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Abstract We provide a brief introduction to Bayesian inverse problems and
Bayesian estimators emphasizing their similarities and differences to the classical
regularized least-squares approach to inverse problems. We then analyze Kalman
filtering techniques for nonlinear systems, specifically the well-known Ensemble
Kalman Filter (EnKF) and the recently proposed Polynomial Chaos Expansion
Kalman Filter (PCE-KF), in this Bayesian framework and show how they relate
to the solution of Bayesian inverse problems.

1 Introduction

In recent years the interest and research activity in uncertainty quantification (UQ)
for complex systems modelled by partial differential equations (PDEs) has increased
significantly. This is due both to growing available computing resources as well as
new efficient numerical methods for high-dimensional problems, which together
make the solution of UQ problems associated with PDEs feasible. The motivation
driving UQ is the simple fact that, in practical applications, we usually do not know
parameters, coefficients or even boundary conditions for the PDE model under con-
sideration exactly. A typical example are material properties such as conductivity.
At the same time, we may still have some knowledge about possible values for these
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uncertain input data, e.g., the hydraulic conductivity of layered clay may be between
10−6 and 10−4 cm/s. A careful simulation would take into account the uncertainty
in the input data and quantify the resulting uncertainty in the output of the physical
or PDE model. Although there are also other mathematical techniques for model-
ing uncertainty such as fuzzy set theory or interval arithmetic, we focus here on the
probabilistic approach.

Initially, the main interest has been in solving the forward problem, in which one
is given the probability law of uncertain data u ∼ µ with the goal of computing
the corresponding law of a quantity of interest φ = F(u), where F represents the
composition of solving a PDE and evaluating a functional of its solution. Current
numerical methods for this task include, e.g., multilevel Monte Carlo, stochastic
Galerkin and stochastic collocation methods, proper orthogonal decomposition, and
Gaussian process emulators.

Within UQ, the more fundamental task is to develop a good probability law for
the unknown quantity u reflecting our (possibly subjective) knowledge of u, since
this determines the outcome. In general, transforming expert knowledge and physi-
cal reasoning into a probability distribution is a subtle and quite difficult task. More-
over, incorporating any available information about the unknown into the probability
law is desirable, since this will, in general, reduce our uncertainty and lead to im-
proved models. For this reason the inverse problem has received increased attention
in the UQ community.

Specifically, given noisy data z=G(u)+ε , the task is to either identify u or make
inferences, i.e., refine an initial model of u. Here we want to distinguish between
identification, i.e., determining a value u which best explains the data, and inference,
i.e., updating our understanding or belief about u based on the new information z.

The latter is more interesting for UQ purposes, since adjusting prior probability
models of the unknown according to indirect data yields an improved uncertainty
model for u, whereas identification would merely provide a certain best estimate
with no indication of how well this estimate is determined.

In the probabilistic setting, incorporating new information into a given prior
model (i.e., a prior random variable or probability measure), is performed by condi-
tioning this model on the available information, resulting in a conditional measure.
The procedure of conditioning, and thus also the conditional measure or distribu-
tion, are rooted in Kolmogorov’s fundamental concept of conditional expectation.
In particular, Bayes’ rule provides an analytic expression for the conditional mea-
sure in terms of the prior measure and provides the main tool in Bayesian inference
as well as Bayesian inverse problems.

Since Bayesian inverse problems have gained much attention in the scientific
computing community in the last few years, numerous algorithms and numerical
methods have been proposed for their solution. We provide a short overview of ex-
isting methods and focus on the Kalman Filter and two of its variants, namely the
Ensemble Kalman Filter [16] and the Polynomial Chaos Expansion Kalman Filter
[35], which have recently proposed for UQ in association with inverse problems. In
particular, we investigate what these Kalman filtering methods are actually comput-
ing and how they relate to Bayesian inverse problems and Bayes estimators. Thus,
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our main purpose is to clarify which quantities Kalman filters can and cannot ap-
proximate.

The remainder of this paper is organized as follows: Section 2 briefly recalls the
deterministic and Bayesian approaches to inverse problems and provides a short
overview of computational methods. In Section 3 we consider Kalman filtering
methods and analyze these in the light of Bayes estimators. In particular, we show
that these filtering methods approximate a random variable which is, in general, not
distributed according to the desired posterior measure. Moreover, we illustrate the
performance of Kalman filters and the difference between their output and the so-
lution of the Bayesian inverse problem for a simple 1D boundary value problem in
Section 4. A summary and conclusions are given in Section 5.

2 Bayesian Approach to Inverse Problems

In this section we introduce the setting and notation for the inverse problem and
recall the basic concepts of the classical regularized least-squares and the Bayesian
approaches.

Throughout the article, | · | shall denote the Euclidean norm on Rk, ‖ ·‖ the norm
on a general separable Banach space (X ,‖ · ‖), X ∗ the topological dual of X and
Y a second separable Banach space.

We consider the abstract inverse problem of identifying an unknown u∈X given
finite-dimensional but noisy observations z ∈ Rk according to the model

z = G(u)+ ε (1)

containing an observation operator G : X → Rk and measurement noise ε ∈ Rk.

Example 1 (Elliptic PDE). Consider the problem of determining the logarithm
κ ∈ C(D) of the conductivity exp(κ) of an incompletely known porous medium
occupying a bounded domain D ⊂ Rd given observations of the pressure head p at
several locations in the domain of a fluid in stationary flow through the medium.
The relation between κ and p can be modelled by, e.g.,

−∇ · (eκ
∇p) = f on D, p|∂D = 0. (2)

Here the unknown is u = κ and the observation operator G is the mapping κ 7→
(p(x1), . . . , p(xk)) for given measurement locations xi ∈ D, i = 1, . . . ,k.

Example 2 (Discrete dynamics). Consider a discrete-time dynamical system {yn}n∈N0
with state evolution equation

yn+1 = hn(yn), y0 = x ∈ RN ,

where hn : RN → RN governs the (deterministic) dynamics driving the system at
step n. Suppose we observe J noisy states
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zn j = yn j + ε j, j = 1, . . . ,J, 0 < n1 < · · ·< nJ ,

and wish to infer from these the unknown initial state u = x. Setting G j = h0 ◦ · · · ◦
hn j−1 and G := (G1, . . . ,GJ), we arrive at a problem of the form (1). By extending
the unknown u to the vector (yn0 ,yn1 , . . . ,ynJ ) one may also infer J additional states.

Remark 1. Identification problems for dynamical systems with sequentially arriving
data call for special, efficient sequential methods for solving (1). These are methods
for computing the solution for z = (zn1 , . . . ,znJ )

> based only on the solution for
(zn1 , . . . ,znJ−1)

> and the current observation znJ . For brevity, we omit considerations
of sequentiality in this work.

