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Abstract. Convergence of an adaptive collocation method for the parametric stationary dif-
fusion equation with finite-dimensional affine coefficient is shown. The adaptive algorithm relies
on a recently introduced residual-based reliable a posteriori error estimator. For the convergence
proof, a strategy recently used for a stochastic Galerkin method with a hierarchical error estimator
is transferred to the collocation setting. Extensions to other variants of adaptive collocation meth-
ods (including the now classical approach proposed in [T. Gerstner and M. Griebel, Computing, 71
(2003), pp. 65--87]) are explored.
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1. Introduction. Collocation methods are now a mainstay for solving equations
containing high-dimensional parameters such as arise in uncertainty quantification
(UQ) analyses of ordinary or partial differential equations (ODE/PDE) with uncertain
model coefficients [39, 48, 1]. It was realized early on that already moderately high-
dimensional problems become tractable only when the approximations are based on
sparse subspaces of the basic tensor product construction [44, 43, 10, 38, 9, 4].

Subsequent work established that, under mild conditions, certain classes of ran-
dom PDEs are tractable even in the presence of countably many parameter variables
[16, 17, 47, 15, 3, 49, 35, 2, 12, 26]. These results prove that there exists a sequence
of converging approximation operators (be they of collocation or Galerkin/projection
nature) and also provide the corresponding convergence rates. Such sequences of con-
verging approximation operators can sometimes be estimated a priori as in [49, 12, 26].
Another possible procedure is to rely instead on a posteriori adaptive strategies: the
details of such strategies vary depending on the type of approximation operators
(projection/collocation), and, moreover, these a posteriori adaptive strategies are of-
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660 M. EIGEL, O. G. ERNST, B. SPRUNGK, AND L. TAMELLINI

ten based on heuristics known to behave well in practice (even better than the a priori
constructions) but for which a proof of convergence is often lacking.

For projection approaches, adaptive stochastic Galerkin finite element methods
(ASGFEMs), which control the discretization of both physical and parametric vari-
ables, are well studied. The extensive research activity in recent years comprises in
particular residual-based error estimators [21, 25, 23, 24] and hierarchical error es-
timators [5, 8, 19, 6]. The setting in these works is similar to the one considered
here, i.e., linear elliptic PDEs with affine parametric coefficients. However, the cited
works allow for a countably infinite number of parameters, which additionally neces-
sitates adaptivity in the number of dimensions retained in the approximation. With
the employed Legendre chaos discretization for the parameter space, only the mar-
gin of an active set of polynomials has to be considered in the error estimator. The
developed error estimators have been shown to be reliable and efficient, which for
hierarchical estimators usually requires additional assumptions. Convergence of an
ASGFEM algorithm was first shown in [25] for a residual estimator and, using a dif-
ferent argument, in [6] for a hierarchical estimator. A goal-oriented error estimator
was presented in [7], and the more involved case of nonlinear coefficients and Gauss-
ian parameters has only been considered recently in [22] with a low-rank hierarchical
tensor discretization.

On the stochastic collocation side, the current literature discusses quite exten-
sively algorithms for stochastic adaptivity, whereas much less attention has been de-
voted to (reliable) spatial adaptivity. To date, most adaptive sparse grid approxima-
tion schemes involve some variation of the basic procedure proposed by Gerstner and
Griebel in [30]; see also [34]. This algorithm drives adaptivity in the parameter vari-
ables by exploring at each iteration a certain number of sparse subspaces admissible
to the approximation and then evaluating for each of these an error indicator ; this
requires solving a certain number of PDEs. The subspace with the largest error indi-
cator is selected and added to the approximation, and a new set of admissible sparse
subspaces for the next enrichment step is generated. Several error indicators and vari-
ations of the selection strategy have been considered; see, e.g., [36, 31, 47, 15, 42, 28].
A crucial point is that these error indicators are heuristics. Conversely, the work
[33] by Guignard and Nobile proposes a variation of the Gerstner--Griebel algorithm
based on a reliable residual-based error estimator which can control adaptivity in both
the physical and parametric variables. Another significant difference compared with
typical indicator-based adaptive algorithms is that the procedure proposed in [33]
evaluates the error estimator without solving additional PDEs. This allows significant
computational savings compared to the basic Gerstner--Griebel algorithm. For other
works discussing spatial adaptivity in the context of stochastic collocation methods,
see [46, 37].

Guignard and Nobile give no convergence analysis in [33] for their proposed algo-
rithm, and our contribution in this work is to close this gap. We do this by proving
convergence of a slight modification of their algorithm (cf. Algorithm 4.1), thus es-
tablishing a convergence result for an adaptive sparse collocation method. This result
is stated in Theorem 4.3. Our convergence analysis is based on a convergence the-
orem for abstract adaptive approximations (i.e., which covers both projection and
collocation approximations, as well as other possible approximation strategies) w.r.t.
the parameter variables. We derive this theorem by generalizing results given in [6]
on convergence of adaptive stochastic Galerkin methods. This approach for proving
convergence requires that the employed error estimator possess the property of reli-
ability. In [33] Guignard and Nobile already established this property for their error
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CONVERGENCE OF ADAPTIVE STOCHASTIC COLLOCATION 661

estimator, but only for a specific model problem, namely, an elliptic PDE whose dif-
fusion coefficient depends linearly on a finite number of parameters. Moreover, we
also require the underlying univariate sequence of collocation points to be nested in
order that the sparse collocation construction be interpolatory. Hence, our particu-
lar convergence result is also tied to these assumptions on the underlying PDE and
collocation points. However, we believe that the general approach for establishing
convergence of adaptive sparse collocation methods presented in this paper might be
adapted to more general cases in the future. For instance, upon assuming that the
error indicator used in the basic Gerstner--Griebel adaptive algorithm is indeed a reli-
able error estimator, we are able to prove convergence of this variant of the algorithm
as well (see Theorem 4.4). We note that our analysis considers adaptivity in the pa-
rameter variables only, i.e., we focus on the semidiscrete setting. Finally, we mention
the simultaneous and independent work [29], which also provides a convergence re-
sult (and a convergence rate) for adaptive stochastic collocation methods applied to
an elliptic PDE with diffusion coefficient depending affinely on finitely many random
variables. While the overall framework and the focus of that work is similar to ours,
some differences are noteworthy: the algorithm for which [29] proves convergence is
essentially the one introduced by Guignard and Nobile in [33], while we consider a
different version and, in addition, we also provide a convergence proof for the original
Gerstner--Griebel variant. Furthermore, the line of proof in [29], while similar to the
present one, has of course some different technical aspects; in particular, our proof is
valid for any choice of collocation points over the parameter space, whereas the proof
in [29] assumes that Clenshaw--Curtis collocation points are used when constructing
the sparse grid.

The remainder of this paper is structured as follows. Sections 2 and 3 contain
preliminary information; in particular, section 2 states the model problem and recalls
the results in [6] that will be instrumental for the rest of the work, while section 3
gives details on the construction of adaptive sparse grid collocation schemes. Sec-
tions 4 and 5 contain our main results; section 4 contains the statement of the specific
adaptive collocation algorithm that we consider (i.e., our version of the Guignard--
Nobile algorithm; see Algorithm 4.1), the associated convergence result (Theorem
4.3), the convergence result of the Gerstner--Griebel Algorithm (Theorem 4.4), and
some discussion on computational aspects, while section 5 contains the proof of the
convergence result. Finally, conclusions and future research directions are outlined in
section 6.

2. Preliminaries. In this section we specify the model problem under consid-
eration and recall basic properties of its solution. Furthermore, we discuss general
adaptive approximations w.r.t. the parameter variables and state an abstract conver-
gence result which provides the basis of our convergence analysis for adaptive sparse
grid collocation.

2.1. Model problem. We consider a common model problem arising in un-
certainty propagation via random differential equations, i.e., the stationary diffu-
sion equation containing a coefficient function which depends linearly on a high-
dimensional parameter. Specifically, we wish to solve the parametric elliptic boundary
value problem

 - \nabla \cdot (a(\bfity )\nabla u(\bfity )) = f on D \subset \BbbR d,(2.1a)

u(\bfity ) = 0 on \partial D.(2.1b)
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662 M. EIGEL, O. G. ERNST, B. SPRUNGK, AND L. TAMELLINI

The domain D \subset \BbbR d is assumed to be bounded and Lipschitz, f \in L2(D), and the
coefficient a(\bfity ) \in L\infty (D) is given by a finite expansion of the form

(2.2) a(\bfitx ,\bfity ) = a0(\bfitx ) +
M\sum 

m=1

am(\bfitx ) ym, \bfity \in \Gamma := \Gamma M , \Gamma := [ - 1, 1],

where M \in \BbbN and a0, . . . , aM \in L\infty (D). The parametric domain \Gamma is equipped with

the uniform product measure \mu (d\bfity ) :=
\bigotimes M

m=1
dym

2 , i.e., the components of \bfity can
be viewed as independent and identically distributed uniform random variables over
\Gamma = [ - 1, 1]. Further, we assume that the functions a0, . . . , aM \in L\infty (D) satisfy the
uniform ellipticity condition

(2.3)

M\sum 
m=1

| am(\bfitx )| \leq a0(\bfitx ) - r \forall x \in D

for some r > 0. This implies that

(2.4) amin := min
\bfity \in \bfGamma 

ess inf
\bfitx \in D

a(\bfitx ,\bfity ) \geq r > 0.

We also introduce the quantity

(2.5) \alpha := 1 - amin

infx\in D a0(\bfitx )
\in (0, 1),

which will turn out to be important in Theorem 2.1 below. Due to the uniform
ellipticity assumption, the weak solution u(\bfity ) \in \scrH = H1

0 (D) exists for any \bfity \in \Gamma and
satisfies u \in C(\Gamma ;\scrH ).

