bayesian inverse problem is well-posed under mild conditions. It is
also possible to prove continuity of µz w.r.t. to the forward map G (see [41, section 4.4]),
which is crucial when the forward map G is realized by numerical approximation.

To give meaning to the mean and covariance of U ∼ µ0 and Z = G(U) + ε, we make the
further assumption that all second moments exist.

Assumption 2.5. There holds
∫

X
( ∥u∥2 + |G(u)|2 ) µ0(du) < +∞ and

∫

Rd
|ε|2 νε(dε) < +∞.

2.3. Bayes estimators. Although the posterior measure µz is, by definition, the solution
to the Bayesian inverse problem, it is by no means easy to compute in practice. In special
cases, such as when G is linear and µ0 and νε are Gaussian measures, or in the case of
conjugate priors, closed-form expressions for µz are available. In general, however, µz can
only be computed in an approximate sense. Moreover, when the dimension of X is large or
infinite, visualizing, exploring, and using µz for postprocessing are demanding tasks.

More accessible quantities from Bayesian statistics [4], which are also closer in nature to
the result of deterministic parameter identification procedures than the posterior measure, are
point estimates for the unknown u. In the Bayesian setting a point estimate is a “best guess”
û of u based on posterior knowledge. Here “best” is determined by a cost function c : X → R+

0
satisfying c(0) = 0 and c(u) ≤ c(λu) for any u ∈ X and λ ≥ 1. Such a cost function describes
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the loss or costs c(u− û) incurred when û is substituted for (the true) u for postprocessing or
decision making. Also, more general forms of a cost function are possible; see, e.g., [3, 4].

For any realization z ∈ Rd of the observation RV Z we introduce the (posterior) Bayes
cost of the estimate û w.r.t. c as

Bc(û; z) :=

∫

X
c(u− û)µz(du),

and define the Bayes estimate û as a minimizer of this cost, i.e.,

û := argmin
v∈X

Bc(v; z),

assuming a unique minimizer exists. The Bayes estimator φ̂ : Rd → X is then the mapping
which assigns to an observation z the associated Bayes estimate û, i.e.,

φ̂ : z 0→ argmin
v∈X

Bc(v; z).

We assume measurability of φ̂ in the following and note that φ̂ is then also the minimizer of
the expected or prior Bayes cost

Bc(φ) := E [Bc(φ(Z);Z)] =

∫

Rd

∫

X
c(u− φ(z))µz(du) νZ(dz) = E [c(U − φ(Z))] ;

i.e., for any other measurable φ : Rd → X there holds

E
[
c(U − φ̂(Z))

]
≤ E [c(U − φ(Z))] .

Remark 2.6. Since φ̂ = argminφ E [c(U − φ(Z))], it is possible to determine the estimator

φ̂, and hence also the estimate û = φ̂(z) for a given z, without actually computing the posterior
measure µz, as the integration in Bc(φ̂) is carried out w.r.t. the prior measure. Therefore,
Bayes estimators are typically easier to compute or approximate than µz.

We now recall two very common Bayes estimators: the posterior mean estimator and the
maximum a posteriori estimator.

2.3.1. Posterior mean estimator. For the cost function c(u) = ∥u∥2 the posterior Bayes
cost

Bc(û; z) =

∫

X
∥u− û∥2 µz(du)

is minimized by the posterior mean û = uCM :=
∫
X uµz(du), since for any Hilbert space–

valued RV X its expectation E[X] is the minimizer of the functional JX(v) = E[∥X − v∥2],
v ∈ X . The corresponding Bayes estimator for c(u) = ∥u∥2 is then given by

φ̂CM(z) :=

∫

X
uµz(du).
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In particular, φ̂CM(Z) = E[U |Z] holds P-a.s.
Remark 2.7. If X is only a Banach space, then the expectation of an X -valued RV X need

not minimize the functional JX ; i.e., we have in general

E[X] ̸= argmin
v∈X

E[∥X − v∥2].

As a simple counterexample, consider X = R2, ∥v∥ = |v1| + |v2|, and X = (X1,X2) with
independent RVs X1, X2 such that

P(X1 = −1) = p1, P(X1 = 1) = 1− p1 and P(X2 = −1) = p2, P(X2 = 1) = 1− p2.

Here E[X] minimizes E[∥X − v∥2] iff p1 = p2 = 0.5. In fact, one can show that E[X] =
argminv∈X E[∥X − v∥2] if X is distributed symmetrically w.r.t. its mean, i.e., if there holds
P(X − E[X] ∈ A) = P(E[X]−X ∈ A) for all A ∈ B(X ).

2.3.2. Maximum a posteriori estimator. Another common estimator in Bayesian statis-
tics is the maximum a posteriori (MAP) estimator φ̂MAP. For finite-dimensional X ≃ Rn and
absolutely continuous prior µ0, i.e., µ0(du) = π0(u)du, the MAP estimate is defined as

φ̂MAP(z) = argmin
u∈Rn

(Φ(u; z)− log π0(u)) ,

provided that the minimum exists for all z ∈ Rd. For the definition of the MAP estimate via
a cost function and the Bayes cost, we refer the reader to the literature, e.g., [28, section 16.2]
or the very recent work [6] for a novel approach; for MAP estimates in infinite dimensions, we
refer the reader to [9].

There is an interesting link between the Bayes estimator φ̂MAP and the solution of the asso-
ciated regularized least-squares problem: If R : Rn → [0,∞) is a regularizing functional which
satisfies

∫
Rn exp(− α

σ2 R(u)) du < +∞, then the solution ûα = argminu |z − G(u)|2 + αR(u)

coincides with the MAP estimate φ̂MAP(z) for ε ∼ N(0,σ2I) and µ0(du) ∝ exp(− α
σ2 R(u)) du.

3. Analysis of generalized Kalman filters. In this section we consider KFs and their
application to the nonlinear Bayesian inverse problem (2). We begin with the classical KF
for state estimation in linear dynamics and then consider two generalizations to the nonlinear
setting which have been recently proposed for UQ in connection with inverse problems. We
show that both methods can be understood as different discretizations of an updating scheme
for a certain RV, and prove that both KF methods converge to this RV when the discretization
is refined.