2.1 Deterministic Identification for Inverse Problems

Solving (1) by determining u = G−1(z) is usually not an option since ε 6= 0 gen-
erally results in z /∈ G(X ). Moreover, the more general least-squares formulation
u = argminv∈X |z−G(v)|2 is typically ill-posed, as u may depend discontinuously
on z and is often heavily underdetermined. Making (1) mathematically tractable is
usually achieved by some form of regularization, which, generally speaking, in-
volves the incorporation of additional prior information on u and ε . A comprehen-
sive introduction to the regularized least-squares approach to inverse problems is
given in [10]. We briefly summarize this approach for nonlinear G here.

The conceptual starting point for the deterministic approach is the noise-free
model z† =G(u), i.e., z= z†+ε . Since we want to identify the element u∈X which
led to the observations z, it is reasonable to assume that the “true”, unpolluted data
z† lies in the range of G. Thus we assume the existence of u† ∈X such that G(u†) =
z†. This is sometimes called the attainability assumption [11]. Next, we introduce
a penalty or regularizing functional R : X → [0,∞] and define an R-minimizing
solution to z† = G(u) to be any element u∗ ∈X which satisfies

R(u∗) = min
{

R(u) : u ∈X , G(u) = z†} . (3)

Note that u∗ need not be unique. Furthermore, the choice of R is significant and
reflects prior assumptions about u. Often R is taken to be convex. A common choice
for R is, e.g., R(u) = ‖u−uref‖2, where uref ∈X is a given reference state known
to lie in the vicinity of the solution. For a broader discussion of different penalty
functionals we refer to [36].

However, since only polluted data z = z† + ε is available, we can only ask for an
approximation of u∗ which should improve with diminishing noise ε . This approxi-
mation is the regularized solution ûα given by

ûα = argmin
u∈X

|z−G(u)|2 +αR(u), (4)
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where α ∈ [0,∞) serves as a regularization parameter to be chosen wisely. If further
smoothness assumptions on u∗ and G are satisfied and if α is chosen as a suitable
function α = α(δ ) of the noise level |ε| ≤ δ , then convergence rate bounds such as

‖ûα(δ )−u∗‖= O(
√

δ ) as δ → 0

can be obtained [11]. These rates are typically based on explicit error estimates
such as ‖ûα(δ )− u∗‖ ≤ C(α)

√
δ for the above result. For further analysis of the

smoothness requirements on u∗ and related convergence rates see, e.g., [23] and, for
appropriate choices α = α(δ ), see, e.g., [1] and the references therein.

2.2 The Bayesian Inverse Problem

Recall that, in order to regularize the usually ill-posed least-squares formulation
of the inverse problem (1), we incorporated additional prior information about the
desired u into the (deterministic) identification problem by way of the regularization
functional R. A further possibility for regularization is to restrict u to a subset or
subspace X̃ ⊂X , e.g., by using a stronger norm of u− uref as the regularization
functional. Speaking very broadly, the Bayesian approach stems from yet another
way of modelling prior information on u and adding it to the inverse problem. In
this case we express our prior belief about u through a probability distribution µ0
on the Banach space X , by which a quantitative preference of some solutions u
over others may be given by assigning higher and lower probabilities. However, the
goal in the Bayesian approach is not the identification of a particular u ∈X , but
rather inference on u, i.e., we would like to learn from the data in a statistical or
probabilistic fashion by adjusting our prior belief µ0 about u in accordance with
the newly available data z. The task of identification may also be achieved within
the Bayesian framework through Bayes estimates and Bayes estimators, which are
discussed in Section 2.3.

The Bayesian approach to the inverse problem (1) thus differs conceptually from
the regularized least-squares approach as summarized above in that its objective is
inference rather than identification. As stated in [24], the Bayesian approach1 is
based on the following four principles:

1. All quantities occurring in (1) are modelled as random variables.
2. The randomness describes our degree of information concerning their realiza-

tions.
3. This degree of information concerning these values is encoded in probability

distributions.
4. The solution of the inverse problem is the posterior probability distribution.

In the Bayesian setting we therefore replace our model (1) in the following with

1 This is referred to in [24] as the statistical inversion approach.
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Z = G(U)+ ε, (5)

where ε and hence Z are both random variables on Rk while U is a random variable
on X whose posterior probability distribution given the available observations Z =
z is to be determined. Before giving a precise definition of the posterior distribution
we require some basic concepts from probability theory.

2.2.1 Probability Measures and Random Variables

Let (Ω ,F ,P) denote a probability space. We denote by B(X ) the Borel σ -
algebra of X generated by the open sets in X w.r.t. ‖ · ‖. A measurable map-
ping X : (Ω ,F )→ (X ,B(X )) is called a random variable (RV) and the measure
PX := P◦X−1, i.e., PX (A) = P(X−1(A)) for all A ∈B(X ), defines the distribution
of X as the push-forward measure of P under X . Conversely, given a probability
measure µ on (X ,B(X )), then X ∼ µ means PX = µ . By σ(X)⊂F we denote
the σ -algebra generated by X , i.e., σ(X) = {X−1(A) : A ∈B(X )}.

The Bochner space of p-integrable X -valued RVs, i.e., the space of RVs X :
Ω →X such that

∫
Ω
‖X(ω)‖pP(dω)< ∞, is denoted by Lp(Ω ,F ,P;X ) or sim-

ply Lp(X ) when the context is clear.
An element m ∈X is called the mean of a RV X if for any f ∈X ∗ there holds

f (m) =E[ f (X)]. Here and in the following E denotes the expectation operator w.r.t.
P. If X ∈ L1(Ω ,F ,P;X ) then its mean is given by m = E[X ] =

∫
Ω

X(ω)P(dω).
An operator C : Y ∗ →X is called the covariance of two RVs X : Ω →X and
Y : Ω → Y if it satisfies f (Cg) = E

[
f (X −E[X ])g(Y −E[Y ])

]
for all f ∈X ∗ and

g ∈ Y ∗. We denote the covariance of X and Y by Cov(X ,Y ) and, if X = Y , simply
by Cov(X).

Besides normed vector spaces of RVs we will also work with metric spaces of
probability measures. One notion of distance between measures is the Hellinger
metric dH : given two probability measures µ1 and µ2 on the Banach space X , it is
defined as

dH(µ1,µ2) :=

∫
X

(√
dµ1

dν
(u)−

√
dµ2

dν
(u)

)2

ν(du)

1/2

,

where ν is a dominating measure of µ1 and µ2, e.g., ν = (µ1 + µ2)/2. Note that
the definition of the Hellinger metric is independent of the dominating measure. For
relations of the Hellinger metric to other probability metrics such as total variation
distance or the Wasserstein metric, we refer to [17].

In the following, we will use upper case latin letters such as X , Y , Z, U to denote
RVs on Banach spaces and lower case latin letters like x, y, z, u for elements in these
Banach spaces or realizations of the associated RVs, respectively. Greek letters such
as ε will be used to denote RVs on Rk as well as their realizations.
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2.2.2 Conditioning

Bayesian inference consists in updating the probability distribution encoding our
prior knowledge on the unknown U to a new probability distribution reflecting a
gain in knowledge due to new observations. There are certain subleties associated
with the probabilistic formulation of this transition from prior to posterior measure,
and we take some care in this section to point these out.