Polynomial expansions. In order to approximate the solution u of (2.1), or
rather the parameter-to-solution map \bfity \mapsto \rightarrow u(\cdot ,\bfity ) \in \scrH , we shall analyze polynomial
expansions of u in the parameter \bfity \in \Gamma ,

(2.6) u(\bfitx ,\bfity ) =
\sum 
\bfitk \in \scrF 

u\bfitk (\bfitx )P\bfitk (\bfity ), \scrF := \BbbN M
0 , u\bfitk \in \scrH ,

where P\bfitk (\bfity ) =
\prod M

m=1 Pkm
(ym) is a finite product of univariate polynomials Pk : \Gamma \rightarrow 

\BbbR of degree k with P0 \equiv 1. Two common choices for the basic polynomials Pk are
1. Taylor polynomials: P\bfitk (\bfity ) := \bfity \bfitk =

\prod M
m=1 y

km
m , where then

u\bfitk (\bfitx ) = t\bfitk (\bfitx ) :=
1

\bfitk !
\partial \bfitk u(\bfitx ,0);

2. Legendre polynomials: P\bfitk (\bfity ) := L\bfitk (\bfity ) =
\prod M

m=1 Lkm
(ym), with Lk denoting

the kth L2
\mu 1
-normalized Legendre polynomial w.r.t. the uniform distribution

\mu 1(dx) =
dy
2 on \Gamma = [ - 1, 1] and

u\bfitk (\bfitx ) :=

\int 
\bfGamma 

u(\bfitx ,\bfity )L\bfitk (\bfity ) \mu (d\bfity ).

Since u \in C(\Gamma ;\scrH ) \subset L2
\mu (\Gamma ;\scrH ) we have that the expansion (2.6) using Legendre

polynomials converges in L2
\mu (\Gamma ;\scrH ). The following result due to [3] establishes, un-

der suitable assumptions, the \ell p-summability of both Taylor and Legendre coeffi-
cients which, for instance, implies that the Taylor expansion (2.6) of u converges in
L\infty (\Gamma ;\scrH ).
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CONVERGENCE OF ADAPTIVE STOCHASTIC COLLOCATION 663

Theorem 2.1 ([3, Theorems 2.2 and 3.1, Corollaries 2.3 and 3.2]). Let the condi-
tion (2.3) for a as in (2.2) be satisfied. Then a unique solution u of the corresponding
elliptic problem (2.1) exists and belongs to C(\Gamma ;\scrH ). Moreover, for any \bfitrho := (\rho m)Mm=1

with 1 < \rho m < \alpha  - 1 with \alpha as in (2.5)
1. the Taylor coefficients t\bfitk \in \scrH of u satisfy (\bfitrho \bfitk \| t\bfitk \| \scrH )\bfitk \in \scrF \in \ell 2(\scrF );
2. the Legendre coefficients u\bfitk \in \scrH of u satisfy (b - 1

\bfitk \bfitrho \bfitk \| u\bfitk \| \scrH )\bfitk \in \scrF \in \ell 2(\scrF ) with

b\bfitk :=
\prod M

m=1

\surd 
1 + 2km.

Remark 2.2. The authors of [3] actually consider the infinite-dimensional noise
case, i.e., with M = \infty in (2.2), and prove the results stated in Theorem 2.1 under
the assumption that \bigm\| \bigm\| \bigm\| \bigm\| \sum \infty 

m=1 \rho m| am| 
a0

\bigm\| \bigm\| \bigm\| \bigm\| 
C(D)

< 1

for a sequence \bfitrho := (\rho m)m\geq 1 with \rho m > 1. Hence, Theorem 2.1 can be derived easily
from this general case by setting am(\bfitx ) \equiv 0 and \rho m > 1 arbitrarily for m > M :\bigm\| \bigm\| \bigm\| \bigm\| \sum \infty 

m=1 \rho m| am| 
a0

\bigm\| \bigm\| \bigm\| \bigm\| 
C(D)

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum M

m=1 \rho m| am| 
a0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
C(D)

< \alpha  - 1

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum M

m=1 | am| 
a0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
C(D)

\leq \alpha  - 1 (1 - amin) = 1.

2.2. Adaptive polynomial approximation. Given the decay rate stated in
Theorem 2.1 for the norms of the coefficients u\bfitk of the expansion (2.6), a polynomial
approximation of u seems feasible. To this end, we consider truncated expansions u\Lambda 

based on a finite multi-index set \Lambda \subset \scrF ,

u\Lambda := S\Lambda u =
\sum 
\bfitk \in \Lambda 

\widehat u\bfitk P\bfitk , \widehat u\bfitk \in \scrH ,

where S\Lambda denotes a suitable approximation operator and \widehat u\bfitk are approximations to
the true coefficients u\bfitk of u (cf. (2.6)). For instance, S\Lambda could be the operator as-
sociated with a Galerkin projection for approximating u using the finite-dimensional
polynomial space

\scrP \Lambda (\Gamma ) := span \{ P\bfitk : \bfitk \in \Lambda \} ,

or, as will be the case below, the operator associated with sparse collocation based on
\Lambda . At this point we do not need to further specify S\Lambda .

We consider in particular an adaptive construction of such polynomial approx-
imations u\Lambda . More specifically, starting from an initial set \Lambda 0 \subset \scrF we construct
nested multi-index sets \Lambda n \subset \Lambda n+1, n \in \BbbN 0, and compute the associated polynomial
approximations un := S\Lambda n

u by a generic adaptive algorithm as detailed in Algorithm
2.1.

Again, we do not further specify how to compute the estimates \eta n(\bfitk ) = \eta (\bfitk , un)
at this point. Instead, we provide a fairly general convergence theorem for Algorithm
2.1, stating conditions on \eta n(\bfitk ) that guarantee convergence of the algorithm.

The following theorem draws upon the work [6] on the convergence of adaptive
stochastic Galerkin methods. Specifically, it is a compact summary of a way of proving
convergence for stochastic Galerkin FEM as outlined in detail in [6, sections 6 and 7],
slightly modified to fit the application to adaptive sparse collocation. We state the
theorem here and provide the proof at the end of the section.
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Algorithm 2.1 Generic adaptive algorithm.

1: \Lambda 0 = \{ 0\} 
2: u0 := S\Lambda 0

u
3: for n \in \BbbN 0 do
4: Choose a candidate set of multi-indices \scrC n \subset \scrF \setminus \Lambda n for enriching \Lambda n

5: Evaluate estimates of the error contribution on the candidate set:

\eta n(\bfitk ) = \eta (\bfitk , un), \bfitk \in \scrC n

6: Determine marked indices \scrM n \subset \scrC n (according to a given marking strategy
based on \eta n(\bfitk ))

7: Set \Lambda n+1 := \Lambda n \cup \scrM n and un+1 := S\Lambda n+1
u.

8: end for

Theorem 2.3 (cf. [6]). Let un denote the approximations constructed via Algo-
rithm 2.1. Assume that

1. the total error estimator \eta n :=
\sum 

\bfitk \in \scrC n
\eta n(\bfitk ) is reliable, i.e., there exists a

constant C < \infty independent of n such that

\| u - un\| \leq C\eta n,

where \| \cdot \| denotes a suitable norm for functions v : \Gamma \rightarrow \scrH ;
2. there exists a sequence of nonnegative numbers (\eta \infty (\bfitk ))\bfitk \in \scrF \in \ell 1(\scrF ) such that

for (\widehat \eta n(\bfitk ))\bfitk \in \scrF with \widehat \eta n(\bfitk ) := \eta n(\bfitk ) for \bfitk \in \scrC n\cup \Lambda n and \widehat \eta n(\bfitk ) = 0 otherwise,
we have

lim
n\rightarrow \infty 

\| \eta \infty  - \widehat \eta n\| \ell 1(\scrF ) = 0;

3. there exists a constant c > 0 independent of n such that for all \bfitk \in \scrC n \setminus \scrM n

we have

\eta n(\bfitk ) \leq c
\sum 

\bfiti \in \scrM n

\eta n(\bfiti ).

From these assumptions it follows that

lim
n\rightarrow \infty 

\| u - un\| = 0.

Remark 2.4. Before we prove the theorem, we comment on the second and third
assumptions:

1. The third assumption is generally easy to satisfy. For instance, simply choos-
ing \scrM n := arg maxk\in \scrC n

\eta n(\bfitk ) satisfies the assumption with c = 1.
2. For sparse grid collocation, the second assumption turns out to be the most

difficult to verify. Moreover, it is probably the most cryptic assumption of the
theorem. It can usually be verified as follows: assuming the sequence un has
a limit u\infty with corresponding error estimators \eta \infty (\bfitk ) := \eta (\bfitk , u\infty ), conclude
from un \rightarrow u\infty that \| \eta \infty  - \widehat \eta n\| \ell 1 \rightarrow 0 by exploiting continuity properties of
the error estimator \eta (\bfitk , un) w.r.t. un. Note that, a priori, the limit u\infty of
un need not necessarily coincide with the solution of the PDE (2.1). Indeed,
u\infty = u is the assertion of the theorem.

3. The second assumption on the convergence of the reliable error estimators \eta n
is a central ingredient for the proof of Theorem 2.3: since \| \widehat \eta n - \eta \infty \| \ell 1(\scrF ) \rightarrow 0
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we have that

\eta n \leq 
\sum 
\bfitk \in \scrC n

\eta \infty (\bfitk ) +
\sum 
\bfitk \in \scrC n

| \eta n(\bfitk ) - \eta \infty (\bfitk )| \leq 
\sum 
\bfitk \in \scrC n

\eta \infty (\bfitk ) + \| \widehat \eta n  - \eta \infty \| \ell 1(\scrF )

converges to zero for n \rightarrow \infty if
\sum 

\bfitk \in \scrC n
\eta \infty (\bfitk ) does for n \rightarrow \infty as well.

Moreover, since we assumed \eta \infty \in \ell 1(\scrF ), \eta \infty (\bfitk ) decays for large multi-
indices \bfitk . Thus, if \scrC n tends to include increasingly large multi-indices \bfitk ,
then

\sum 
\bfitk \in \scrC n

\eta \infty (\bfitk ) should decay to zero. This will be made rigorous in the
subsequent proof of Theorem 2.3.

The proof of Theorem 2.3 employs the following abstract lemma, which was shown
for the case p = 2 in [6, Lemma 15]. Since its proof can be generalized to arbitrary
1 \leq p < \infty without significant modification we merely state the result and refer the
reader to [6, Lemma 15] for a detailed proof.