3.1. The Kalman filter. The KF [25] is a well-known method for sequential state estima-
tion for incompletely observable, linear discrete-time dynamics of the form

(5) Un = AnUn−1 + ηn, Zn = GnUn + εn, n = 1, 2, . . . ,

where (Un)n∈N denotes the unknown, unobservable state and (Zn)n∈N the observable process.
The operators An and Gn are linear mappings in state space and from state to observation
space, respectively, and the noise processes ηn, εn are usually assumed to have zero mean
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with known covariances. In addition, the mean and covariance of U0 need to be known,
and the RVs U0, ηn, εn are taken to be mutually independent. Then, given observations
Z1 = z1, . . . , Zn = zn, the KF yields recursive equations for the minimum variance estimates
ûn of Un and their error covariances Cov(Un − ûn); see, e.g., [8, 40] for an introduction and
discussion.

Although the main advantage of the KF is its recursive structure, making it very efficient
for state estimation in dynamical systems with sequentially arriving data, a detailed analysis
of sequential methods is beyond the scope of this work. We focus instead on the application of
the KF and its generalizations to time-independent systems of the form (2) and, in the linear
case,

(6) Z = GU + ε, (U, ε) ∼ µ0 ⊗ νε.

We note that (6) can be seen as one step of the dynamical system (5) for An ≡ I, ηn ≡ 0, and
Gn = G. Conversely, the state estimation problem for U0, Un, or (U0, U1, . . . , Un) in (5) given
Z = (Z1, . . . , Zn) = (z1, . . . , zn) = z can be reformulated as (6).

If û0 = E[U ] is taken as an initial estimate for the unknown U in (6) before observing
Z = z, this results in the initial error covariance Cov(U − û0) = Cov(U) =: C0. Given data
Z = z, the KF provides a new estimate û1 and its error covariance C1 = Cov(U − û1) via the
updates

û1 = û0 +K(z −Gû0), C1 = C0 −KGC0,(7)

where K = C0G∗(GC0G∗ + Σ)−1, Σ = Cov(ε), is known as the Kalman gain. In fact, by
assimilating the data Z = z, the KF produces an improved estimate, since its expected error
is smaller than that of the initial estimate in the sense that C0 − C1 is positive definite.

If (U,Z) are jointly Gaussian RVs, i.e., U ∼ N(m0, C0) and ε ∼ N(0,Σ), the posterior
measure µz of U given Z = z also has a Gaussian distribution µz ∼ N(mz, Cz) with

mz = m0 +K(z −Gm0), Cz = C0 −KGC0;

see, e.g., [30]. Thus for G linear and U, ε independently Gaussian, the KF is seen to yield
the solution of the Bayesian inverse problem by providing the posterior mean and covariance,
which in this case also uniquely specify the Gaussian posterior measure µz. However, we
emphasize that the KF does not directly approximate the posterior measure; it rather provides
minimum variance estimates and their error covariances for linear problems (5). Without the
assumption that µ0 or νε is Gaussian, the Kalman filter will not, in general, yield the first two
posterior moments, nor is the posterior measure necessarily Gaussian.

In the following two subsections we consider generalizations of the KF to nonlinear prob-
lems (2). Historically, the first such method was the extended Kalman filter (EKF), which
is based on local linearizations of the nonlinear map G, but which we will not consider here.
We focus instead on the ensemble Kalman Filter (EnKF) introduced by Evensen [13] and the
recently developed the polynomial chaos Kalman filter (PCKF) [5, 34, 36, 37, 38, 39].
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3.2. The ensemble Kalman filter. Since its introduction in 1994, the EnKF has been
investigated and evaluated in many publications [14, 7, 16, 15, 32]. However, the focus is
usually on its application to state or parameter estimation rather than solving Bayesian inverse
problems. Recently, interest in the EnKF for UQ in inverse problems has increased; see, e.g.,
[22, 23, 26].

If we consider the model (2) with (U, ε) ∼ µ0 ⊗ νε and given observations z ∈ Rd, the
EnKF algorithm proceeds as follows:

1. Initial ensemble: Draw samples u1, . . . , uM of U ∼ µ0.
2. Forecast: Draw samples ε1, . . . , εM of ε ∼ νε and set

zj = G(uj) + εj , j = 1, . . . ,M,

yielding samples z1, . . . , zM of Z ∼ νZ .
3. Analysis: Update the initial ensemble u = (u1, . . . , uM ) member by member via

(8) uaj = uj + K̃(z − zj), j = 1, . . . ,M,

where K̃ = Cov(u,z)Cov(z)−1 and Cov(u,z) and Cov(z) are the empirical covari-
ances of the samples u and z = (z1, . . . , zM ), e.g.,

Cov(u,z) =
1

M − 1

M∑

j=1

(uj − ūM )⊗ (zj − z̄M ),

where ūM = 1
M (u1 + · · · + uM ) and z̄M = 1

M (z1 + · · · + zM ). This yields an analysis
ensemble ua = (ua1, . . . , u

a
M ) which in turn determines an empirical analysis measure

(9) µ̃a
M =

1

M

M∑

j=1

δua
j
,

where δua
j
denotes the Dirac measure at the point uaj . Moreover, the empirical mean

of ua serves as an estimate for the unknown u, and the empirical covariance of ua as
an indicator for the accuracy of the estimate.

For dynamical systems such as (5), the analysis ensemble ua would be propagated by the
system dynamics and would then serve as the initial ensemble for the subsequent step n.

3.3. The polynomial chaos Kalman filter. In [5, 34, 36, 37, 38, 39] the authors propose a
sampling-free Kalman filtering scheme for nonlinear systems. Rather than updating samples
of the unknown, this is carried out for the coefficient vector of a polynomial chaos expansion
(PCE) of the unknown. This necessitates the construction of a PCE distributed according to
the prior measure µ0: We assume there exist countably many independent real-valued RVs
ξ = (ξm)m∈N and chaos coefficients uα ∈ X , εα ∈ Rd for each multi-index

α ∈ J := {α ∈ NN
0 : αj ̸= 0 for only finitely many j}

such that
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∑

α∈J
∥uα∥2 < +∞ and

∑

α∈J
|εα|2 < +∞

and
(
∑

α∈J
uαPα(ξ),

∑

α∈J
εαPα(ξ)

)
∼ µ0 ⊗ νε.

Here, Pα(ξ) =
∏

m≥1 P
(m)
αm (ξm) denotes the product of univariate orthogonal polynomials

P (m)
αm , where we require {P (m)

α }α∈N to be a complete orthonormal system (CONS) in
L2(R,B(R),Pξm ;R). We note that the completeness of orthogonal polynomials will depend in
general on properties of the measure Pξm ; see [11] for a complete characterization.