The distribution of the RV U , characterized by the probabilities P(U ∈ B) for
B ∈B(X ), quantifies in stochastic terms our knowledge about the uncertainty as-
sociated with U . When new information becomes available, such as knowing that the
event Z = z has occurred, this is reflected in our quantitative description as the “con-
ditional distribution of U given {Z = z}”, denoted P(U ∈ B|Z = z). Unfortunately,
P(U ∈ B|Z = z) cannot be defined in an elementary fashion when P(Z = z) = 0, in
which case the conditional distribution is defined by an integral relation. The key
concept here is that of conditional expectation.

Given RVs X ∈ L1(Ω ,F ,P;X ) and Y : Ω → Y , we define the conditional ex-
pectation E[X |Y ] of X given Y as any mapping E[X |Y ] : Ω →X with the following
two properties:

1. E[X |Y ] is σ(Y )-measurable.
2. For any A ∈ σ(Y ) there holds∫

A
E[X |Y ] P(dω) =

∫
A

X P(dω).

Note that, since it is defined by an integral relation, the RV E[X |Y ] is determined
only up to sets of P-measure zero and is thus understood as an equivalence class of
such mappings. By the Doob-Dynkin Lemma (cf. [25, Lemma 1.13]) there exists a
measurable function φ : Y →X such that E[X |Y ] = φ(Y ) P-almost surely. Again,
we note that this does not determine a unique function φ but an equivalence class of
measurable functions, where φ1 ∼ φ2 iff P(Y ∈ {y ∈Y : φ1(y) 6= φ2(y)}) = 0. For a
specific realization y of Y (and a specific φ ), we also denote the function value by

E[X |Y = y] := φ(y) ∈X .

Setting X = 1{U∈B}, one can, for each fixed B ∈B(X ), define

E[1{U∈B}|Z = z] =: P(U ∈ B|Z = z) (6)

as an equivalence class of measurable functions Rk → [0,1]. One would like to
view this, conversely, as a family of probability measures with the realization z
as a parameter, giving the posterior distribution of U resulting from having made
the observation Z = z. Unfortunately, this construction need not, in general, yield
a probability measure for each fixed value of z (cf. [33]). In case X is a separable
Banach space, a function

Q : B(X )×Rk→ R
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can be shown to exist (cf. e.g., [33]) such that

(a). For each z ∈ Rk, Q(·,z) is a probability measure on (X ,B(X )),
(b). for each B ∈B(X ) the function

Rk 3 z 7→ Q(B,z)

is a representative of the equivalence class (6), i.e., it is measurable and there
holds

P(U ∈ B,Z ∈ A) =
∫

A
Q(B,z) PZ(dz) ∀A ∈B(Rk).

Such a function Q, also denoted by µU |Z , is called the regular conditional distri-
bution of U given Z and is defined uniquely up to sets of z-values of PZ-measure
zero. We have thus arrived at a consistent definition of the posterior probability
P(U ∈ B|Z = z) as µU |Z(B,z).

It is helpful to maintain a clear distinction between conditional and posterior
quantities: the former contain the – as yet unrealized – observation as a parameter,
while in the latter the observation has been made. Specifically, µU |Z is the con-
ditional measure of U conditioned on Z, whereas µU |Z(·,z) denotes the posterior
measure of U for the observation Z = z.

2.2.3 Bayes’ Rule and the Posterior Measure

We make the following assumptions for the model (5).

Assumption 1

1. U ∼ µ0, ε ∼ µε and (U,ε)∼ µ0⊗µε , i.e., U and ε are independent.
2. µε = ρ(ε)dε where ρ(ε) =Ce−`(ε) with C > 0 and ` : Rk→R+

0 measurable and
nonnegative. Here dε denotes Lebesgue measure on Rk.

3. G : X → Rk is continuous.

Throughout we assume µ0(X ) = 1 and µε(Rk) = 1. By Assumption 1, the distri-
bution µZ of Z in (5) is determined as µZ =Cπ(z)dz where C > 0 and

π(z) :=
∫

X
e−`(z−G(u))

µ0(du).

Note that π(z) is well-defined since |e−`(z−G(u))| ≤ 1 and π ∈ L1(Rk) due to Fubini’s
theorem [25, Theorem 1.27]. In particular, we have that (U,Z)∼ µ with µ(du,dz) =
Ce−`(z−G(u)) µ0(du)⊗dz where dz again denotes Lebesgue measure on Rk. Further,
we define the potential

Φ(u;z) := `(z−G(u))

and assume the following to be satisfied.
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Assumption 2

1. The potential Φ is continuous w.r.t. z in mean-square sense w.r.t. µ0, i.e, there
exists an increasing function ψ : [0,∞)→ [0,∞) with lims→0 ψ(s) = ψ(0) = 0
such that ∫

X
|Φ(u;z)−Φ(u;z′)|2 µ0(du)≤ ψ(|z− z′|).

For instance, there may exist a function θ ∈ L2(X ,B(X ),µ0;R) such that

|Φ(u;z)−Φ(u;z′)| ≤ θ(u)ψ(|z− z′|).

2. There holds π(z)> 0 for all z ∈ Rk.

Before stating the abstract version of Bayes’ Rule in Theorem 1, we recall the finite-
dimensional case X 'Rn where it can be stated in terms of densities: here µ0(du)=
π0(u)du and Bayes’ rule takes the form

π
z(u) =

1
π(z)

exp(−Φ(u;z))π0(u)

where e−Φ(u;z) = e−`(z−G(u)) represents the likelihood of observing z when fixing
u. The denominator π(z) can be interpreted as a normalizing constant such that∫
X πz(u)du = 1. We now show that, in the general setting, Bayes’ rule yields (a

version of) the (regular) conditional measure µU |Z of U w.r.t. Z.

Theorem 1 (cf. [42, Theorems 4.2 and 6.31] ). Let Assumptions 1 and 2 be satisfied
and define for each z ∈ Rk a probability measure on (X ,B(X )) by

µ
z(du) :=

1
π(z)

exp(−Φ(u;z)) µ0(du). (7)

Then the mapping Q : B(X )×Rk given by

Q(B,z) := µ
z(B) ∀B ∈B(X )

is a regular conditional distribution of U given Z. We call µz the posterior measure
(of U given Z = z). Moreover, µz depends continuously on z w.r.t. the Hellinger
metric, i.e., for any z1,z2 ∈ Rk with |z1− z2| ≤ r there holds

dH(µ
z1 ,µz2)≤Cr(z1)ψ(|z1− z2|),

where Cr(z1) =C(1+min{π(z′) : |z1− z′| ≤ r}3)−1 <+∞.