Lemma 2.5 (cf. [6, Lemma 15]). Let \bfitz = (zk)k\in \BbbN \in \ell p(\BbbN ), p \in [1,\infty ), and let

\bfitz (n) = (z
(n)
k )k\in \BbbN \in \ell p(\BbbN ), n \in \BbbN 0, be sequences of nonnegative numbers satisfying

limn\rightarrow \infty \| \bfitz  - \bfitz (n)\| \ell p = 0. Assume further that there exists a continuous function
g : [0,\infty ) \rightarrow [0,\infty ) with g(0) = 0 and a sequence of nested subsets \scrJ n \subset \BbbN , i.e.,
\scrJ n \subset \scrJ n+1, such that

\forall n \in \BbbN 0 \forall k /\in \scrJ n+1 : z
(n)
k \leq g

\left(  \sum 
i\in \scrJ n+1\setminus \scrJ n

\Bigl( 
z
(n)
i

\Bigr) p\right)  .

Then limn\rightarrow \infty 
\sum 

k/\in \scrJ n
zpk = 0.

Proof of Theorem 2.3. Since the error estimator is reliable, we only need to show
that

lim
n\rightarrow \infty 

\eta n = lim
n\rightarrow \infty 

\sum 
\bfitk \in \scrC n

\eta n(\bfitk ) = 0.

Due to\sum 
\bfitk \in \scrC n

\eta n(\bfitk ) \leq 
\sum 
\bfitk \in \scrC n

\eta \infty (\bfitk ) +
\sum 
\bfitk \in \scrC n

| \eta n(\bfitk ) - \eta \infty (\bfitk )| \leq 
\sum 
\bfitk \in \scrC n

\eta \infty (\bfitk ) + \| \widehat \eta n  - \eta \infty \| \ell 1(\BbbN ),

as well as \| \widehat \eta n  - \eta \infty \| \ell 1 \rightarrow 0 by assumption, the statement of the theorem follows if

lim
n\rightarrow \infty 

\sum 
\bfitk \in \scrC n

\eta \infty (\bfitk ) = 0.

In order to show this, we apply Lemma 2.5 as follows: we identify the countable set
\scrF with \BbbN , \eta \infty with \bfitz , and \widehat \eta n with \bfitz (n). Recall that by assumption \| \widehat \eta n - \eta \infty \| \ell 1 \rightarrow 0.
Thus, the first assumption of Lemma 2.5 is satisfied. Moreover, we identify the \Lambda n \subset \scrF 
with \scrJ n \subset \BbbN . These sets are nested and \scrJ n+1 \setminus \scrJ n corresponds to \scrM n. By our third
assumption and the construction of \widehat \eta n there holds for each n \in \BbbN 

\widehat \eta n(\bfitk ) \leq c
\sum 

\bfiti \in \scrM n

\widehat \eta n(\bfiti ) \forall \bfitk /\in \Lambda n+1,

since \widehat \eta n(\bfitk ) = 0 for \bfitk /\in \scrC n \cup \Lambda n and (\scrC n \cup \Lambda n) \setminus \Lambda n+1 = \scrC n \setminus \scrM n. Thus, the second
assumption of Lemma 2.5 is also satisfied with g(s) = cs. Hence, we can apply Lemma
2.5 to \bfitz \simeq \eta \infty and \bfitz n \simeq \widehat \eta n and obtain that

lim
n\rightarrow \infty 

\sum 
\bfitk /\in \Lambda n

\eta \infty (\bfitk ) = 0,
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which by
\sum 

\bfitk \in \scrC n
\eta \infty (\bfitk ) \leq 

\sum 
\bfitk /\in \Lambda n

\eta \infty (\bfitk ) concludes the proof.

3. Adaptive sparse collocation. We now introduce the sparse collocation ap-
proach and discuss how adaptive sparse grid algorithms can be derived from the ab-
stract Algorithm 2.1. In particular, we show how to obtain the classical a posteriori
adaptive algorithm by Gerstner and Griebel [30] based on heuristic error indicators
(as opposed to reliable error estimators, as proposed by Guignard and Nobile in [33]).
As already discussed in the introduction, changing from indicators to estimators is key
to proving convergence. Our version of the estimator-based algorithm by Guignard
and Nobile and its convergence are then discussed in the subsequent sections.

Univariate interpolation nodes. The first ingredient for any sparse grid con-
struction is the choice of the underlying univariate sequences of collocation points.
In this work, we consider nested point sequences: Let (y(i))i\in \BbbN 0 \subset [ - 1, 1] denote a
sequence of univariate interpolation nodes and define the associated node sets

(3.1) \scrY k := \{ y(i) : i = 0, . . . ,m(k)\} \subset \Gamma , k \in \BbbN 0,

where m : \BbbN 0 \rightarrow \BbbN 0 denotes the growth function of the sets \scrY k, i.e., | \scrY k| = 1 + m(k).
We assume throughout that m(0) = 0 and that m is strictly increasing. Thus, we
exclude delayed sequences of node sets with \scrY k = \scrY k+1 for certain k as sometimes
employed for sparse grid methods; see [45]. As an immediate consequence of these
assumptions, we have m(k) \geq k and | \scrY k| \geq k + 1. We later also use the generalized
inverse of the growth function given for i \in \BbbN 0 by

(3.2) m - 1(i) := min\{ k \in \BbbN 0 : i \leq m(k)\} \leq i,

which gives the index of the first node set \scrY k which contains y(i). A particularly con-
venient construction of such nested nodes is provided by Leja points. Leja sequences
on \Gamma = [ - 1, 1] are defined recursively by first choosing y(0) \in \Gamma and then setting

(3.3) y(k) = arg max
y\in \Gamma 

k - 1\prod 
i=0

| y  - y(i)| , k \in \BbbN 0;

see, e.g., [13, 15, 14, 47, 41] and the references therein. The standard choice is to set
y(0) =  - 1; the rule (3.3) then leads to

y(0) =  - 1, y(1) = 1, y(2) = 0, y(3) \approx  - 0.57735, y(4) \approx 0.65871, . . . .

Another common sequence, referred to as R-Leja (real Leja) points, is obtained by
carrying out the Leja construction on the upper unit circle in the complex plane in
place of \Gamma = [ - 1, 1] and then projecting the sequence thus obtained onto the real line.
This results in (see, e.g., [13] for a proof)

y(i) = cos\phi (i), i \in \BbbN 0,

\phi (0) = 0, \phi (1) = \pi , \phi (2) = \pi /2, \phi (2n+1) =
\phi (n+2)

2
, \phi (2n+2) = \phi (2n+2) + \pi .

For both Leja and R-Leja nodes, we may utilize any strictly increasing growth function
m with m(0) = 0 to construct nested node sets \scrY k \subset \scrY k+1 as in (3.1). The most
common choice uses sets growing by unit increments, i.e., m(i) = i.
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Besides the Leja construction, Clenshaw--Curtis nodes are also popular collocation
points. Here the node sets \scrY k consist of the extrema of the first-kind Chebyshev
polynomials

\scrY 0 = \{ 0\} , \scrY k = \{  - cos (\pi i /m(k)) : i = 0, . . . ,m(k)\} , k \in \BbbN .

Nestedness of the \scrY k is then achieved by the doubling rule m(k) = 2k for k \geq 1. The
corresponding sequence of nodes (y(i))i\in \BbbN 0

is given, suitably arranged, by

y(0) = 0,

y(1) =  - cos (0) , y(2) =  - cos (\pi ) ,

y(3) =  - cos (1/4\pi ) , y(4) =  - cos (3/4\pi ) , . . . .

Sparse collocation. We consider hierarchical sparse collocation based on nested
sequences of node sets \scrY k as introduced above. Let \scrP k(\Gamma ) denote the set of univariate
polynomials on \Gamma of degree at most k \in \BbbN 0. We can then define for any Hilbert
space-valued continuous function f : \Gamma \rightarrow \scrH two objects:

\bullet a Lagrange interpolant \scrI k : C(\Gamma ;\scrH ) \rightarrow \scrP m(k)(\Gamma ;\scrH );
\bullet a univariate detail operator \Delta k : C(\Gamma ;\scrH ) \rightarrow \scrP m(k)(\Gamma ;\scrH ),

\Delta 0 = \scrI 0, \Delta k := \scrI k  - \scrI k - 1, k \in \BbbN .

With these definitions, we have that

(3.4) \Delta if = 0 \forall f \in \scrP k(\Gamma ,\scrH ), \forall i > m - 1(k).

Since \Delta kf = \scrI kf  - \scrI k - 1f = \scrI k(f  - \scrI k - 1f), and due to the nestedness of the node
sets \scrY k - 1 \subset \scrY k, the detail operators may be expressed as

\Delta kf =

m(k)\sum 
i=m(k - 1)+1

\bigl[ 
f(y(i)) - \scrI n - 1f(y(i))

\bigr] 
\ell 
(m(k))
i ,

\ell 
(m(k))
i (y) :=

m(k)\prod 
j=0,j \not =i

y  - y(j)

y(i)  - y(j)
\in \scrP m(k) for i \in \{ m(k  - 1) + 1, . . . ,m(k)\} .

It is therefore convenient to introduce the notation

(3.5) hi(y) := \ell 
(m(k))
i (y), y \in \Gamma ,

where i \in \{ m(k  - 1) + 1, . . . ,m(k)\} . The polynomials hi, each associated to a node
y(i), i \in \BbbN 0, are called hierarchical Lagrange polynomial,1 hi \in \scrP m(k). The quantity
f(y(i))  - \scrI n - 1f(y(i)) = (f  - \scrI n - 1f)(y(i)) is also called hierarchical surplus. Next,
consider tensorized detail operators

\Delta \bfiti :=

M\bigotimes 
m=1

\Delta im , \Delta \bfiti : C(\Gamma ;\scrH ) \rightarrow \scrP m(\bfiti )(\Gamma ;\scrH ),

1The difference from the standard Lagrange polynomials is that hi is defined using only the
most recently added nodes y(i) with i \in \{ m(k  - 1) + 1, . . . ,m(k)\} , whereas the standard Lagrange
polynomials are redefined for all i \in \{ 1, . . . ,m(k)\} when new nodes are added.
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where m(\bfiti ) = (m(i1), . . . ,m(iM )) \in \BbbN M and

\scrP m(\bfiti ) = span\{ \bfity \bfitj : jm \leq m(im) for m = 1, . . . ,M\} .