We then define U :=
∑

α∈J uαPα(ξ) and ε :=
∑

α∈J εαPα(ξ), given the chaos coefficients
(uα)α∈J and (εα)α∈J. However, for numerical simulations we have to truncate the PCE and,
therefore, introduce the projection

PJ U :=
∑

α∈J
uαPα(ξ), J ⊂ J.

To simplify notation we further define for J ⊆ J the following two RVs:

UJ := PJ U and ZJ := PJ(G(UJ ) + ε).

Due to the nonlinearity of G there holds in general PJ G(U) ̸= G(PJ U) ̸= PJ G(UJ), and,
hence, ZJ ̸= PJ Z! In particular, we will consider finite subsets J , and for convergence studies
we usually assume a monotone and exhaustive sequence of such finite subsets (Jn)n∈N, i.e,
Jm ⊂ Jn for m ≤ n and Jn ↑ J, e.g., the sequence

Jn :=

{
α ∈ J : αj = 0 ∀j > n,

∞∑

j=1

|αj | ≤ n

}
.

We note that for n → ∞ the error ∥U−UJn∥L2(X ) will tend to zero since Jn ↑ J. However, the
L2-convergence is in general not preserved under continuous mappings (unlike convergence
in the almost sure sense, in probability and in distribution). Thus, although there holds
∥U − UJn∥L2(X ) → 0 and, of course, ∥G(U) − PJn G(U)∥L2(Rd) → 0, the continuity of G does

not imply ∥G(U) − PJn G(UJn)∥2L2(Rd) → 0 in general. If we assume that for a δ > 0 there

exists a C < +∞ such that

E
[
|G(UJn)|2+δ

]
≤ C ∀n ∈ N,(10)

then the desired convergence of ∥Z − ZJn∥L2(Rd) → 0 follows; see the proof of Theorem 3.2
for details.

For the same problem considered for the EnKF, the PCKF algorithm now reads as follows:
1. Initialization: Choose a finite subset J ⊂ J and compute the chaos coefficients

(uα)α∈J of U ∼ µ0.
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2. Forecast: Compute the chaos coefficients (gJ,α)α∈J of G(UJ ) and set

zJ,α := gJ,α + εα ∀α ∈ J,

where (εα)α∈J are the chaos coefficients of ε. By linearity zJ,α are the chaos coefficients
of ZJ .

3. Analysis: Update the initial chaos coefficients by

(11) uaJ,α := uα +KJ (δα0z − zJ,α) ∀α ∈ J,

where δα0 is the Kronecker symbol for multi-indices, (δα0z)α∈J = (z, 0, . . . , 0) are the
chaos coefficients of the observed data z ∈ Rd, and KJ := Cov(UJ , ZJ )Cov(ZJ)−1.
The action of the covariances as linear operators can be described in the case of
Cov(UJ , ZJ) : Rd → X by

Cov(UJ , ZJ)x =
∑

α∈J

∑

β∈J
z⊤J,β xuα, x ∈ Rd.

Thus, the result of one step of the PCKF algorithm is an analysis chaos coefficient vector
(uaα)α∈J , which in turn determines a RV

Ua
J :=

∑

α∈J
uaJ,αPα(ξ).

Remark 3.1. An expansion in polynomials Pα(ξ) is not crucial for the application of the
PCKF. In principle, any countable CONS (Ψα)α∈N of the space L2(RN,B(RN),Pξ;R) such
that

(∑
α uαΨα(ξ),

∑
α εαΨα(ξ)

)
∼ µ0 ⊗ νε would be suitable.

3.4. The analysis variable. Both EnKF and PCKF perform discretized versions of an
update for RVs, namely,

Ua = U +K(z − Z), K = Cov(U,Z)Cov(Z)−1,(12)

where Z := G(U) + ε and (U, ε) ∼ µ0 ⊗ νε, providing samples ua or chaos coefficients uaα of
Ua, respectively. However, the output of both methods is corrupted by the approximation of
the Kalman gain operator K by the empirical covariances and the operator KJ , respectively.
That both methods do indeed converge to Ua in some sense for increasing sample size M or
increasing chaos coefficient subset Jn is stated in the next two theorems.

Theorem 3.2. Consider the model (2), and let Assumptions 2.1, 2.2, and 2.5 be satisfied.
If (Jn)n∈N is a monotone and exhaustive sequence of finite subsets of J with 0 ∈ J1 such that
(10) holds, then ∥Z − ZJn∥L2(Rd) → 0 for n → ∞. Moreover, if

Ua
Jn =

∑

α∈Jn

uaJn,αPα(ξ)

denotes the RV generated by the PCKF in the analysis step for the subset J = Jn, we have

(13) ∥Ua − Ua
Jn∥L2(X ) ∈ O

(
∥U − UJn∥L2(X ) + ∥Z − ZJn∥L2(Rd)

)
,
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which means in particular that Ua
Jn → Ua in L2(X ) as n → ∞.

Proof. In the following we use ∥ ·∥L2 as shorthand for ∥ ·∥L2(X ) and ∥ ·∥L2(Rd), respectively.

Since (Jn)n∈N is exhaustive, we have UJn → U in L2(X ), and hence UJn
P−→ U , where

P−→ denotes
convergence in probability. Since G is continuous, it follows by the continuous mapping

theorem [24, Lemma 3.3] that also G(UJn)
P−→ G(U). Now the boundedness assumption (10)

implies the uniform integrability of the RVs |G(UJn)|2, n ∈ N (see [24, p. 44]), and by [24,
Proposition 3.12] we then obtain G(UJn) → G(U) in L2(X ). Thus,

∥Z − ZJn∥L2 ≤ ∥Z − PJn Z∥L2︸ ︷︷ ︸
→0

+ ∥PJn(Z −G(UJn)− ε)∥L2︸ ︷︷ ︸
≤∥G(U)−G(UJn )∥L2→0

→ 0.

Now consider J as an arbitrary subset. Since Ua = U +K(z−Z) and Ua
J = UJ +KJ(z−ZJ),

we have

∥Ua − Ua
J∥L2 ≤ ∥U − UJ∥L2 + ∥K −KJ∥ ∥z − ZJ∥L2 + ∥K∥ ∥Z − ZJ∥L2 ,

where the norm for K and K − KJ is the usual operator norm for linear mappings from
Rd → X . It is clear that we can estimate

∥z − ZJ∥L2 ≤ |z|+ ∥Z∥L2 ,

because ∥ZJ∥L2 ≤ ∥Z∥L2 . Considering ∥K −KJ∥, we can further split this error into

∥K −KJ∥ ≤ ∥Cov(U,Z)− Cov(UJ , ZJ )∥ ∥Cov−1(Z)∥
+ ∥Cov(UJ , ZJ)∥ ∥Cov−1(Z)− Cov−1(ZJ )∥.