Proof. Continuity with respect to the Hellinger metric is a slight generalization of
[42, Theorem 4.2] and may be proved in the same way with obvious modifications.
To show that Q is a regular conditional distribution we verify the two properties (a)
and (b) given in Section 2.2.2. The first follows from the construction of µz. For the
second property, note that measurability follows from continuity. The continuity of
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µz w.r.t. z in the Hellinger metric implies also that µz(B) depends continuously on z
due to the relations between Hellinger metric and total variation distance (see [17]).
Finally, we have for any A ∈B(Rk) and B ∈B(X ) that

P(U ∈ B,Z ∈ A) =
∫

A×B
µ(du,dz) =

∫
A

∫
B

Ce−`(z−G(u))
µ0(du)dz

=
∫

A
Cπ(z)Q(B,z)dz =

∫
A

Q(B,z) PZ(dz)

which completes the proof. ut

Remark 2. We wish to emphasize that Theorem 1 and Assumption 2 show in detail
the connection between the smoothness of the potential Φ(u;z) = `(z−G(u)) and
the continuity of the posterior µz w.r.t. z for a general prior µ0 and an additive error
ε with Lebesgue density proportional to e−`(ε). Roughly speaking, the negative log-
likelihood ` and the posterior µz share the same local modulus of continuity. This
generalizes the results in [42] in that we allow for non-Gaussian priors µ0 and errors
ε .

Thus, under mild conditions, the Bayesian inverse problem is well-posed. It is
also possible to prove continuity of µz w.r.t. to the forward map G, see [42, Section
4.4], which is crucial when the forward map G is realized by numerical approxima-
tion.

To give meaning to the mean and covariance of U ∼ µ0 and Z = G(U)+ ε , we
make the further assumption that all second moments exist:

Assumption 3 There holds∫
X

( ‖u‖2 + |G(u)|2 ) µ0(du)<+∞ and
∫
Rk
|ε|2 µε(dε)<+∞.

2.3 Bayes Estimators

Although the posterior measure µz is by definition the solution to the Bayesian in-
verse problem, it is, in general, by no means easy to compute in practice. In special
cases, e.g., when G is linear and µ0 and µε are Gaussian measures, closed-form ex-
pressions for µz are available, but in general µz can only be computed in an approx-
imate sense, see also Section 2.4. Moreover, when the dimension of X is large or
infinite, visualizing, exploring or using µz for postprocessing are demanding tasks.

Other, more accessible quantities from Bayesian statistics, [3] which are also
more similar to the result of deterministic parameter identification procedures than
the posterior measure, are point estimates for the unknown u. In the Bayesian setting
a point estimate is a “best guess” û of u based on posterior knowledge. Here “best” is
determined by a cost function c : X →R+ satisfying c(0) = 0 and c(u)≤ c(λu) for
any u∈X and λ ≥ 1. This cost function describes the loss or costs c(u− û) incurred



Bayesian Inverse Problems and Kalman Filters 11

when û is substituted for (the true) u for post processing or decision making. Note
that also more general forms of a cost function are possible, see, e.g., [2, 3].

For any realization z ∈ Rk of the observation RV Z we introduce the (posterior)
Bayes cost of the estimate û w.r.t. c as

Bc(û;z) :=
∫

X
c(u− û) µ

z(du),

and define the Bayes estimate û as a minimizer of this cost, i.e.,

û := argmin
u′∈X

Bc(u′;z),

assuming that such a minimizer exists. The Bayes estimator φ̂ : Rk→X is then the
mapping which assigns to an observation z the associated Bayes estimate û, i.e.,

φ̂ : z 7→ argmin
u′∈X

Bc(u′;z) .

We assume measurability of φ̂ in the following. Note that φ̂ is then also the mini-
mizer of the (prior) Bayes cost

Bc(φ̂) :=
∫
Rk

Bc(φ̂(z);z)µZ(dz) = E
[
Bc(φ̂(Z);Z)

]
,

i.e., there holds
E
[
Bc(φ̂(Z);Z)

]
≤ E [Bc(φ(Z);Z)]

for any other measurable φ : Rk→X .

Remark 3. Since φ̂ = argminφ Bc(φ) it is possible to determine the estimator φ̂ and
thereby also the estimate û = φ̂(z) for a given z without actually computing the pos-
terior measure µz, as the integrals in Bc(φ̂) are w.r.t. the prior measure. Therefore,
Bayes estimators are typically easier to approximate than µz.

We now introduce two very common Bayes estimators: the posterior mean estimator
and the maximum a posteriori estimator.

2.3.1 Posterior Mean Estimator

For the cost function c(u) = ‖u‖2 the posterior Bayes cost

Bc(û;z) =
∫

X
‖u− û‖2

µ
z(du)

is minimized by the posterior mean û = uCM :=
∫
X u µz(du). The corresponding

Bayes estimator for c(u) = ‖u‖2 is then given by
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φ̂CM(z) :=
∫

X
u µ

z(du).

There holds in particular φ̂CM(Z) = E[U |Z] P-almost surely.

Remark 4. If X ' Rn and µz is unimodal, then the posterior mean minimizes∫
X c(u− û) µz(du) for any symmetric, convex cost function c, see [28, 40].

Recall that, E[U |Z] is the best approximation of U in L2(Ω ,σ(Z),P;X ) w.r.t.
the norm in L2(Ω ,F ,P;X ). Hence, the Bayes estimator φ̂CM(Z) = E[U |Z] repre-
sents the best L2-approximation to U w.r.t. the information σ(Z) available from the
observation process Z.

2.3.2 Maximum a Posteriori Estimator

Another common estimator in Bayesian statistics is the maximum a posteriori
(MAP) estimator φ̂MAP. For finite-dimensional X ' Rn and absolutely continuous
prior µ0, i.e., µ0(du) = π0(u)du, the MAP estimate is defined as

φ̂MAP(z) = argmin
u∈Rn

Φ(u,z)− logπ0(u)

provided the minimum exists for all z ∈ Rk. For the definition of the MAP estimate
via a cost function and the Bayes cost, we refer to the literature, e.g., [27, Section
16.2]; for MAP estimates in infinite dimensions, we refer to [8].

There is an interesting link between the Bayes estimator φ̂MAP and the so-
lution of the associated regularized least-squares problem: If R : Rn → [0,∞)
is a regularizing functional which satisfies

∫
Rn R(u)du < +∞, then the solution

ûα = argmin |z−G(u)|2 + αR(u) corresponds to the MAP estimate φ̂MAP(z) for
ε ∼ N(0,σ2I) and µ0(du) ∝ exp(− α

σ2 R(u)) du.

2.4 Computational Methods for Bayesian Inverse Problems

We summarize the most common methods for computing the posterior measure and
Bayes estimators, referring to the cited literature for details .

In finite dimensions X 'Rn and in the case of conjugate priors, see, e.g., [20], the
posterior density is available in closed form since in this case the product of the prior
density and the likelihood function belongs to the same class of probability densities
as the prior. Therefore only the parameters of the posterior need to be computed, and
for these analytical formulas are often available.