Given a (finite) subset \Lambda \subset \scrF , we define the sparse grid collocation operator associated
with the sparse grid \scrY \Lambda by

S\Lambda :=
\sum 
\bfiti \in \Lambda 

\Delta \bfiti , \scrY \Lambda :=
\bigcup 
\bfiti \in \Lambda 

\scrY \bfiti , \scrY \bfiti := \scrY i1 \times \scrY i2 \times \cdot \cdot \cdot \times \scrY iM .

We require the multi-index sets \Lambda \subset \scrF to be downward-closed (or monotone), which
means that \bfiti \in \Lambda implies \bfiti  - \bfite m \in \Lambda , where \bfite m denotes the mth canonical unit
multi-index. Downward-closedness of \Lambda implies three facts (see, e.g., [26]): First,

\scrY \Lambda =
\bigl\{ 
\bfity (\bfitj ) : \bfitj \leq m(\bfiti ), \bfiti \in \Lambda 

\bigr\} 
, \bfity (\bfitj ) := (y(j1) y(j2) \cdot \cdot \cdot y(jM )) \in \Gamma ,

where \bfitj \leq m(\bfiti ) is understood componentwise; second, that the sparse grid collocation
operator yields an approximation in \scrP m(\Lambda )(\Gamma ;\scrH ),

S\Lambda : C(\Gamma ;\scrH ) \rightarrow \scrP m(\Lambda )(\Gamma ;\scrH ), m(\Lambda ) := \{ \bfitj \in \scrF : \bfitj \leq m(\bfiti ) for some \bfiti \in \Lambda \} ;

and third, together with the nestedness of the node sets, that S\Lambda is interpolatory, i.e.,

S\Lambda f(\bfity (\bfiti )) = f(\bfity (\bfiti )) \forall \bfity (\bfiti ) \in \scrY \Lambda .

Remark 3.1. For finite and monotone multi-index sets \Lambda there exist N \in \BbbN multi-
indices \bfiti 1, . . . , \bfiti N \in \Lambda such that

\Lambda =

J\bigcup 
n=1

\scrR \bfiti n , \scrR \bfiti := \{ \bfitj \in \scrF : \bfitj \leq \bfiti \} ,

i.e., the multi-indices \bfiti n can be viewed as the corners of \Lambda . As an immediate conse-
quence, we have

\scrP m(\Lambda )(\Gamma ;\scrH ) =

N\bigoplus 
n=1

\scrP m(\bfiti n)(\Gamma ;\scrH ).

Adaptive sparse collocation algorithms. Two ways to construct monotone
multi-index sets \Lambda for (hierarchical) sparse grid collocation are the classical algorithm
introduced by Gerstner and Griebel in [30] (as well as numerous variations mentioned
in the literature surveyed in the introduction) and the alternative algorithm intro-
duced by Guignard and Nobile in [33]. Both can be seen as specific instances of
the generic Algorithm 2.1. We describe the former here and the latter (or, rather,
a slight variation thereof) in the next section, together with a convergence analysis.
To introduce these algorithms, we need to specify three ``ingredients"": the candidate
set \scrC n, a marking strategy for determining marked sets \scrM n \subset \scrC n, and corresponding
estimates \eta n(\bfitk ) for the error contribution of indices in the candidate set. To this end,
we require the following definitions (see also Figure 3.1):

\bullet The margin Marg(\Lambda ) \subset \scrF of a multi-index set \Lambda \subset \scrF is given by

Marg(\Lambda ) := \{ \bfitk \in \scrF \setminus \Lambda : \bfitk  - \bfite m \in \Lambda for some m \in \BbbN \} .

\bullet The reduced margin R(\Lambda ) \subset Marg(\Lambda ) of a subset \Lambda \subset \scrF is given by

R(\Lambda ) := \{ \bfitk \in Marg(\Lambda ): \bfitk  - \bfite m \in \Lambda \forall m \in \BbbN \} .
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0 1 2 3 4 5 6

0

1

2

3

4

Fig. 3.1. A multi-index set \Lambda \subset \BbbN 2
0 (gray squares) and its margin Marg(\Lambda ) (colored diamonds):

more specifically, the multi-indices of Marg(\Lambda ) that also belong to the reduced margin R(\Lambda ) are shown
in red, the remaining ones in blue. Finally, we mark with yellow circles the indices of Marg(\Lambda ) that
constitute E\Lambda ([2, 2]), i.e., the monotone envelope of \bfitk = [2, 2]. (Color available online.)

\bullet The monotone envelope E\Lambda (\bfitk ) \subset Marg(\Lambda ) of a multi-index \bfitk \in Marg(\Lambda ):

(3.6) E\Lambda (\bfitk ) :=
\bigcap 

\{ E \subset Marg(\Lambda ): \bfitk \in E and \Lambda \cup E is monotone\} .

Note that E\Lambda (\bfitk ) \cup \Lambda is the smallest (in cardinality) monotone multi-index
set containing \Lambda \cup \{ \bfitk \} and that for \bfitk \in R(\Lambda ) we have E\Lambda (\bfitk ) = \{ \bfitk \} by
construction.

The adaptive procedure in [30] now chooses the following:
\bullet As candidate set \scrC n the reduced margin of \Lambda n, i.e., \scrC n = R(\Lambda n).
\bullet As estimators \eta n, approximating the error contribution of \bfitk \in \scrC n by the
Lp-norm of the hierarchical surplus, i.e.,

(3.7) \eta n(\bfitk ) = \| \Delta \bfitk u\| Lp
\mu (\bfGamma ;\scrH ), \bfitk \in R(\Lambda n).

Note that this is merely an error indicator and not a proper estimator, i.e.,
no proof of the properties required by Theorem 2.3 is available. A large body
of literature, however, provides numerical evidence that this error indicator
is quite robust and gives good results in practice.

\bullet As marking strategy to select the index in the reduced margin which max-
imizes the value of \eta n, i.e., \scrM n = \{ arg max\bfitk \in R(\Lambda n) \eta n(\bfitk )\} . An alternative
strategy would be to use D\"orfler marking and mark, for example, the 50\% of
the indices in the reduced margin with the largest \eta n; cf. [20].

Algorithm 3.1 summarizes the Gerstner--Griebel scheme as pseudocode.
Note that, since S\Lambda is interpolatory for \scrY n nested and \Lambda monotone, we can effi-

ciently compute \eta n in (3.7), and therefore S\Lambda n+1
based on S\Lambda n

. For this, let \bfiti \in R(\Lambda n)
and \Lambda n+1 = \Lambda n \cup \{ \bfiti \} . Then

(3.8) \Delta \bfiti u =
\sum 

\bfity (\bfitj )\in \scrY \bfiti \setminus \scrY \Lambda 

[u(\bfity (\bfitj )) - (S\Lambda n
u)(\bfity (\bfitj ))]h\bfitj , h\bfitj (\bfity ) :=

M\prod 
m=1

hjm(ym),

where the hi are the univariate hierarchical Lagrange polynomials defined in (3.5) and
the set of additional nodes \scrY +

\bfiti := \scrY \bfiti \setminus \scrY \Lambda is

\scrY +
\bfiti = \scrY +

i1
\times \scrY +

i2
\times \cdot \cdot \cdot \times \scrY +

iM
, \scrY +

i := \scrY i \setminus \scrY i - 1 =
\bigl\{ 
y(j) : m(i - 1) + 1 \leq j \leq m(i)

\bigr\} 
.
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Algorithm 3.1 Adaptive sparse grid algorithm of Gerstner and Griebel [30].

1: \Lambda 0 := \{ 0\} 
2: u0 := S\Lambda 0

u
3: for n \in \BbbN 0 do
4: Compute reduced margin R(\Lambda n)
5: Compute error indicators (reduced margin):

\eta n(\bfitk ) = \| \Delta \bfitk u\| Lp
\mu (\Gamma ;\scrH ), \bfitk \in R(\Lambda n)

6: Choose \bfitk \ast 
n := arg max\bfitk \in R(\Lambda n) \eta n(\bfitk )

7: Set \Lambda n+1 := \Lambda n \cup \{ \bfitk \ast 
n\} and un+1 := S\Lambda n+1

u.
8: end for

The main shortcoming of this approach is that the computation of \Delta \bfiti u requires solv-
ing the PDE to evaluate u(\bfity (\bfiti )), and for this reason one may refer to this algorithm as
fully a posteriori. Clearly, it would be a waste of computational resources to discard
these additional PDE solutions; therefore, practical implementations of Algorithm
3.1 ultimately augment \Lambda to \Lambda end = \Lambda n \cup R(\Lambda n) at the last iteration and return
uend = S\Lambda end

instead of S\Lambda n
. Nonetheless, this procedure is ``suboptimal"" in terms of

computational effort. If the reduced margin is large, this operation can be expensive.
Moreover, as previously mentioned, the choice of \eta n in (3.7) is a heuristic, and no con-
vergence proof for the adaptive algorithm is available. To overcome this shortcoming,
we introduce and analyze in the next section another variation of Algorithm 2.1, for
which we can prove convergence.

We close this section by pointing out that using a hierarchical basis is convenient
but not necessary, and the standard (nonhierarchical) Lagrange basis can also be
used to implement Algorithm 3.1. To this end, one would need to draw on the so-
called combination technique [32] for evaluating the detail operators \Delta \bfiti u as a linear
combination of tensorized Lagrange interpolants,

\Delta \bfiti u =
\sum 

\bfitj \in \{ 0,1\} M

( - 1)| \bfitj | (\scrI i1 - j1 \otimes \scrI i2 - j2 \otimes \cdot \cdot \cdot \otimes \scrI iM - jM )u,

and to adjust the computation of S\Lambda u accordingly; see, e.g., [42, 33]. This has the
advantage that nonnested sequences of node sets (such as zeros of orthogonal polyno-
mials) can be used if desired; see, e.g., [42, 26].

4. Adaptive sparse collocation for the diffusion problem. We now turn
our attention to our above-mentioned slight variation of the adaptive algorithm by
Guignard and Nobile from [33]; see Remark 4.2 below for a discussion on the difference
between the two versions. This algorithm is based on the following error estimator,
for which reliability was established in [33].