Next, we recall that the covariance operator Cov(X,Y ) depends continuously on X and Y ; in
particular, for zero-mean Hilbert space–valued RVs X1,X2 ∈ L2(X ) and Y1, Y2 ∈ L2(Y), we
have

∥Cov(X1, Y1)− Cov(X2, Y2)∥ = ∥E[X1 ⊗ Y1]− E[X2 ⊗ Y2]∥
≤ E[∥(X1 −X2)⊗ Y1∥+ ∥X2 ⊗ (Y1 − Y2)∥]
= E[∥X1 −X2∥ ∥Y1∥] + E[∥X2∥ ∥Y1 − Y2∥]
≤ (∥Y1∥L2 + ∥X2∥L2) (∥X1 −X2∥L2 + ∥Y1 − Y2∥L2),

where we have used Jensen’s and the triangle inequalities in the second line and the Cauchy–
Schwartz inequality in the last line. Since Cov(X,Y ) = Cov(X − E[X], Y − E[Y ]) and ∥X −
E[X]∥L2 ≤ ∥X∥L2 , the above estimate holds also for nonzero-mean RVs. Thus, we get

∥Cov(U,Z)− Cov(UJ , ZJ)∥ ≤ (∥U∥L2 + ∥Z∥L2) (∥U − UJ∥L2 + ∥Z − ZJ∥L2)

and
∥Cov(Z)− Cov(ZJ )∥ ≤ 4∥Z∥L2 ∥Z − ZJ∥L2 ,

due to ∥ZJ∥L2 ≤ ∥Z∥L2 . Now consider again the assumed monotone and exhaustive sequence
(Jn)n∈N, and recall that, by taking a sufficiently large n, the errors ∥U − UJn∥L2 and ∥Z −
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ZJn∥L2 can be made arbitrarily small. Thus, also ∥Cov(Z)−Cov(ZJ )∥ will tend to zero as n →
∞. We now apply the continuity of the matrix inverse to estimate ∥Cov−1(Z)−Cov−1(ZJn)∥.
Recall that Cov(Z),Cov(ZJn) ∈ Rd×d. Let n be sufficiently large such that

∥Cov(Z)− Cov(ZJn)∥ <
1

2∥Cov−1(Z)∥
;

then there holds

∥Cov−1(Z)−Cov−1(ZJn)∥ ≤ 2∥Cov−1(Z)∥2∥Cov(Z)− Cov(ZJn)∥

(see [21, sect. 5.8]). Summing up all previous estimates, we obtain

∥K −KJn∥ ≤ C1(∥U − UJn∥L2 + ∥Z − ZJn∥L2) + C2∥Z − ZJn∥L2 ,

with C1 = ∥Cov−1(Z)∥(∥U∥L2 + ∥Z∥L2) and C2 = 8∥U∥L2 ∥Cov−1(Z)∥2 ∥Z∥2L2 , where we
have used

∥Cov(UJ , ZJ )∥ ≤ ∥UJ∥L2 ∥ZJ∥L2 ≤ ∥U∥L2∥Z∥L2

to obtain C2. Finally, we arrive at

∥Ua − Ua
Jn∥L2 ≤ ∥U − UJn∥L2 + (|z|+ ∥Z∥L2)∥K −KJn∥+ ∥K∥ ∥Z − ZJn∥L2

≤ C(∥U − UJn∥L2 + ∥Z − ZJn∥L2),

with C = 1 + ∥K∥+ |z|+ ∥Z∥L2 + C1 + C2, and the assertion follows.
Remark 3.3. Since for many applications evaluating the forward map G corresponds to

solving a differential or integral equation, an additional error arises due to numerical approx-
imations Gh of G. This error affects the filters by sampling or computing chaos coefficients
of Zh = Gh(U) + ε instead of Z. We neglect this error in our analysis since it is beyond the
scope of this work. However, if G is the solution operator for differential equations, we expect
that (10) could be verified in many cases, such as for elliptic boundary value problems with
U a random diffusion coefficient or source term.

The first large ensemble convergence analysis for the EnKF was carried out in [20]. There
the authors considered filtering for finite-dimensional locally Lipschitz dynamical systems.
They proved that the empirical mean of locally Lipschitz-continuous functions f : Rn → R
applied to the analysis ensemble converges P-a.s. to the expectation of f w.r.t to a limit
distribution which in our setting relates to the distribution of the above introduced analysis
variable Ua. We will derive a similar result for the considered Bayesian inverse problem
setting; i.e., we extend it to Hilbert spaces and to one update given data obtained by general
nonlinear continuous observation operators. Although the proof employs ideas similar to that
of [20, Theorem 5.1], we present it for completion.

Theorem 3.4. Given the model (2) under Assumptions 2.1, 2.2, and 2.5, let (ua1, . . . , u
a
M )

denote the analysis ensemble resulting from the EnKF, and let µ̃a
M denote the associated

empirical measure (9). Further, let µa denote the push-forward measure of the analysis variable
Ua. Then, for any f : X → Y which satisfies

∥f(u)− f(v)∥Y ≤ C(1 + ∥u∥X + ∥v∥X ) ∥u− v∥X ∀u, v ∈ X ,
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where Y is an arbitrary separable Hilbert space, there holds

lim
M→∞

∫

X
f(u) µ̃a

M (du) =

∫

X
f(u)µa(du) P-a.s.

This implies in particular for ūaM = 1
M

∑M
j=1 u

a
j that

lim
M→∞

ūaM = E[Ua] and lim
M→∞

1

M

M∑

j=1

(uaj − ūaM )⊗ (uaj − ūaM ) = Cov(Ua) P-a.s.

Proof. We denote by Ui and εi, i ∈ N, independent and identically distributed (i.i.d.) RVs
such that (Ui, εi) ∼ µ0 ⊗ νε. Further, we define

Ua
i := Ui +K(z − Zi), K = Cov(U1, Z1)Cov

−1(Z1),

where Zi := G(Ui) + εi, and

Xa
M,i := Ui +KM (z − Zi), KM = Cov(UM ,ZM )Cov−1(ZM ),

where Cov(UM ,ZM ) and Cov(ZM ) are empirical covariances, e.g.,

Cov(UM ,ZM ) =
1

M − 1

M∑

i=1

(Ui − ŪM )⊗ (Zi − Z̄M )

with ŪM = 1
M (U1 + · · · + UM ) and Z̄M = 1

M (Z1 + · · · + ZM ). Note that (Xa
1 , . . . ,X

a
M )

represents the random analysis ensemble of the EnKF and that Ua
i ∼ µa i.i.d. For any

function f : X → Y which fulfills the assumptions stated in the theorem, we have

1

M

M∑

i=1

f(Xa
M,i) =

1

M

M∑

i=1

f(Xa
M,i)− f(Ua

i ) +
1

M

M∑

i=1

f(Ua
i ).