Aside from these special cases µz can only be approximated — but how may a
probability distribution, possibly on an infinite-dimensional space, be approximated
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computationally? Perhaps the simplest and most natural idea is to generate sam-
ples distributed according to the posterior measure. A well-known method for this
purpose is the Markov Chain Monte Carlo method (MCMC). The idea here is to
construct a Markov chain with the posterior measure as its stationary resp. limiting
distribution. If such a chain is run sufficiently long, it will yield (correlated) samples
which are asymptotically distributed according to the posterior measure. For details
we refer to [19] and, for the underlying theory of Markov chains, to [30]. The com-
putational efficiency of the chain mainly depends on its transition kernel. Recently,
much research has been devoted towards constructing good kernels. We mention [7]
for MCMC suited to very high and even infinite dimensions, to [18] for the idea of
adapting the kernel to geometrical features of the posterior and to [29], where this
idea is realized by a transition kernel derived from the Gauss-Newton-method.

Besides MCMC another common Bayesian method are particle filters [24, Sec-
tion 4.3]. Here samples are generated according to the prior and all samples are
assigned initially equal weights. Then, in an updating step, the weights are modified
according to the posterior distribution. A further extension, Gaussian mixture filters
[41], approximate the posterior density by a weighted mean of Gaussian kernels lo-
cated at samples/particles. Here, in addition to the weights, also the location of the
particles are modified according to the posterior.

A further technique for sampling from the posterior is presented in [9]: here
a mapping F : X →X is constructed in such a way that F(U) ∼ µz for a ran-
dom variable U ∼ µ0. Given F , which is obtained by solving an optimal transport
problem, samples according to µz can then easily be generated by evaluating F for
samples from the prior.

For the posterior mean, the immediate computational method is numerical inte-
gration w.r.t. µz(du) or e−Φ(u;z)µ0(du). A Monte Carlo integration is again per-
formed by averaging samples generated by a suitable Markov chain. Recently,
sparse quadrature methods based on known quadrature rules for µ0 have been in-
vestigated, see [37, 38]. Due to assumed smoothness of the likelihood e−Φ(u;z) w.r.t.
u, these methods can yield faster convergence rates than Monte Carlo/MCMC inte-
gration and are also suited to infinite dimensions.

Alternatively, the corresponding Bayes estimator φCM could be approximated,
e.g., by linear functions, and simply evaluated for the observational data. We return
to this approach in Section 3.3 and show that Kalman filters may be viewed as
approximation methods of this type.

Computing the MAP estimate is, by construction, a minimization problem for the
posterior density and related to classical Tikhonov regularization. Therefore, meth-
ods from numerical optimization and computational inverse problems, respectively,
can be applied here [10, 44]. Note that in numerical weather prediction the pop-
ular methods 3DVar and 4DVar are precisely computations of the MAP estimate.
The difference between both is that 3DVar treats the typically sequential data recur-
sively, while 4DVar performs the optimization w.r.t. the entire data set at once, see
also [28].
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3 Analysis of Kalman Filters for Bayesian Inverse Problems

In this section we consider Kalman filters and their application to the nonlinear
Bayesian inverse problem (5). We begin with the classical Kalman filter for state
estimation in linear dynamics and then consider two generalizations to the nonlin-
ear setting which have been recently proposed for UQ in inverse problems. We show
that both methods can be understood as discretizations of the same updating scheme
for a certain RV and analyze the properties of this updated variable, thereby charac-
terizing the properties of the approximations provided by the two filtering methods.
In particular, we show that Kalman filters do not solve of the nonlinear Bayesian
inverse problem, nor can they be justified as approximations to its solution. They
are, rather, related to the linear approximation of the Bayes estimator φLCM and its
estimation error.

3.1 The Kalman Filter

The Kalman filter [26] is a well-known method for sequential state estimation for in-
completely observable, linear discrete-time dynamics, see, e.g., [6, 39] for a broader
introduction and discussion. Thus, the Kalman filter may be applied to systems of
the form

Un = AnUn−1 +ηn, Zn = GnUn + εn, n = 1,2, . . . (8)

where Un denotes the unknown, unobservable state and Zn the observable process at
time n, and where U0, ηn and εn are mutually independent RVs. The operators An
and Gn are linear mappings in state space and from state to observation space, re-
spectively. For the noises ηn and εn, zero mean and given covariances Γn and Σn, re-
spectively, are assumed. Then, given observations Z1 = z1, . . . ,Zn = zn of the process
Z, the state Un is to be inferred. Assume an initial guess û0 of the unknown U0 with
minimal variance trace(E0) where E0 := Cov(U0− û0) denotes the error covariance
of the estimate û0. Then the Kalman filter results in recursive equations for the min-
imum variance estimates ûn of Un and their error covariances En := Cov(Un− ûn).

Although the main advantage of the Kalman filter is its sequential structure which
allows for a significant reduction of computational work (see [42, Section 5.3] for
a nice discussion on this topic) we will apply the Kalman filter to our stationary
inverse problem

Z = GU + ε, U ∼ N(m0,C0), ε ∼ N(0,Σ), (9)

which is, of course, only a special case of the system (8) in that there are no dynam-
ics, An ≡ I, ηn ≡ 0 and only a single update n = 1. If we take û0 = m0 as the initial
guess this yields E0 =C0 and the Kalman filter yields the updates



Bayesian Inverse Problems and Kalman Filters 15

û1 = û0 +K(z−Gû0), E1 = E0−KGE0

where K = E0G∗(GE0G∗+Σ)−1 is the well-known Kalman gain.
In the Gaussian case (9), for which (U,Z) is a jointly Gaussian RV, the posterior

measure µz is again Gaussian, i.e., µz = N(mz,Cz). Moreover, the posterior mean
mz and the posterior covariance Cz are given by

mz = m0 +K(z−Gm0), Cz =C0−KGC0,

where K = C0G∗(GC0G∗+Σ)−1. Thus, for (9) the Kalman filter is seen to yield
the solution of the Bayesian inverse problem by providing the posterior mean and
covariance. However, we emphasize that the Kalman filter does not directly ap-
proximate the posterior measure. The filter provides estimates and error covariances
which, in the Gaussian case, coincide with the posterior mean and covariance which,
in turn, uniquely determine a Gaussian posterior measure. Whenever the linearity of
G or Gaussianity of the prior U ∼ µ0 or noise ε ∼ N(0,Σ) do not hold, then nei-
ther does the Kalman filter yield the first two posterior moments nor is the posterior
measure necessarily Gaussian. We will return to the interpretation of the Kalman
filter for linear G but non-Gaussian U or ε in Section 3.3.