Proposition 4.1 ([33, Proposition 4.3]). Let u denote the solution of the random
elliptic PDE given in (2.1) with linear diffusion coefficient as in (2.2), and let \Lambda \subset \scrF 
be a monotone subset such that the sparse grid collocation operator S\Lambda as introduced
in section 3 is interpolatory. Then for any p \in [1,\infty ] we have

\| u - S\Lambda u\| Lp
\mu (\bfGamma ;H1

0 (D)) \leq 
1

amin

\sum 
\bfitk \in Marg(\Lambda )

\| \Delta \bfitk (a\nabla S\Lambda u)\| Lp
\mu (\bfGamma ;L2(D)).
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Proposition 4.1 suggests \eta n(\bfitk ) := \| \Delta \bfitk (a\nabla S\Lambda n
u)\| Lp

\mu (\bfGamma ;L2(D)) as an error estimator
for adaptively constructing the sparse grid approximations un = S\Lambda n

u and also to
consider the entire margins Marg(\Lambda n) as candidate sets. This yields Algorithm 4.1.
Note here that the value p \in [1,\infty ] has to be chosen in advance and that \scrC n :=
Marg(\Lambda n) \subset \scrF is, in fact, finite for finite M . Moreover, we highlight that Proposition
4.1 implies that Algorithm 4.1 satisfies the first assumption (reliable error estimator)
of the abstract convergence result, stated in Theorem 2.3. Besides that, also the third
assumption of Theorem 2.3 is satisfied by construction, i.e., by the marking strategy
\scrM n := E\Lambda n

(\bfitk \ast 
n) (where E\Lambda n

(\bfitk \ast 
n) is the monotone envelope of \Lambda n; see (3.6)) and the

choice of \bfitk \ast 
n; cf. Remark 2.4.

Algorithm 4.1 Adaptive sparse grid algorithm for the diffusion problem (2.1) (vari-
ation of Guignard--Nobile in [33]).

1: \Lambda 0 := \{ 0\} 
2: u0 := S\Lambda 0

u
3: for n \in \BbbN 0 do
4: compute margin as candidate set \scrC n := Marg(\Lambda n)
5: compute error estimators:

(4.1) \eta n(\bfitk ) := \| \Delta \bfitk (a\nabla un)\| Lp
\mu (\bfGamma ;L2(D)), \bfitk \in Marg(\Lambda n)

6: choose \bfitk \ast 
n := arg max\bfitk \in \scrC n

\eta n(\bfitk )
7: set \scrM n := E\Lambda n

(\bfitk \ast 
n)

8: set \Lambda n+1 := \Lambda n \cup \scrM n

9: compute un+1 := S\Lambda n+1u.
10: end for

Remark 4.2 (adaptive algorithm in [33]). The difference between Algorithm 4.1
and its original version by Guignard and Nobile in [33] is that in [33] the following
profit indicators are introduced in place of the error estimator \eta n(\bfitk ) given in (4.1):

(4.2) \pi n(\bfitk ) :=

\sum 
\bfiti \in E\Lambda n (\bfitk ) \eta n(\bfiti )\sum 
\bfiti \in E\Lambda n (\bfitk ) W (\bfiti )

, \bfitk \in Marg(\Lambda n),

with W (\bfiti ) denoting the work contribution of the multi-index \bfiti , i.e., the number of
new grid points in \scrY +

\bfiti required to evaluate \Delta \bfiti , which is given by

W (\bfiti ) := | \scrY +
\bfiti | =

M\prod 
m=1

(m(im) - m(im  - 1)).

Then \bfitk \ast 
n is chosen as

(4.3) \bfitk \ast 
n := arg max

\bfitk \in \scrC n

\pi n(\bfitk ), \scrM n := E\Lambda n(\bfitk 
\ast 
n).

In the case of linearly growing univariate node sets m(i) = i we have W (\bfiti ) \equiv 1, i.e.,
\pi n(\bfitk ) =

1
| E\Lambda n (\bfitk )| 

\sum 
\bfiti \in E\Lambda n (\bfitk ) \eta n(\bfiti ) corresponds to the average error estimator on the

monotone envelope E\Lambda n
(\bfitk ). We provide a more detailed discussion of both versions

of the adaptive algorithm for the elliptic problem in section 4.2 with a focus on
computational aspects.
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We now turn to our main result stating the convergence of Algorithm 4.1, under
rather mild assumptions on the employed univariate interpolation nodes. Specifically,
we assume an algebraic growth of the operator norm of the associated detail operators

(4.4) \| \Delta k\| \infty := sup
0\not \equiv f\in C(\Gamma ;\BbbR )

\| \Delta kf\| C(\Gamma ;\BbbR )

\| f\| C(\Gamma ;\BbbR )
, k \in \BbbN 0.

Theorem 4.3 (convergence of Algorithm 4.1). Given the assumptions of Theorem
2.1 and assuming there exist constants 0 \leq c, \theta < \infty such that

(4.5) \| \Delta k\| \infty \leq (1 + ck)\theta \forall k \in \BbbN 0,

the approximations un constructed by Algorithm 4.1 satisfy

lim
n\rightarrow \infty 

\| u - un\| Lp
\mu (\bfGamma ;H1

0 (D)) = 0.

We already established above that Algorithm 4.1 satisfies the first and third as-
sumptions of the abstract convergence theorem, i.e., Theorem 2.3. It thus remains
to verify the second assumption. This turns out to be somewhat technical and is
presented in detail in section 5.

We now comment on the additional assumption (4.5) of Theorem 4.3 regarding
the operator norms \| \Delta k\| \infty of the univariate detail operators. Condition (4.5) is
rather mild and satisfied, for example, if the corresponding interpolation operators \scrI k
possess an at most algebraically increasing Lebesgue constant:

(4.6) \| \scrI k\| \infty := sup
f : \| f\| C(\Gamma ;\BbbR )=1

\| \scrI kf\| C(\Gamma ;\BbbR ) \leq c1 + c2n
\theta \forall k \geq 1

for constants 0 \leq c1, c2, \theta < \infty , since then with c = c(c1, c2, \theta ) < \infty 

\| \Delta k\| \infty \leq \| \scrI k\| \infty + \| \scrI k - 1\| \infty \leq 2c1 + 2c2k
\theta \leq ck\theta \forall k \geq 1,

and \Delta 0 = \scrI 0, i.e., \| \Delta 0\| \infty = \| \scrI 0\| \infty = 1. Note that the algebraic growth bound
(4.6) holds, for instance, for interpolation based on Leja and R-Leja nodes y(j) \in 
[ - 1, 1] introduced above; see [13, 14] and references therein, where such bounds were
established for Leja and R-Leja nodes, respectively:

\| \scrI k\| \infty \leq 5k2 log k for k \geq 2, \| \scrI k\| \infty \leq 2k for k \geq 1.

Moreover, for Clenshaw--Curtis nodes combined with the doubling rule m(k) = 2k,
k \geq 1, we obtain by classical results [40, 11] that

\| \scrI k\| \infty \leq 1 +
2

\pi 
log (m(k)) = 1 +

2 log 2

\pi 
k, k \geq 1.

4.1. Extensions of Theorem 4.3. In this subsection we comment on two pos-
sible extensions of our convergence analysis.

Convergence of the adaptive algorithm by Guignard and Nobile in
[33]. As outlined in Remark 4.2, the adaptive algorithm proposed by Guignard and
Nobile in [33] differs from Algorithm 4.1 only in the marking strategy or, to be more
precise, by the choice of \bfitk \ast 

n; see (4.3). Thus, in order to extend Theorem 4.3 to this
algorithm it suffices to verify that the third assumption of Theorem 2.3 also holds
for the marking strategy (4.3) w.r.t. to the error estimators \eta n given in (4.1). We
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CONVERGENCE OF ADAPTIVE STOCHASTIC COLLOCATION 673

focus on the case of Leja nodes with a linear growth function m(i) \equiv i here, since the
version with Clenshaw--Curtis nodes was analyzed in the recent work on convergence
[29] mentioned in the introduction. If Leja points are considered, we can easily ensure
convergence by a mild additional assumption: there exists a constant 0 < c < \infty such
that for any monotone multi-index set \Lambda we have

(4.7) max
\bfitk \in Marg(\Lambda )

\eta \Lambda (\bfitk ) \leq c max
\bfitk \in R(\Lambda )

\eta \Lambda (\bfitk ), \eta \Lambda (\bfitk ) := \| \Delta \bfitk (a\nabla S\Lambda u)\| Lp
\mu (\bfGamma ;L2(D));

i.e., the largest error estimator in the full margin can be bounded by the constant
times the largest error estimator in the reduced margin. Indeed, by construction of
the profits \pi n in (4.2) and of the marking strategy in (4.3) we have for m(i) \equiv i that
\pi n(\bfitk ) = \eta n(\bfitk ) if \bfitk \in R(\Lambda n) and

max
\bfitk \in R(\Lambda n)

\eta n(\bfitk ) = max
\bfitk \in R(\Lambda n)

\pi n(\bfitk ) \leq 
\sum 

\bfiti \in \scrM n
\eta n(\bfiti )\sum 

\bfiti \in \scrM n
W (\bfiti )

\leq 
\sum 

\bfiti \in \scrM n

\eta n(\bfiti ).

Hence, condition (4.7) then guarantees that the third assumption of Theorem 2.3 is
also satisfied for the marking strategy (4.3). We consider (4.7) as a plausible assump-
tion in practice, although pathological counterexamples may possibly be constructed.

Convergence of the Gerstner--Griebel algorithm. The abstract conver-
gence result, Theorem 2.3, as well as our techniques for proving Theorem 4.3 can
also be exploited to show convergence of the adaptive algorithm by Gerstner and
Griebel in [30], i.e., of Algorithm 3.1. To this end, we need of course to assume
the reliability of the error indicators \eta n(\bfitk ) = \| \Delta \bfitk u\| Lp

\mu (\bfGamma ;\scrH ). Since these hierarchical
surpluses are not connected to the model problem (2.1), as is the case for the residual-
based error estimators (4.1), we state the theorem in a more general setting; i.e., we
consider general Hilbert space-valued mappings u : \Gamma \rightarrow \scrH and, moreover, we do not
restrict ourselves to solutions u that admit a Taylor expansion, but rather consider
the more general case of a solution that admits an expansion over polynomials Pk

with a certain growth of their maximum norm. Reliability is also not proved here but
merely assumed and must be checked on a case-by-case basis.