Due to the strong law of large numbers (SLLN) [33] there holds

lim
M→∞

1

M

M∑

i=1

f(Ua
i ) =

∫

X
f(u)µa(du) P-a.s.

Hence, we need only ensure that
∥∥∥∥∥
1

M

M∑

i=1

f(Xa
M,i)− f(Ua

i )

∥∥∥∥∥ ≤ 1

M

M∑

i=1

C(1 + ∥Ua
i ∥+ ∥Xa

M,i∥) ∥Xa
M,i − Ua

i ∥

≤
(

C

M

M∑

i=1

(1 + ∥Ua
i ∥+ ∥Xa

M,i∥)2
)1/2 (

C

M

M∑

i=1

∥Xa
M,i − Ua

i ∥2
)1/2

converges P-a.s. to 0 as M → ∞ to prove the first statement. We estimate

∥Xa
M,i − Ua

i ∥ ≤ ∥K −KM∥∥z − Zi∥ ∀i ∈ N,
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where we can further split

K −KM =
(
Cov(U,Z)− Cov(UM ,ZM )

)
Cov−1(Z)

+Cov(UM ,ZM )
(
Cov−1(Z)− Cov−1(ZM )

)
.

Next, we recall that the empirical covariance converges P-a.s. to the true covariance, which
follows easily (see [31, Satz 3.14] for the scalar case) by writing

Cov(UM ,ZM ) =
1

M − 1

M∑

i=1

(Ui − E[U ])⊗ (Zi − E[Z])− M

M − 1
(ŪM − E[U ])⊗ (Z̄M − E[Z]).

Then by the SLLN we get

1

M − 1

M∑

i=1

(Ui − E[U ])⊗ (Zi − E[Z])
M→∞−−−−→ E[(U − E[U ])⊗ (Z − E[Z]),

and M
M−1(ŪM − E[U ])⊗ (Z̄M − E[Z])

M→∞−−−−→ 0 P-a.s. Thus, we have

Cov(U,Z)− Cov(UM ,ZM )
M→∞−−−−→ 0 and Cov(Z)− Cov(ZM )

M→∞−−−−→ 0 P-a.s.

Since the matrix inverse is a continuous mapping, it also follows that

Cov−1(Z)− Cov−1(ZM )
M→∞−−−−→ 0 P-a.s.,

and hence K −KM → 0 as M → ∞ P-a.s. We thus have for p ∈ [1, 2] P-a.s.

lim
M→∞

Xa
M,i = Ua

i ∀i ∈ N and lim
M→∞

1

M

M∑

i=1

∥Xa
M,i − Ua

i ∥p = 0,

since by the SLLN 1
M

∑M
i=1 ∥z − Zi∥p will tend to E[∥z − Z∥p] P-a.s. Moreover, there holds

(1 + ∥Ua
i ∥+ ∥Xa

M,i∥)2 ≤ (1 + 2∥Ua
i ∥+ ∥Xa

M,i − Ua
i ∥)2 ≤ 2(1 + 2∥Ua

i ∥)2 + ∥Xa
M,i − Ua

i ∥2,

which yields, again by the SLLN and the above arguments,

1

M

M∑

i=1

(1+ ∥Ua
i ∥+ ∥Xa

M,i∥)2 ≤
1

M

M∑

i=1

(1+ 2∥Ua
i ∥)2 +

1

M

M∑

i=1

∥Xa
M,i −Ua

i ∥2 → E[(1 + 2∥Ua∥)2]

as M → ∞ P-a.s. We thus finally obtain

∥∥∥∥∥
1

M

M∑

i=1

f(Xa
M,i)− f(Ua

i )

∥∥∥∥∥
M→∞−−−−→ 0 P-a.s.,

proving the first statement of the theorem. The remaining two then follow immediately.
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4. Bayesian interpretation of generalized Kalman filters. In the previous section we have
characterized the limit of the EnKF and PCKF approximations for increasing sample size or
polynomial degree, respectively. We now investigate how this limit, the analysis variable Ua,
may be understood in the context of Bayesian inverse problems. By analyzing the properties
of this RV we are able to characterize the approximations provided by the two Kalman filtering
methods. In particular, we show that these do not, in general, solve the nonlinear Bayesian
inverse problem, nor can they be justified even as approximations to its solution. They are,
rather, related to a linear approximation of the Bayes estimator φ̂CM and its estimation error.

4.1. The linear conditional mean. The quantity known in classical statistics as the best
linear unbiased estimator corresponds in the Bayesian setting to the linear posterior mean
estimator φ̂LCM defined as

(14) φ̂LCM = argmin
φ∈P1(Rd;X )

E
[
∥U − φ(Z)∥2

]
,

where P1(Rd;X ) = {φ : φ(z) = b + Az with b ∈ X , A ∈ L(Rd,X )} denotes the set of all
linear mappings from Rd to X . Moreover, we refer to the RV φ̂LCM(Z) as the linear condi-
tional mean. Recall that the conditional mean φ̂CM(Z) = E[U |Z] is the best approximation
of U in L2(Ω,σ(Z),P;X ) w.r.t. the L2(X )-norm. Thus φ̂LCM(Z) can be seen as the best
approximation of U in the subspace P1(Z;X ) ⊂ L2(Ω,σ(Z),P;X ), where P1(Z;X ) is short
for P1(Rd;X ) ◦ Z = {φ(Z),φ ∈ P1(Rd;X )}.

Lemma 4.1. The linear conditional mean as defined in (14) is given by

φ̂LCM(z) = E [U ] + Cov(U,Z)Cov(Z)−1(z − E [Z]).

Proof. The assertion follows by verifying that

φ̂LCM(Z) = E [U ] +K(Z − E [Z]), K = Cov(U,Z)Cov(Z)−1

coincides with the orthogonal projection of U to P1(Z;X ). To do so, we will show that
U − φ̂LCM(Z) is orthogonal to P1(Z;X ) w.r.t. the inner product in L2(X ).