3.2 Kalman Filter Extensions for Nonlinear Inverse Problems

Besides the extended Kalman filter (EKF), which is based on linearizations of the
nonlinear forward map G but which we shall not consider here, a widely used
method for nonlinear systems is the Ensemble Kalman Filter (EnKF) introduced
by Evensen [13]. In addition, a more recent development, the Polynomial Chaos
Expansion Kalman Filter (PCE-KF) developed by Matthies et al. [32, 34, 35] can
also be applied to the nonlinear inverse problem (5).

3.2.1 The Ensemble Kalman Filter

Since its introduction in 1994, the EnKF has been investigated and evaluated in
many publications [14, 5, 15, 16, 31]. However, the focus is usually on its applica-
tion to state or parameter estimation rather than solving Bayesian inverse problems.
Recently, the interest in the EnKF for UQ in inverse problems has increased, see,
e.g., [21, 22, 27].

If we consider Z = G(U)+ ε with U ∼ µ0 and ε ∼ µε and given observations
z ∈ Rk, the EnKF algorithm proceeds as follows:

1. Initial ensemble: Generate samples u1, . . . ,uM of U according to µ0.
2. Forecast: Generate samples z1, . . . ,zM of Z by

z j = G(u j)+ ε j, j = 1, . . . ,M,
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where ε1, . . . ,εM are samples of ε according to µε .
3. Analysis: Update the inital ensemble u = (u1, . . . ,uM) member by member via

ua
j = u j + K̃(z− z j), j = 1, . . . ,M, (10)

where K̃ =Cov(u,z)Cov(z)−1 and Cov(u,z) and Cov(z) =Cov(z,z) are the em-
pirical covariances of the samples u and z = (z1, . . . ,zM). This yields an analysis
ensemble ua = (ua

1, . . . ,u
a
M).

The empirical mean of ua serves as estimate û for the unknown u and the empir-
ical covariance of ua as an indicator for the accuracy of the estimate.

Note that for dynamical systems such as (8), the analysis ensemble An(ua) serves as
the initial ensemble for the next step n.

3.2.2 The Polynomial Chaos Expansion Kalman Filter

In [32, 34, 35] the authors propose a sampling-free Kalman filtering scheme for
nonlinear systems. Rather than updating samples of the unknown, this is carried out
for the coefficient vector of a polynomial chaos expansion of the unknown. This
necessitates the construction of a polynomial chaos expansion distributed according
to the prior measure µ0: we assume there exist countably many independent real-
valued random variables ξ = (ξm)m∈N, and chaos coefficients uα ∈X , εα ∈Rk for
each

α ∈ J := {α ∈ NN
0 : α j 6= 0 for only finitely many j},

such that
∑
α∈J
‖uα‖2 <+∞ and ∑

α∈J
|εα |2 <+∞,

and (
∑
α∈J

uα Pα(ξ ), ∑
α∈J

εα Pα(ξ )
)
∼ µ0⊗µε .

Here, Pα(ξ ) = ∏m≥1 P(m)
αm (ξm) denotes the product of univariate orthogonal poly-

nomials P(m)
αm where we require {P(m)

α }α∈N to be a CONS in L2(Γm,B(Γm),Pξm),
Γm = ξm(Ω) ⊆ R. Note, that the completeness of orthogonal polynomials will de-
pend in general on properties of the measure Pξm , see [12] for a complete character-
ization.

We then define U := ∑α∈J uα Pα(ξ ) and ε := ∑α∈J εα Pα(ξ ), denoting their PCE
vectors (uα)α∈J and (εα)α∈J by [U ] and [ε]. For the same problem considered for
the EnKF, the PCE-KF algorithm is as follows.

1. Initialization: Compute a PCE with coefficient vector [U ] such that U ∼ µ0.
2. Forecast: Compute the PC vector [G(U)] of G(U) and set

[Z] := [G(U)]+ [ε],
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where [ε] is a PC vector such that then ε ∼ µε . Note that, by linearity, [Z] is the
PC vector of the RV defined by Z := G(U)+ ε .

3. Analysis: Update the inital PC vector by

[U ]a = [U ]+K⊗ IJ ([z]− [Z]), (11)

where [z] = (z,0, . . .) is the PC vector of the observed data z ∈ Rk and K :=
Cov(U,Z)Cov(Z)−1. The action of the covariances as operators can be described,
e.g. in the case of Cov(U,Z) : Rk→X , by

Cov(U,Z)z = ∑
α∈J

∑
β∈J

z>
β

zuα .

The result of one step of the PCE-KF algorithm is an analysis PC vector [U ]a.

Remark 5. Neither the independence of the {ξm}m∈N nor an expansion in polyno-
mials {Pα(ξ )} is crucial for the PCE-KF. In principle, only a countable CONS
{Ψα}α∈N for the space L2(Γ ,B(Γ ),Pξ ), Γ = ξ (Ω) ⊆ RN, is required such that(

∑α uαΨα(ξ ),∑α εαΨα(ξ )
)
∼ µ0 ⊗ µε . However, the independence structure of

µ0⊗ µε requires at least two independent random vectors η = (η1, . . . ,ηM), ζ =
(ζ1, . . . ,ζN), ξ = (η ,ζ ), and expansions of the form ∑α uαΨα(η1, . . . ,ηM) and
∑α εαΨα(ζ1, . . . ,ζN).

3.2.3 The Analysis Variable

Note that the analysis PC vector [U ]a defines an analysis variable Ua :=∑α∈J ua
α Pα(ξ ).

Indeed, both EnKF and PCE-KF perform discretized versions of an update for RVs,
namely,

Ua =U +K(z−Z), K = Cov(U,Z)Cov(Z)−1,

where Z := G(U)+ε , and (U,ε)∼ µ0⊗µε , providing samples ua and PCE vectors
[U ]a = [Ua] of Ua, respectively. This raises the question of how the analysis variable
Ua is to be understood in context of Bayesian inverse problems?

3.3 The Linear Conditional Mean

To relate the results produced by the EnKF or PCE-KF to the Bayesian setting, we
introduce a new Bayes estimator, or, more precisely, a linear approximation to the
Bayes estimator φ̂CM resp. the conditional mean E[U |Z]. The linear posterior mean
estimator φ̂LCM is given by

φ̂LCM = argmin
φ∈span{1,z}

E
[
‖U−φ(Z)‖2] , (12)
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here span{1,z}= {φ : φ(z) = b+Az with b∈X ,A :Rk→X linear and bounded}.
Moreover, we denote the RV φ̂LCM(Z) as the linear conditional mean. Thus,

φ̂LCM(Z) is the best L2(Ω ,F ,P;X )-approximation to U ∼ µ0 in the subspace
span{1,Z}⊂ L2(Ω ,σ(Z),P;X ). Or, alternatively, φLCM is the linear estimator with
minimal prior Bayes cost for c(u) = ‖u‖2. Furthermore, there holds

φ̂LCM(z) = E [U ]+K(z−E [Z]),

with the usual Kalman gain K = Cov(U,Z)Cov(Z)−1, and we immediately obtain
the following result.