Theorem 4.4 (convergence of Algorithm 3.1 by Gerstner and Griebel [30]). Let
\scrH be a separable Hilbert space, and let u \in C(\Gamma ;\scrH ) allow for a polynomial expansion
(2.6) converging in Lp

\mu (\Gamma ;\scrH ) for a p \in [1,\infty ] where the corresponding univariate
polynomials Pk \in \scrP k(\Gamma ;\BbbR ) satisfy

(4.8) \| Pk\| C(\Gamma ;\BbbR ) \leq (1 + \widetilde ck)\widetilde \theta 
for finite constants \widetilde c, \widetilde \theta \geq 0. Further assume that

1. the coefficients u\bfitk \in \scrH , \bfitk \in \scrF , of the polynomial expansion (2.6) satisfy\bigl( 
\bfitrho \bfitk \| u\bfitk \| \scrH 

\bigr) 
\bfitk \in \scrF \in \ell 2(\scrF )

for a weight vector \bfitrho \in \BbbR M with 1 < \rho m for all m = 1, . . . ,M ;
2. there exists a constant C < \infty such that for any finite and monotone \Lambda \subset \scrF 

(4.9) \| u - S\Lambda u\| Lp
\mu (\bfGamma ;\scrH ) \leq C

\sum 
\bfitk \in R(\Lambda )

\| \Delta \bfitk u\| Lp
\mu (\bfGamma ;\scrH );

3. the univariate detail operators \Delta k satisfy (4.5) for finite constants 0 \leq c, \theta <
\infty .
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674 M. EIGEL, O. G. ERNST, B. SPRUNGK, AND L. TAMELLINI

Then we have for the approximations un constructed by Algorithm 3.1 that

lim
n\rightarrow \infty 

\| u - un\| Lp
\mu (\bfGamma ;\scrH ) = 0.

Note that the first item on the u\bfitk is satisfied for the model problem by Theorem
2.1 and that for Taylor polynomials condition (4.8) holds with \widetilde c = \widetilde \theta = 0. This theo-
rem provides an overview of the three most important ``ingredients"" for convergence of
adaptive collocation: exponentially decaying coefficients u\bfitk , merely algebraic growth
of norms of the \Delta \bfitk , and reliability of the employed error indicators. The proof of
Theorem 4.4 is significantly easier than that of Theorem 4.3, because the error indi-
cators do not depend on the current approximation. Nonetheless, proving Theorem
4.4 requires some auxiliary results stated in section 5 and is therefore postponed to
section 5.2.

4.2. Computational considerations. Having established the convergence of
our variant of the algorithm by Guignard and Nobile, as stated in Algorithm 4.1, as
well as of the Gerstner--Griebel adaptive sparse grid algorithm, Algorithm 3.1 (abbre-
viated GG algorithm in the following), we comment on the computational advantages
and disadvantages of both:

1. The GG algorithm considers candidate indices in the reduced margin instead
of the full margin. This makes treating problems with high-dimensional pa-
rameters somewhat easier with the GG algorithm, since the size of the full
margin grows substantially faster than the reduced margin.

2. However, as already noted, the GG algorithm is fully a posteriori : evalu-
ating the error indicators involves actually evaluating u (i.e., solving addi-
tional PDEs) on the new collocation points \scrY +

n (\bfitk ) = \scrY \bfitk \setminus \scrY \Lambda n\cup \{ \bfitk \} for each
\bfitk \in R(\Lambda n); see (3.7), (3.8), and line 5 of Algorithm 3.1. By contrast, Algo-
rithm 4.1 computes its error estimator by evaluating the current sparse grid
interpolant un at the new collocation points \scrY +

n (\bfitk ) for \bfitk \in Marg(\Lambda n). This
is a significant advantage of the error estimator-based algorithms (both the
original version by Guignard and Nobile and our variant, Algorithm 4.1) over
the GG algorithm, in particular if solving the PDE for individual parameter
values is computationally expensive (even though these additional PDE solves
are not discarded but ultimately enter the final approximation returned by
Algorithm 3.1, as already discussed in section 3).

3. On the other hand, because the error estimators are based on the current ap-
proximation, they have to be recomputed in each step of Algorithm 4.1, i.e.,
in general \eta n(\bfitk ) \not = \eta n+1(\bfitk ) for any \bfitk \in Marg(\Lambda n)\cap Marg(\Lambda n+1). This is not
required by the GG algorithm. Thus, the evaluation of the sparse grid inter-
polant un should be implemented in a very efficient way, since this operation
is repeated at each iteration for an increasingly large number of multi-indices
in the margin. In this sense, the hierarchical representation of the sparse grid
interpolant via hierarchical Lagrange polynomials and hierarchical surpluses
is to be preferred over the classical combination technique representation [32],
since the former usually yields a faster evaluation---at the price of a higher
offline-cost due to the computation of the surpluses.

4. The hierarchical sparse grid representation as well as the error estimators
in [33] for the diffusion problem require nested univariate node sets---for an
efficient implementation and reliability, respectively. By contrast, the GG
algorithm also works with nonnested nodes; see, e.g., [42, 26, 27]. This might
be a rather minor point, since suitable nested node families in the form of
Leja or Clenshaw--Curtis nodes are available.
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As an extensive numerical study of the error estimator-based adaptive scheme
has been already carried out by Guignard and Nobile in [33], we present no further
numerical experiments here. In their study, they observed for several numerical test
examples of the diffusion problem (2.1) that the error estimator stated in Proposi-
tion 4.1 is sharp. These test examples included different dimensions of the physical
domain (d = 1, 2) as well as different numbers M of parameter variables and different
expansion functions am in the definition of the diffusion coefficient. Besides this, a
second set of experiments in [33] compared the performance of the error estimator--
based algorithm and the GG algorithm; both showed a similar performance w.r.t. the
number of grid points in the corresponding adaptively constructed sparse grids \scrY \Lambda n

(recall that each sparse grid point corresponds to a PDE solve); however, if all PDE
solves (i.e., also those necessary for evaluating the profits on the margin) are taken
into account, then the GG algorithm performed significantly less effectively.

Although the algorithm by Guignard and Nobile in [33] slightly differs from Al-
gorithm 4.1 as considered here, these differences are negligible for the numerical per-
formance for the following reasons:

\bullet The version of Algorithm 4.1 proposed in [33] considers normalized profit in-
dicators \pi n for the indices \bfitk ; see (4.2). However, previous numerical evidence
for the GG algorithm suggests that whether error indicators or profit indica-
tors are used does not play a major role for the convergence; see, e.g., [42].
Therefore, for the same reasons, one can expect Algorithm 4.1 to exhibit nu-
merical behavior similar to the original adaptive algorithm by Guignard and
Nobile in [33].

\bullet Although the second set of results in [33] is for Clenshaw--Curtis collocation
points only, it is well known that in practice the performance of Leja and
Clenshaw--Curtis points is quite similar for adaptive sparse collocation using
the GG algorithm; see, e.g., [41]. Thus, it is again reasonable to assume that
similar results to those reported in [33] also hold for Algorithm 4.1 using Leja
nodes.

\bullet The tests in [33] are performed with p = \infty only, both for the evaluation of
the error and for the computation of the error indicator. Our theory covers
any p \in [1,\infty ], and we expect that GG and Algorithm 4.1 would behave
similarly also for p \not = \infty .

5. Proofs of Theorems 4.3 and 4.4. We begin this section by stating four
auxiliary results required for the subsequent proof of our main results, Theorems 4.3
and 4.4. First, we recall a statement on the operator norm of the tensorized detail
operators \Delta \bfiti given in (4.4).

Proposition 5.1 ([15, section 3]). For the operator norm (4.4) of the tensorized
detail operators

\| \Delta \bfiti \| \infty = sup
0 \not \equiv f\in C(\bfGamma ;\BbbR )

\| \Delta \bfiti f\| C(\bfGamma ;\BbbR )

\| f\| C(\bfGamma ;\BbbR )
, \bfiti \in \scrF ,

there holds

\| \Delta \bfiti \| \infty =

M\prod 
m=1

\| \Delta im\| \infty .

Next, we provide an estimate for the sparse grid collocation operator S\Lambda applied to
Taylor polynomials/multivariate monomials given an algebraically growing operator
norm of the univariate detail operators. This result is similar to [26, Proposition 3.1].
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Proposition 5.2. Let there exist constants 1 < c < \infty and \theta < \infty such that

\| \Delta i\| \infty \leq (1 + ci)\theta \forall i \in \BbbN .

Then for the Taylor polynomials T\bfitk (\bfity ) := \bfity \bfitk , \bfitk \in \scrF , and \Gamma = [ - 1, 1]M we have

sup
\Lambda \subseteq \scrF 

\| S\Lambda T\bfitk \| C(\bfGamma ;\BbbR ) \leq 
M\prod 

m=1

(1 + ckm)1+\theta , \bfitk \in \scrF .

Proof. First, notice that with m - 1 as in (3.2) and using (3.4) we have

\Delta \bfiti T\bfitk =

M\prod 
m=1

\Delta imTkm \equiv 0

if im is such that m(im  - 1) \geq km, i.e., if im > m - 1(km) for any m. Thus, with
\scrR \bfitk := \{ \bfitj \in \scrF : jm \leq km \forall m = 1, . . . ,M\} , we obtain

sup
\Lambda \subseteq \scrF 

\| S\Lambda T\bfitk \| C(\bfGamma ;\BbbR ) = max
\Lambda \subseteq \scrR m - 1(\bfitk )

\| S\Lambda T\bfitk \| C(\bfGamma ;\BbbR ),

where m - 1(\bfitk ) = (m - 1(k1), . . . ,m
 - 1(kM )) \in \BbbN M

0 . Moreover, the triangle inequality
yields

\| S\Lambda T\bfitk \| C(\bfGamma ;\BbbR ) \leq 
\sum 
\bfiti \in \Lambda 

\| \Delta \bfiti T\bfitk \| C(\bfGamma ;\BbbR ) \leq 
\sum 
\bfiti \in \Lambda 

\| \Delta \bfiti \| \infty \| T\bfitk \| C(\bfGamma ;\BbbR ) \leq 
\sum 
\bfiti \in \Lambda 

M\prod 
m=1

(1 + cim)\theta .