Let b ∈ X and A ∈ L(Rd,X ) be arbitrary. Then there holds

E
[
⟨U − φ̂LCM(Z), b+AZ⟩

]
= E [⟨U − E[U ], b⟩]︸ ︷︷ ︸

=0

+ E [⟨U − E[U ], AZ⟩]

− E [⟨K(Z − E[Z]), AZ⟩]− E [⟨K(Z − E[Z]), b⟩]︸ ︷︷ ︸
=0

= E [⟨U − E[U ], A(Z − E[Z])⟩]− E [⟨K(Z − E[Z]), A(Z − E[Z]⟩]
= Cov(U,Z)A∗ −KCov(Z)A∗ = 0,

since
E[⟨U − E[U ], AE[Z]⟩] = E[⟨K(Z − E[Z]), AE[Z]⟩] = 0

and Cov(AX,BY ) = ACov(X,Y )B∗ for Hilbert space–valued RVs X,Y and bounded, linear
operators A,B.

We note that Lemma 4.1 fails to hold in the case when X is only a separable Banach space,
since then the expectation E[U ] and covariance Cov(U,Z) no longer minimize E[∥U − b∥2],
b ∈ X , and E[∥U −AZ∥2], A ∈ L(Rd,X ), respectively; see also Remark 2.7.
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4.2. Interpretation of the analysis variable. Lemma 4.1 immediately yields a character-
ization of the analysis variable Ua defined in (12).

Theorem 4.2. Let Assumptions 2.1, 2.2, and 2.5 be satisfied for the model (2). Then for
any z ∈ Rd the analysis variable Ua = U + K(z − Z), K = Cov(U,Z)Cov(Z)−1, coincides
with

Ua = φ̂LCM(z) + (U − φ̂LCM(Z)).

In particular, there hold

E [Ua] = φ̂LCM(z) and Cov(Ua) = Cov(U)−KCov(Z,U).

We summarize the consequences of Theorem 4.2 as follows:
• The analysis variable Ua, to which the EnKF and the PCKF provide approximations,

is the sum of a Bayes estimate φ̂LCM(z) and the prior error U − φ̂LCM(Z) of the
corresponding Bayes estimator φ̂LCM.

• The mean of the EnKF analysis ensemble or PCKF analysis vector provides approx-
imations to the linear posterior mean estimate. How far the latter deviates from the
true posterior mean depends on the model and observation z.

• The covariance approximated by the empirical covariance of the EnKF analysis en-
semble, as well as that of the PCKF analysis vector, is independent of the actual
observational data z ∈ Rd. It therefore constitutes a prior rather than a posterior
measure of uncertainty.

• In particular, the randomness in Ua is entirely determined by the prior measures µ0

and νε. Only the location, i.e., the mean, of Ua is influenced by the observation data
z; the randomness of Ua is independent of z and determined only by the projection
error U − φ̂LCM(Z) w.r.t. the prior measures.

• In view of the last two items, the analysis variable Ua, and therefore the EnKF analysis
ensemble or the result of the PCKF, are in general not distributed according to the
posterior measure µz. Moreover, the difference between µz and the distribution of Ua

depends on the data z and can become quite large for nonlinear problems, see Example
4.4.

Remark 4.3. In particular, the second and third items above explain the observations made
in [26] that “... (i) with appropriate parameter choices, approximate filters can perform well
in reproducing the mean of the desired probability distribution, (ii) they do not perform as
well in reproducing the covariance ....”

We illustrate the conceptual difference between the distribution of the analysis variable
Ua and the posterior measure µz with a simple yet striking example (cf. also [2, sect. 7], [20,
Example 2.2], or [17, sect. 5]).

Example 4.4. We consider U ∼ N(0, 1), ε ∼ N(0,σ2), and G(u) = u2. Given data z ∈ R,
the posterior measure, obtained from Bayes’ rule for the densities, is

µz(du) = C exp

(
−σ

2u2 + (z − u2)2

2σ2

)
du.

Due to the symmetry of µz we have ûCM =
∫
X uµz(du) = 0 for any z ∈ Rd. Thus, E[U |Z] ≡ 0,
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Figure 1. Density of the posterior µz (dashed blue line) and the probability density of the analysis variable
Ua (solid red line) for z = 9 and σ = 0.5.

and φ̂LCM ≡ φ̂CM. In particular, we have K = 0 due to

Cov(U,Z) = Cov(U,U2) =
1√
2π

∫

R
u(u2 − 1)e−u2/2du = 0,

which in turn yields Ua = U ∼ N(0, 1). Thus, the analysis variable is distributed according
to the prior measure. This is not surprising as, by definition, its mean is the best linear
approximation to the posterior mean according to µz, and its fluctuation is simply the prior
estimation error U−φ̂LCM(Z) = U−0 = U . This illustrates that Ua is suited for approximating
the posterior mean, but is not appropriate for the purpose of UQ for the nonlinear inverse
problem. As displayed in Figure 1, the distribution of Ua can be markedly different from the
true posterior distribution.

5. Numerical examples. To illustrate the application of the EnKF and PCKF to simple
Bayesian inverse problems, we consider in the following a one-dimensional elliptic boundary
value problem and a time-dependent RLC circuit model.

5.1. One-dimensional elliptic boundary value problem. Let D = [0, 1] and

(15) − d

dx

(
exp(u1)

d

dx
p(x)

)
= f(x), p(0) = p0, p(1) = u2,

be given, where u = (u1, u2) are unknown scalar parameters. The solution of (15) is

(16) p(x) = p0 + (u2 − p0)x+ exp(−u1) (Sx(F )− S1(F )x) ,

where Sx(g) :=
∫ x
0 g(y) dy and F (x) = Sx(f) =

∫ x
0 f(y) dy. For simplicity we choose f ≡ 1,

p0 = 0 in the following and assume noisy measurements have been made of p at x1 = 0.25
and x2 = 0.75 with values z = (27.5, 79.7). We seek to infer u based on this data and on a
priori information modelled by (u1, u2) ∼ N(0, 1) ⊗Uni(90, 110), where Uni(a, b) denotes the
uniform distribution on the interval [a, b]. Thus the forward map here is G(u) = (p(x1), p(x2)),
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Figure 2. Left: Contour plot of the negative logarithm of the prior density and the locations of 1000 ensemble
members of the initial EnKF ensemble. Right: Contour plot of the logarithm of the negative logarithm of the
posterior density and the locations of the updated 1000 ensemble members in the analysis EnKF ensemble.