Theorem 2. Consider (5) and let Assumptions 1 – 3 be satisfied. Then for any z∈Rk

the analysis variable Ua =U +K(z−Z), K = Cov(U,Z)Cov(Z)−1, coincides with

Ua = φ̂LCM(z)+(U− φ̂LCM(Z)).

In particular, there holds

E [Ua] = φ̂LCM(z) and Cov(Ua) = Cov(U)−KCov(Z,U).

We summarize the consequences of Theorem 2 as follows:

• The analysis variable Ua, to which the EnKF and the PCE-KF provide approxi-
mations, is the sum of a Bayes estimate φ̂LCM(z) and the prior error U− φ̂LCM(Z)
of the corresponding Bayes estimator φ̂LCM.

• The resulting mean of the EnKF analysis ensemble or the PCE-KF analysis vec-
tor corresponds to the linear posterior mean estimate and therefore provides an
approximation to the true posterior mean.

• The covariance approximated by the empirical covariance of the EnKF analysis
ensemble, as well as that of the PCE-KF analysis vector, is independent of the
actual observational data z ∈ Rk. It therefore constitutes a prior rather than a
posterior measure of uncertainty.

• In particular, the randomness in Ua is entirely determined by the prior measures
µ0 and µε . Only the location, i.e., the mean, of Ua is influenced by the observa-
tion data z; the randomness of Ua is independent of z and determined only by the
projection error U− φ̂LCM(Z) w.r.t. the prior measures.

• By to the last two items, the analysis variable Ua, and therefore the EnKF analy-
sis ensemble or the result of the PCE-KF, are in general not distributed according
to the posterior measure µz. Moreover, the difference between µz and the dis-
tribution of Ua depends on the data z and can become quite large for nonlinear
problems, see Example 3.

Remark 6. Note that in particular the second and third item above explain the obser-
vations made in [27], i.e., that “[...] (i) with appropriate parameter choices, approx-
imate filters can perform well in reproducing the mean of the desired probability
distribution, (ii) they do not perform as well in reproducing the covariance [...] ”.



Bayesian Inverse Problems and Kalman Filters 19

We illustrate the conceptual difference between the distribution of the analysis
variable Ua and the posterior measure µz with a simple yet striking example.

Example 3. We consider U ∼ N(0,1), ε ∼ N(0,σ2) and G(u)≡ u2. Given data z ∈
R, the posterior measure, obtained from Bayes’ rule for the densities, is

µ
z(du) =C exp

(
−σ2u2 +(z−u2)2

2σ2

)
du.

Due to the symmetry of µz we have ûCM =
∫
X u µz(du) = 0 for any z ∈ Rk. Thus,

E[U |Z]≡ 0 and φ̂LCM ≡ φ̂CM. In particular, we have K = 0 due to

Cov(U,Z) = Cov(U,U2) =
1√
2π

∫
R

u(u2−1)e−u2/2du = 0,

which in turn yields Ua = U ∼ N(0,1). Hence the analysis variable is distributed
according to the prior measure. This is not surprising as, by definition, its mean is the
best linear approximation to the posterior mean according to µz and its fluctuation is
simply the prior estimation error U− φ̂LCM(Z) =U−0 =U . This illustrates that Ua

is suited for approximating the posterior mean, but not appropriate as a method for
uncertainty quantification in nonlinear inverse problems. As displayed in Figure 1,
the distribution of Ua can be markedly different from the true posterior distribution.

−4 −3 −2 −1 0 1 2 3 4
0

0.5

1

1.5

2

2.5

u

Fig. 1 Density of the posterior µz (dashed, blue line) and the probability density of the analysis
variable Ua (solid, red line) for z = 9 and σ = 0.5.



20 Oliver G. Ernst, Björn Sprungk, Hans-Jörg Starkloff

4 Numerical Example: 1D Elliptic Boundary Value Problem

To illustrate the application of the EnKF and PCE-KF to a simple Bayesian inverse
problems, we consider the following PDE model on D = [0,1]:

− d
dx

exp(u1)
d
dx

p(x) = f (x), p(0) = p0, p(1) = u2. (13)

Here u = (u1,u2) are the unknown parameters to be identified. The solution of (13)
is given by

p(x) = p0 +(u2− p0)x+ exp(−u1)(Sx(F)−S1(F)x) , (14)

where Sx(g) :=
∫ x

0 g(y)dy and F(x) = Sx( f ) =
∫ x

0 f (y)dy. For simplicity we choose
f ≡ 1 and p0 = 0 in the following.

Assume now that noisy measurements of p are available at x1 = 0.25 and x2 =
0.75, namely z = (27.5,79.7). We wish to infer u based on this data and on a priori
information modelled by the prior distributions of the independent random variables

u1 ∼ N(0,1), and u2 ∼ Uni(90,110).

Here Uni(90,110) denotes the uniform distribution on the interval [90,110]. Thus,
the forward map here is G(u) = (p(x1), p(x2)) with p according to (14) for f ≡ 1,
and the model for the measurement noise is ε ∼ N(0,0.01 · I2).

In Figure 2 we show the prior and the posterior densities as well as 1000 en-
semble members of the initial and analysis ensemble obtained by the EnKF. A total
ensemble size of M = 105 was chosen in order to reduce the sampling error to a
negligible level. It can be seen, however, that the analysis EnKF-ensemble does not
follow the posterior distribution, although its mean (−2.92,105.14) is quite close
to the true posterior mean (−2.65,104.5) (computed by quadrature). To illustrate
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Fig. 2 Left: Contour plot of the negative logarithm of the prior density and the locations of 1000
ensemble members of the initial EnKF-ensemble.
Right: Contour plot of the logarithm of the negative logarithm of the posterior density and the
locations of the updated 1000 ensemble members in the analysis EnKF-ensemble.
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the difference between the distribution of the analysis ensemble resp. variable and
the true posterior distribution, we present the marginal posterior distributions of u1
and u2 in Figure 3. For the posterior the marginals were evaluated by quadrature,
whereas for the analysis ensemble we show a relative frequency plot.
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Fig. 3 Left: Posterior marginal and relative frequencies in the analysis ensemble for u1.
Right: The same for u2.

We note that slightly changing the observational data to z̃ = (23.8,71.3) moves
the analysis ensemble resp. variable much closer to the true posterior, see Figure
4. Also, the mean of the analysis ensemble (0.33,94.94) provides a better fit to the
true posterior mean (0.33,94.94) here.
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Fig. 4 Left: Contours of the logarithm of the negative log posterior density and locations of 1000
members of the analysis EnKF-ensemble.
Middle: Posterior marginal and relative frequencies in the analysis ensemble for u1.
Right: The same for u2.