Since we are considering \Lambda to be a subset of \scrR m - 1(\bfitk ), we can further bound the last
term as\sum 
\bfiti \in \Lambda 

M\prod 
m=1

(1+cim)\theta \leq 
\sum 

\bfiti \in \scrR m - 1(\bfitk )

M\prod 
m=1

(1+ckm)\theta \leq | \scrR \bfitk | 
M\prod 

m=1

(1+ckm)\theta =

M\prod 
m=1

(1+ckm)1+\theta ,

since | \scrR m - 1(\bfitk )| \leq | \scrR \bfitk | =
\prod M

m=1(1 + km).

Furthermore, we require a rather general result on the summability of sequences
on \scrF .

Lemma 5.3 ([18, Lemmas 2 and 3]). For any 0 < q < 1, one has

\bfitrho \in \BbbR M and min
m=1,...,M

| \rho m| > 1 \Leftarrow \Rightarrow 
\bigl( 
\bfitrho  - \bfitk 

\bigr) 
\bfitk \in \scrF \in \ell q(\scrF ).

Moreover, for any 0 < q < 1 and any algebraic factor

\beta (\bfitk ) :=
M\prod 

m=1

(1 + ckm)\theta , \bfitk \in \scrF ,

with finite c, \theta \geq 0, one has

\bfitrho \in \BbbR M and min
m=1,...,M

| \rho m| > 1 \Leftarrow \Rightarrow 
\bigl( 
\beta (\bfitk ) \bfitrho  - \bfitk 

\bigr) 
\bfitk \in \scrF \in \ell q(\scrF ).

Note that the original statement in [18, Lemmas 2 and 3] is for the case of count-
able sequences \bfitrho = (\rho m)m\in \BbbN \in \ell q(\BbbN ).

The last auxiliary result provides a simple estimate for the tails of converging
series of the same form

\bigl( 
\beta (\bfitk ) \bfitrho  - \bfitk 

\bigr) 
\bfitk \in \scrF as considered in the previous lemma.
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Proposition 5.4. Let \bfitrho \in \BbbR M be a vector of numbers \rho m > 1, m = 1, . . . ,M ,
and let

\beta (\bfitk ) :=
M\prod 

m=1

(1 + ckm)\theta , \bfitk \in \scrF ,

be an algebraic factor with finite c, \theta \geq 0. Then we have for any \bfitk \in \scrF 

(5.1)
\sum 
\bfitj \geq \bfitk 

\beta (\bfitj )\bfitrho  - \bfitj \leq C \beta (\bfitk )\bfitrho  - \bfitk , C :=
\sum 
\bfitk \in \scrF 

\beta (\bfitk )\bfitrho  - \bfitk < \infty .

Proof. First, note that by Lemma 5.3 the constant C defined in (5.1) is indeed
finite. By refactoring, we have

\sum 
\bfitj \geq \bfitk 

\beta (\bfitj )\bfitrho  - \bfitj =
\sum 
\bfitj \geq \bfitk 

M\prod 
m=1

(1 + cjm)\theta \rho  - jm
m =

M\prod 
m=1

\left(  \sum 
jm\geq km

(1 + cjm)\theta \rho  - jm
m

\right)  .

We then obtain, for each m = 1, . . . ,M ,

\sum 
jm\geq km

(1 + cjm)\theta \rho  - jm
m = (1 + ckm)\theta \rho  - km

m

\infty \sum 
j=0

\biggl( 
1 + cj + ckm

1 + ckm

\biggr) \theta 

\rho  - j
m

\leq (1 + ckm)\theta \rho  - km
m

\infty \sum 
j=0

(1 + cj)
\theta 
\rho  - j
m .

Thus, the refactoring argument can be continued as

\sum 
\bfitj \geq \bfitk 

\beta (\bfitj )\bfitrho  - \bfitj =
\sum 
\bfitj \geq \bfitk 

M\prod 
m=1

(1 + cjm)\theta \rho  - jm
m

\leq 
M\prod 

m=1

\left(  (1 + ckm)\theta \rho  - km
m

\sum 
jm\geq 0

(1 + cjm)\theta \rho  - jm
m

\right)  
= \beta (\bfitk )\bfitrho  - \bfitk 

\sum 
\bfitj \geq 0

M\prod 
m=1

(1 + cjm)\theta \rho  - jm
m = C \beta (\bfitk )\bfitrho  - \bfitk ,

with C as in (5.1).

5.1. Proof of Theorem 4.3.

Proof. We prove Theorem 4.3 by applying Theorem 2.3. To this end, we need to
verify the three assumptions of Theorem 2.3. The first holds due to Proposition 4.1
and the third by construction; cf. Remark 2.4. Hence, it remains to verify the second
assumption. To this end, we set

(5.2) \widehat \eta n(\bfitk ) := \Biggl\{ \| \Delta \bfitk (a\nabla S\Lambda n
u)\| Lp

\mu (\bfGamma ;L2(D)) \bfitk \in \Lambda n \cup \scrC n,
0 otherwise

and proceed in two steps (see also Remark 2.4):
1. We define the (formal) limit

(5.3) u\infty :=
\sum 

\bfitk \in \Lambda \infty 

\Delta \bfitk u, \Lambda \infty :=
\bigcup 
n\in \BbbN 

\Lambda n,
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and verify in Lemma 5.5 below that u\infty \in C(\Gamma ;H1
0 (D)) as well as

lim
n\rightarrow \infty 

\| u\infty  - un\| C(\bfGamma ;H1
0 (D)) = 0.

2. We then set

(5.4) \eta \infty (\bfitk ) :=

\Biggl\{ 
\| \Delta \bfitk (a\nabla u\infty )\| Lp

\mu (\bfGamma ;L2(D)) \bfitk \in \Lambda \infty \cup Marg(\Lambda \infty ),

0 otherwise

and show in Lemma 5.7 that

lim
n\rightarrow \infty 

\| \eta \infty  - \widehat \eta n\| \ell 1 = 0,

which concludes the proof.

Lemma 5.5. Given the assumptions of Theorem 4.3, the un, n \in \BbbN , form a
Cauchy sequence in C(\Gamma ;H1

0 (D)). In particular, u\infty given in (5.3) is its well-defined
limit in C(\Gamma ;H1

0 (D)).

Proof. We abbreviate the norms in C(\Gamma ;H1
0 (D)) and C(\Gamma ;\BbbR ) by \| \cdot \| C . Fur-

thermore, let \bfitrho \in \BbbR M be such that 1 < \rho m < \alpha  - 1 as in (2.5) and let T\bfitk and t\bfitk ,
\bfitk \in \scrF , denote the multivariate Taylor polynomials and the corresponding Taylor co-
efficients of u, respectively. For n,m \in \BbbN with n \leq m we obtain by the triangle and
Cauchy--Schwarz inequalities

\| um  - un\| C =
\bigm\| \bigm\| S\Lambda m\setminus \Lambda n

u
\bigm\| \bigm\| 
C
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfitk \in \scrF 

t\bfitk S\Lambda m\setminus \Lambda n
T\bfitk 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
C

\leq 
\sum 
\bfitk \in \scrF 

\| t\bfitk \| \scrH 
\bigm\| \bigm\| S\Lambda m\setminus \Lambda n

T\bfitk 

\bigm\| \bigm\| 
C

\leq 

\Biggl( \sum 
\bfitk \in \scrF 

\bfitrho 2\bfitk \| t\bfitk \| 2\scrH 

\Biggr) 1/2 \Biggl( \sum 
\bfitk \in \scrF 

\bfitrho  - 2\bfitk 
\bigm\| \bigm\| S\Lambda m\setminus \Lambda n

T\bfitk 

\bigm\| \bigm\| 2
C

\Biggr) 1/2

,

where by Theorem 2.1

(5.5) Cu,\bfitrho :=

\Biggl( \sum 
\bfitk \in \scrF 

\bfitrho 2\bfitk \| t\bfitk \| 2\scrH 

\Biggr) 1/2

< \infty .

Since \Delta \bfiti T\bfitk = 0 if im > m - 1(km) for any m we have by Proposition 5.1 and the
assumptions that\bigm\| \bigm\| S\Lambda m\setminus \Lambda n

T\bfitk 

\bigm\| \bigm\| 
C
\leq 

\sum 
\bfiti \in \Lambda m\setminus \Lambda n

\| \Delta \bfiti T\bfitk \| C \leq 
\sum 

\bfiti \in \Lambda \infty \setminus \Lambda n

\| \Delta \bfiti T\bfitk \| C

=
\sum 

\bfiti \in (\Lambda \infty \setminus \Lambda n)\cap \scrR m - 1(\bfitk )

\| \Delta \bfiti T\bfitk \| C

\leq gn(\bfitk ) :=
\sum 

\bfiti \in (\Lambda \infty \setminus \Lambda n)\cap \scrR m - 1(\bfitk )

M\prod 
m=1

(1 + ckm)\theta ,

where \scrR m - 1(\bfitk ) = \{ \bfiti \in \scrF : \bfiti \leq m - 1(\bfitk )\} . Since for any of the finitely many \bfiti \in 
(\Lambda \infty \setminus \Lambda n)\cap \scrR m - 1(\bfitk ) there exists an n0 \in \BbbN such that \bfiti \in \Lambda n for all n \geq n0, we obtain

lim
n\rightarrow \infty 

gn(\bfitk ) = lim
n\rightarrow \infty 

g2n(\bfitk ) = 0 \forall \bfitk \in \scrF .
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Moreover, we conclude as in the proof of Proposition 5.2

gn(\bfitk ) \leq 
\sum 

\bfiti \in \scrR m - 1(\bfitk )

M\prod 
m=1

(1 + ckm)\theta \leq g(\bfitk ) :=
M\prod 

m=1

(1 + ckm)1+\theta .

By Lemma 5.3 we have \sum 
\bfitk \in \scrF 

\bfitrho  - 2\bfitk g(\bfitk )2 < \infty ,

so that g2 : \scrF \rightarrow [0,\infty ) serves as a summable dominating mapping of the g2n : \scrF \rightarrow 
[0,\infty ) and we obtain by Lebesgue's dominated convergence theorem

lim
n\rightarrow \infty 

\sum 
\bfitk \in \scrF 

\bfitrho  - 2\bfitk gn(\bfitk )
2 = 0.