-5 -4 -3 -2 -1 0
u

1

0

0.5

1

1.5

2

2.5

3

3.5

103 103.5 104 104.5 105 105.5 106
u

2

0

0.5

1

1.5

2

Figure 3. Posterior marginals and relative frequencies in the analysis ensemble for u1 (left) and u2 (right).

where p is given in (16) with f ≡ 1 and p0 = 0. As the model for the measurement noise we
take ε ∼ N(0, 0.01 I2).

In Figure 2 we show the level curves of the prior and posterior densities as well as 1000
ensemble members of the initial and analysis ensemble obtained by the EnKF. A total ensem-
ble size of M = 105 was chosen in order to reduce the sampling error to a negligible level. It
can be seen, however, that the analysis EnKF ensemble does not follow the posterior distribu-
tion, although its mean (−2.92, 105.14) is quite close to the true posterior mean (−2.65, 104.5)
(computed by quadrature). To illustrate the difference between the distribution of the anal-
ysis ensemble/variable and the true posterior distribution, we present the marginal posterior
distributions of u1 and u2 in Figure 3. For the posterior the marginals were evaluated by
quadrature, whereas for the analysis ensemble we show a relative frequency plot.

We remark that slightly changing the observational data to z̃ = (23.8, 71.3) moves the
analysis ensemble as well as the distribution of the analysis RV much closer to the true
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Figure 4. Left: Contours of the logarithm of the negative log posterior density and locations of 1000
members of the analysis EnKF ensemble. Middle, right: Posterior marginals and relative frequencies in the
analysis ensemble for u1 (middle) and u2 (right).

posterior, as shown in Figure 4. Moreover, for these measurement values the mean of the
analysis ensemble (0.33, 94.94) provides a better fit to the true posterior mean (0.33, 94.94).

To reaffirm the fact that only the mean of the analysis variable Ua depends on the actual
data, in Figure 5 we show density estimates for the marginals of u1 and u2 of Ua obtained
from the observational data z = (27.5, 79.7) (blue lines) and z̃ = (23.8, 71.3) (green lines),
respectively. The density estimates were obtained by normal kernel density estimation (in this
case the MATLAB ksdensity routine) based on the resulting analysis ensembles (ua

1,u
a
2) and

(ũa
1, ũ

a
2) for the data sets z and z̃, respectively. We observe that the marginal distributions of

the centered ensembles coincide, in agreement with Theorem 4.2.
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Figure 5. Left: Kernel density estimates for ua
1 (solid blue line) and ũa

1 (dashed green line). Middle, right:
Kernel density estimates for ua

i − E[ua
i ] (solid blue) and ũa

i − E[ũa
i ] (dashed green), i = 1, 2.

In addition, whenever the prior and thus also the posterior support for u2 are bounded—as
in this example—the EnKF may generate members in the analysis ensemble which are outside
this support. This is a further consequence of Theorem 4.2: Since the analysis ensemble
of the EnKF follows the distribution of the analysis variable rather than the true posterior
distribution, ensemble members lying outside the posterior support can always occur whenever
the support of the analysis variable is not a subset of the support of the posterior.

Finally, we emphasize that whether or not the distribution of the analysis variable is a
good fit to the true posterior distribution depends entirely on the observed data—which can
be neither controlled nor known a priori.

The calculations for applying the PCKF to this simple example problem can be carried out
analytically: We require four basic independent RVs ξ1 ∼ N(0, 1), ξ2 ∼ Uni(0, 1), ξ3 ∼ N(0, 1),
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and ξ4 ∼ N(0, 1) to define PCEs which yield RVs distributed according to the prior and error
distributions:

U := (ξ1, 90 + 20ξ2)
⊤ ∼ µ0, ε := (0.1ξ3, 0.1ξ4)

⊤ ∼ νε.

Moreover, due to (16), G(U) is also available in closed form as

G(U) =

⎛

⎝
c11(90 + 20ξ2) + c12

∑∞
n=0(−1)n

√
e√
n!
Hn(ξ1)

c21(90 + 20ξ2) + c22
∑∞

n=0(−1)n
√
e√
n!
Hn(ξ1)

⎞

⎠ ,

where Hn denotes the nth normalized Hermite polynomial and c11, c12, c21, c22 can be deduced
from inserting x = 0.25 and x = 0.75 into (16). Here we have used the Hermite expansion of
exp(−ξ); see also [42, Example 2.2.7]. Thus, the chaos coefficient vectors of U and G(U) + ε
w.r.t. the polynomials

Pα(ξ) = Hα1(ξ1)Lα2(ξ2)Hα3(ξ3)Hα4(ξ4), α ∈ N4
0,

can be obtained explicitly, where Hα and Lα denote the normalized Hermite and Legendre
polynomials of degree α, respectively. In particular, the nonvanishing chaos coefficients involve
only the basis polynomials

P0(ξ) ≡ 1, P1(ξ) = L1(ξ2), P2(ξ) = H1(ξ3), P3(ξ) = H1(ξ4),

and Pα(ξ) = Hα−3(ξ1) for α ≥ 4. Arranging the two-dimensional chaos coefficients of U and

G(U) as the column vectors of the matrices [U ], [G(U) + ε] ∈ R2×N0 and denoting by [̃U ] the
matrix [u1, u2, . . .] ∈ R2×N, we obtain

K = [̃U ] ˜[G(U)]
⊤
(

˜[G(U)] ˜[G(U)]
⊤
+ 0.01I2

)−1

.

Thus, the only numerical error incurred in applying the PCKF in this example is the truncation
of the PCE. We have carried out this calculation using a truncated PCE of length J = 4+50
according to the reduced basis above. In particular, we evaluated the approximation KJ to K
by using the truncated vector [PJG(U)] in the formula above and then performed the update
of the chaos coefficients according to (11). Subsequently, M = 105 samples of the resulting
RV Ua

J were drawn, but, since the empirical distributions were essentially indistinguishable
from those obtained by the EnKF described previously, they are omitted here.