To reaffirm the fact that only the mean of analysis variable Ua depends on the
actual data, we show density estimates for the marginals of u1 and u2 of Ua in
Figure 5. Here we have used once the data z = (27.5,79.7) (blue lines) and once
z̃ = (23.8,71.3) (green lines). The density estimates were obtained by normal kernel
density estimation (KDE, in this case MATLAB’s ksdensity routine) based on
the resulting analysis ensembles (ua

1,u
a
2) and (ũa

1, ũ
a
2), respectively, of the EnKF for

these two data sets z, z̃. In the left picture we show the KDE for ua
1 and ũa

1 and in
the middle picture we display the KDE for the corresponding centered ensembles
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ua
1−E[ua

1] and ũa
1−E[ũa

1]. In the right picture we provide the KDEs for the centered
ensembles of u2. Note that the marginal distributions of the centered ensembles
coincide, in agreement with Theorem 2.
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Fig. 5 Left: Kernel density estimates for ua
1 (blue, solid line) and ũa

1 (green, dashed line). Middle:
Kernel density estimates for ua

1−E[ua
1] (blue, solid) and ũa

1−E[ũa
1] (green, dashed). Right: Kernel

density estimates for ua
2−E[ua

2] (blue, solid) and ũa
2−E[ũa

2] (green, dashed).

However, note that, particularly in this example where the prior, and thus pos-
terior, support for u2 is bounded, the EnKF may yield members in the analysis en-
semble which are outside this support. This is a further consequence of Theorem
2: Since the analysis ensemble of the EnKF follows the distribution of the analysis
variable rather than that of the true posterior distribution, ensemble members lying
outside the posterior support can always occur whenever the support of the analysis
variable is not a subset of the support of the posterior.

In addition, we would like to stress that, whether or not the distribution of the
analysis variable is a good fit to the true posterior distribution depends entirely on
the observed data — which can neither be controlled nor are known a priori.

Applying the PCE-KF to this simple example problem can be done analytically.
We require four basic independent random variables ξ1 ∼ N(0,1), ξ2 ∼ Uni(0,1),
ξ3 ∼ N(0,1) and ξ4 ∼ N(0,1) to define PCEs which yield random variables dis-
tributed according to the prior and error distributions:

U := (ξ1, 90+20ξ2)
> ∼ µ0, ε := (0.1ξ3, 0.1ξ4)

> ∼ µε .

Moreover, due to (14), G(U) is also available in closed form as

G(U) =

(
c11(90+20ξ2)+ c12 ∑

∞
n=0(−1)n

√
e√
n!

Hn(ξ1)

c21(90+20ξ2)+ c22 ∑
∞
n=0(−1)n

√
e√
n!

Hn(ξ1)

)
,

where Hn denotes the nth normalized Hermite polynomial and c11,c12,c21,c22 can
be deduced from inserting x = 0.25 and x = 0.75 into (14). Here, we have used the
expansion of exp(−ξ ) in Hermite polynomials, see also [43, Example 2.2.7]. Thus,
the PCE coefficient vectors [U ] and [G(U)+ ε] w.r.t. the polynomials

Pα(ξ ) = Hα1(ξ1)Lα2(ξ2)Hα3(ξ3)Hα4(ξ4), α ∈ N4
0,
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can be obtained explicitly. Here Hα and Lα denote the αth normalized Hermite and
Legendre polynomials, respectively. In particular, the nonvanishing chaos coeffi-
cients involve only the basis polynomials

P0(ξ )≡ 1, P1(ξ ) = L1(ξ2), P2(ξ ) = H1(ξ3), P3(ξ ) = H1(ξ4)

and Pα(ξ ) =Hα−3(ξ1) for α ≥ 4. Arranging the two-dimensional chaos coefficients
of U and G(U) as the column vectors [U ], [G(U)+ε] ∈R2×N0 , and denoting by ˙[U ]
the matrix (u1,u2, . . .) ∈ R2×N we get

K = ˙[U ] ˙[G(U)]
>( ˙[G(U)] ˙[G(U)]

>
+0.01I2

)−1
.

Thus, the only numerical error for applying the PCE-KF to the example is the trunca-
tion of the PCE. We have carried out this calculation using a truncated PCE of length
J = 4+50 according to the reduced basis above, evaluated the approximation to K
by using the truncated vector [G(U)] in the formula above and then performed the
update of the PCE vectors according to (11). We then sampled the resulting random
variable Ua again M = 105 times. The resulting empirical distributions were essen-
tially indistinguishable from the results obtained by the EnKF described previously
and are therefore omitted.

Remark 7. Although a detailed complexity analysis of these methods is beyond the
scope of this contribution, we would like to mention that the EnKF calls for M
evaluations of the forward map G(u j), j = 1, . . . ,M, whereas the PCE-KF requires
computing the chaos coefficients of G(U) by, e.g., the Galerkin method. Thus the
former yields, in general, many small systems to solve, whereas the latter typically
requires the solution of a large coupled system. Moreover, we emphasize the compu-
tational savings by applying Kalman filters compared to a “full Bayesian update”,
i.e., sampling from the posterior measure by MCMC methods. In particular, each
MCMC run one may require calculating many hundreds of thousands forward maps
G(u), e.g., for each iteration u j of the Markov chain as in the case of Metropolis-
Hastings MCMC. Hence, if one is interested in only the posterior mean as a Bayes
estimate, then EnKF and PCE-KF provide substantially less expensive alternatives
to MCMC for its approximation by means of the linear posterior mean.

5 Conclusions

We have constrasted the deterministic and Bayesian formulations of nonlinear in-
verse problems such as arise in parameter estimation and data assimilation settings.
An important distinction lies in the objectives of the two approaches: the identifica-
tion of a particular value of the unknown quantity in the deterministic case versus the
updating of a prior to a posterior probability measure encoding the uncertainty asso-
ciated with the unknown quantity due to new observations. Moreover, we have also
pointed out the relation beween regularized least-squares solutions and the concept
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of Bayesian (point) estimators. Among the computational methods for Bayesian in-
verse problems we have focused on Kalman filters such as the EnKF and PCE-KF
and presented a precise characterization of these methods in the Bayesian setting.
A summary of the contrasting features of Bayesian inversion, Bayes estimators and
Kalman filter-based methods is given in Table 1.

Bayesian Inversion Bayes Estimators Kalman Filters

Goal Merge prior belief with
new observational data

Compute best guess w.r.t.
posterior belief

Compute best linear guess
and associated error

Result measure µz on X estimate û ∈X estimate û ∈ X and esti-
mation error U− φ̂LCM(Z)

Allows for rigorous UQ in post-
processing

deterministic post-
processing with û

deterministic post-
processing with û and
certain UQ

Table 1 Distinguishing features of Bayesian inverse problems, Bayes estimators and Kalman fil-
ters.

Most important, the RVs approximated by the Kalman filter-based methods, will
not, in general, be distributed according to the posterior distribution in the Bayes’
sense. They are rather related to a common Bayes estimator – the linear conditional
mean – and its estimation error RV, and therefore represent a different uncertainty
model than the posterior measure. Some carefully chosen numerical examples were
given to illustrate these basic differences.
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