Remark 5.1. Although a detailed complexity analysis of these methods is beyond the scope
of this work, we mention that the EnKF calls for M evaluations of the forward map G(uj),
j = 1, . . . ,M , whereas the PCKF requires computing the chaos coefficients of G(U) by, e.g.,
the stochastic Galerkin method. Thus the former yields, in general, many small systems to
solve, whereas the latter typically requires the solution of a large coupled system. Moreover,
we emphasize the computational savings by applying KF-type methods compared to a “full
Bayesian update,” i.e., sampling from the posterior measure by MCMC methods. In partic-
ular, each MCMC run may require calculating many hundreds of thousands of forward maps
G(u), e.g., for each iteration uj of the Markov chain as in the case of Metropolis–Hastings
MCMC. Hence, if one is interested in only the posterior mean as a Bayes estimate, then EnKF
and PCKF provide substantially less expensive alternatives to MCMC for its approximation
by the linear posterior mean.
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5.2. Dynamical system: RLC circuit. We apply the EnKF to sequential data assimilation
in a simple dynamical system: a damped LC circuit or RLC circuit. Denoting the initial
voltage by U0, the resistance by R, the inductance by L, and the capacitance by C, and
assuming R < 2

√
LC, the voltage and current in the circuit can be modelled as

(17a) U(t) = U0 e
δt

(
cos(wet) +

δ

we
sin(wet)

)
,

(17b) I(t) = − U0

weL
eδt sin(wet),

where δ = R/(2L), we =
√

w2
0 − δ2, and w0 = 1/

√
LC. The data assimilation setting is now

as follows. We observe the state of the system (17) at four time points tn = 5n, n = 1, . . . , 4,
where all observations z ∈ R8 are corrupted by measurement noise ε ∼ N(0,diag(σ21 , . . . ,σ

2
8)).

Here we have chosen σ22n−1 = 0.1|U(tn)| and σ22n = 0.1|I(tn)| for n = 1, . . . , 4. We want to
infer U0 and L based on these observations; i.e, the unknown is u = (U0, L), and we take
as the prior (U0, L) ∼ N(0.5, 0.25) ⊗ Uni(1, 5). Given observations z ∈ R8, we compare two
assimilation strategies for applying the EnKF.

• Simultaneous: We apply the EnKF to the inverse problem

z = G(u) + ε,

where G maps (U0, L) to the states (U(t1), I(t1), . . . , U(t4), I(t4)) ∈ R8. Thus, we
perform one EnKF update using all the available data at once, resulting in one EnKF
analysis ensemble.

• Sequential : We apply the EnKF to the inverse problem

zn = Gn(u) + εn, n = 1, . . . , 4,

where Gn maps (U0, L) to the state (U(tn), I(tn)) ∈ R2. In particular, we will perform
four EnKF updates using at each update only the corrupted data zn = (U(tn) +
ε2n−1, I(tn) + ε2n). This yields, for each update, one EnKF analysis ensemble which,
in turn, serves as the initial ensemble for the next update.

Again we use two different data sets z, z̃,1 obtained by two realizations of ε given the
solution of (17) for U0 = 0.75, R = 0.5, L = 1.5, C = 0.5.

The resulting posteriors and EnKF analysis ensembles for the simultaneous and sequential
update are presented in Figure 6. We observe again that, for different data sets, the EnKF
results in an ensemble which follows a distribution which is, in one case, quite close to, and
in the other, quite far away from, the true posterior distribution. Interestingly, the difference
between the two updating schemes does not seem to be too large. This also holds true for the
means of the EnKF analysis ensembles when compared to the true posterior means in Table 1
for both data sets z and z̃.

Finally, we are again interested in the marginals of the posterior and the associated his-
tograms of the EnKF analysis ensembles which give us a rough impression of the difference

1z = (0.505, 0.237, 0.014, 0.096, 0.036, 0.011,−0.002,−0.003), z̃ = (0.265, 0.066, 0.058, 0.002, 0.021, 0.012,
0.007, −0.01).
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Figure 6. Contours of the logarithm of the negative log posterior density and locations of 1000 members of
the analysis EnKF ensembles resulting from simultaneous and sequential updating for the two different sets z
and z̃ of observation data.

Table 1
Means of the EnKF analysis ensembles and corresponding true posterior means for data z (left) and z̃

(right).

Update EnKF mean Posterior mean EnKF mean Posterior mean
for data z for data z for data z̃ for data z̃

1 (0.42, 1.56) (0.42, 2.42) (0.27, 2.25) (0.35, 2.61)
2 (0.44, 1.53) (0.39, 2.36) (0.20, 2.20) (0.32, 2.56)
3 (0.43, 1.59) (0.38, 2.34) (0.19, 2.26) (0.31, 2.52)
4 (0.43, 1.59) (0.38, 2.32) (0.19, 2.24) (0.30, 2.50)

Simultaneous (0.58, 1.84) (0.38, 2.32) (0.38, 2.40) (0.30, 2.50)

between the distribution of the analysis variable and the true posterior. In Figure 7 we com-
pare both marginals for the fourth update and the simultaneous analysis ensemble for both
data sets. The distribution of the simultaneous EnKF analysis ensemble should not depend on
the data, whereas the distribution of the final EnKF analysis ensemble for the sequential up-
dating clearly does in this example. This is certainly caused by the nonlinearity of the forward
map G: In the sequential updating the former analysis variable Ua

n serves as the initial one
for the current update step n+1; therefore, the difference in the mean of the former analysis
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Figure 7. Posterior marginals and relative frequencies of the final EnKF analysis ensembles in u1, u2 for
z (left group) and z̃ (right group).

variables Ua
n , Ũ

a
n for different data sets z, z̃ might yield different forecast RVs G(Ua

n), G(Ũa
n)

due to the nonlinearity of G, which yields different next analysis variables Ua
n+1, Ũ

a
n+1.

6. Conclusions. We have given a detailed analysis of two recently popularized generalized
Kalman filtering methods, the EnKF and PCKF, applied to nonlinear (stationary) Bayesian
inverse problems. We recalled the Bayesian approach to inverse problems and its solution, the
posterior measure, in a Hilbert space setting, for which we slightly generalized existing results
concerning the well-posedness of Bayesian inverse problems. To characterize Kalman filtering
methods in the Bayesian framework we related these to Bayes estimators and highlighted the
distinction between the two objectives of inference and identification in Bayesian inversion,
which are realized by the posterior measure and Bayes estimators, respectively. We then
proved the convergence of the approximations provided by the EnKF and PCKF to what we
have dubbed the analysis random variable in the limit of large ensemble and large polynomial
degree, respectively, reaffirming the fact that both methods are merely different numerical
discretizations of the same updating scheme for RVs. Moreover, the relation of both KF
methods to a specific Bayes estimator, the linear posterior mean estimator, followed from
the fact that the analysis variable is simply the associated Bayes estimate plus the random a
priori error of the Bayes estimator. In particular, the analysis variable does not, in general,
follow the posterior distribution. The conclusion of this work is that the EnKF and PCKF
are methods suited for identification which provide additional statistical information in the
form of the random a priori estimation error, but they are not appropriate methods for
rigorous inference in the sense of the conditional or posterior measure. Several carefully
chosen numerical examples were given to illustrate these basic differences.
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