Thus, since

\| um  - un\| 2C \leq C2
u,\bfitrho 

\sum 
\bfitk \in \scrF 

\bfitrho  - 2\bfitk gn(\bfitk )
2 \forall m \geq n,

we conclude that the approximations un =
\sum 

\bfiti \in \Lambda n
\Delta \bfiti u form a Cauchy sequence in

the (complete) Banach space C(\Gamma ;H1
0 (D)) with u\infty =

\sum 
\bfiti \in \Lambda \infty 

\Delta \bfiti u as its limit, since
\Lambda n \uparrow \Lambda \infty .

For the second step of the proof of Theorem 4.3, we first state an important
lemma concerning the decay of the error estimators.

Lemma 5.6. Let the assumptions of Theorem 4.3 be satisfied, and let \Lambda \subset \scrF be
an arbitrary monotone subset. Then there exists a constant C = C(M,\bfitrho , c, \theta , a) < \infty 
such that for

\eta (\bfitk , S\Lambda u) := \| \Delta \bfitk (a\nabla S\Lambda u)\| Lp
\mu (\bfGamma ;L2(D)), \bfitk \in \scrF ,

we have for any \bfitk \in \scrF 

\eta (\bfitk , S\Lambda u) \leq C g(\bfitk ), g(\bfitk ) :=

\Biggl( 
M\prod 

m=1

(1 + ckm)2\theta +1

\Biggr) 
\bfitrho  - \bfitk .

Proof. Set u\Lambda := S\Lambda u. By linearity \Delta \bfitk (a\nabla u\Lambda ) for \bfitk \in \scrF can be written as

\Delta \bfitk [a\nabla u\Lambda ] = \Delta \bfitk 

\Biggl[ 
a
\sum 
\bfiti \in \Lambda 

\Delta \bfiti \nabla u

\Biggr] 
=
\sum 
\bfiti \in \Lambda 

\Delta \bfitk [a\Delta \bfiti \nabla u] .

Moreover, using the Taylor expansion of the solution u we deduce that

\Delta \bfitk [a\Delta \bfiti \nabla u] = \Delta \bfitk 

\left[  a\Delta \bfiti 

\sum 
\bfitj \in \scrF 

(\nabla t\bfitj ) T\bfitj 

\right]  =
\sum 
\bfitj \in \scrF 

(\nabla t\bfitj ) \Delta \bfitk [a\Delta \bfiti T\bfitj ] .(5.6)

We observe that for certain combinations of \bfiti , \bfitj , and \bfitk it holds that \Delta \bfitk [a\Delta \bfiti T\bfitj ] \equiv 0.
First of all,

\Delta \bfiti T\bfitj =

M\prod 
m=1

(\Delta imTjm) \equiv 0 if \exists m : jm \leq m(im  - 1),
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since then \Delta imTjm \equiv 0. Second, the function a\Delta \bfiti T\bfitj is a polynomial in \bfity belonging
to the space

\scrP m(\bfiti )+\bfone := span \{ \bfity \bfitp : pm \leq m(im) + 1 for m = 1, . . . ,M\} ,

since a is affine in \bfity . Hence,

\Delta \bfitk [a\Delta \bfiti T\bfitj ] \equiv 0 if \exists m : m(im) + 1 \leq m(km  - 1).

We now combine both necessary conditions \bfitj \geq m(\bfiti  - 1)+1 andm(\bfiti )+1 \geq m(\bfitk  - 1)+1
for \Delta \bfitk [a\Delta \bfiti T\bfitj ] \not \equiv 0 to

\bfitj \geq m(\bfitk  - 2) + 1 \geq \bfitk  - 1,

where the last inequality follows due to m(k) \geq k. Thus, introducing the notation
[\bfitk  - 1]+ := (max\{ km  - 1, 0\} )Mm=1, the sum (5.6) reduces to

\Delta \bfitk [a\Delta \bfiti u] =
\sum 

\bfitj \geq [\bfitk  - \bfone ]+

(\nabla t\bfitj ) \Delta \bfitk [a\Delta \bfiti T\bfitj ] .

By interchanging the order of summation we obtain

\| \Delta \bfitk (a\nabla u\Lambda )\| Lp
\mu (\bfGamma ;L2(D)) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfiti \in \Lambda 

\Delta \bfitk (a\Delta \bfiti \nabla u\Lambda )

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Lp

\mu (\bfGamma ;L2(D))

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 
\bfiti \in \Lambda 

\sum 
\bfitj \geq [\bfitk  - \bfone ]+

(\nabla t\bfitj ) \Delta \bfitk [a\Delta \bfiti T\bfitj ]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Lp

\mu (\bfGamma ;L2(D))

=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

\bfitj \geq [\bfitk  - \bfone ]+

(\nabla t\bfitj ) \Delta \bfitk [aS\Lambda T\bfitj ]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Lp

\mu (\bfGamma ;L2(D))

.

We now set \beta (\bfitk ) :=
\prod M

m=1(1 + ckm)\theta as well as

(5.7) amax := sup
y\in \bfGamma 

sup
\bfitx \in D

| a(\bfitx ,\bfity )| < \infty .

By using the triangle inequality and Propositions 5.1 and 5.2 we deduce

\| \Delta \bfitk (a\nabla u\Lambda )\| Lp
\mu (\bfGamma ;L2(D)) =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\sum 

\bfitj \geq [\bfitk  - \bfone ]+

(\nabla t\bfitj ) \Delta \bfitk [aS\Lambda T\bfitj ]

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Lp

\mu (\bfGamma ;L2(D))

\leq 
\sum 

\bfitj \geq [\bfitk  - \bfone ]+

\| (\nabla t\bfitj )\| L2(D) \| \Delta \bfitk [aS\Lambda T\bfitj ]\| C(\bfGamma ;\BbbR )

\leq 
\sum 

\bfitj \geq [\bfitk  - \bfone ]+

\| t\bfitj \| \scrH \beta (\bfitk ) \| aS\Lambda T\bfitj \| C(\bfGamma ;\BbbR )

\leq 
\sum 

\bfitj \geq [\bfitk  - \bfone ]+

\| t\bfitj \| \scrH \beta (\bfitk ) amax \| S\Lambda T\bfitj \| C(\bfGamma ;\BbbR )

\leq amax \beta (\bfitk )
\sum 

\bfitj \geq [\bfitk  - \bfone ]+

\| t\bfitj \| \scrH \gamma (\bfitj ),D
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where we set \gamma (\bfitj ) :=
\prod M

m=1(1 + cjm)1+\theta . By the Cauchy--Schwarz inequality we
obtain \sum 

\bfitj \geq [\bfitk  - \bfone ]+

\| t\bfitj \| \scrH \gamma (\bfitj ) \leq Cu,\bfitrho 

\left(  \sum 
\bfitj \geq [\bfitk  - \bfone ]+

\bfitrho  - 2\bfitj \gamma (\bfitj )2

\right)  1/2

,

with \bfitrho as in Theorem 2.1 and Cu,\bfitrho as in (5.5). We can then apply Proposition 5.4 to
bound

\sum 
\bfitj \geq [\bfitk  - \bfone ]+

\bfitrho  - 2\bfitj \gamma (\bfitj )2. More specifically, Proposition 5.4 yields the existence
of a constant C\bfitrho ,c,\theta < \infty such that it holds that

\sum 
\bfitj \geq [\bfitk  - \bfone ]+

\bfitrho  - 2\bfitj \gamma (\bfitj )2 \leq C\bfitrho ,c,\theta \bfitrho  - 2[\bfitk  - \bfone ]+ \gamma ([\bfitk  - 1]+)
2 \leq C\bfitrho ,c,\theta 

\Biggl( 
M\prod 

m=1

\rho 2m

\Biggr) 
\bfitrho  - 2\bfitk \gamma (\bfitk )2,

since \gamma is increasing and \rho m > 1 for each m. Thus, for any \bfitk \in \scrF we get

\| \Delta \bfitk (a\nabla u\Lambda )\| Lp
\mu (\bfGamma ;L2(D)) \leq amax Cu,\bfitrho \beta (\bfitk ) C

1/2
\bfitrho ,c,\theta 

\Biggl( 
M\prod 

m=1

\rho m

\Biggr) 
\gamma (\bfitk ) \bfitrho  - \bfitk .

The statement follows with

(5.8) C := amax Cu,\bfitrho C
1/2
\bfitrho ,c,\theta 

\Biggl( 
M\prod 

m=1

\rho m

\Biggr) 
,

since g(\bfitk ) = \beta (\bfitk )\gamma (\bfitk ) \bfitrho  - \bfitk .

This bound of the error indicators is now used to proceed with the second step
of the proof to verify the second assumption of Theorem 2.3.

Lemma 5.7. Given the assumptions of Theorem 4.3 we have for \eta \infty as in (5.4)
and \widehat \eta n as in (5.2) that

lim
n\rightarrow \infty 

\| \eta \infty  - \widehat \eta n\| \ell 1(\scrF ) = 0.

Proof. We introduce the shorthand notation

\Lambda + := \Lambda \cup Marg(\Lambda ), \Lambda \subseteq \scrF ,

and notice that consequently \Lambda +
\infty \subseteq 

\bigcup 
n\in \BbbN \Lambda +

n . Moreover, we have

| \eta \infty (\bfitk ) - \widehat \eta n(\bfitk )| \leq 
\left\{     
\| \Delta \bfitk (a\nabla (u\infty  - un))\| Lp

\mu (\bfGamma ;L2(D)), \bfitk \in \Lambda +
n \subset \Lambda +

\infty ,

\| \Delta \bfitk (a\nabla u\infty )\| Lp
\mu (\bfGamma ;L2(D)), \bfitk \in \Lambda +

\infty \setminus \Lambda +
n ,

0, \bfitk \in \scrF \setminus \Lambda +
\infty .

Hence,

\| \eta \infty  - \widehat \eta n\| \ell 1(\scrF ) \leq 
\sum 

\bfitk \in \Lambda +
\infty 

\| \Delta \bfitk (a\nabla (u\infty  - un))\| Lp
\mu (\bfGamma ;L2(D))\underbrace{}  \underbrace{}  

term I

+
\sum 

\bfitk \in \Lambda +
\infty \setminus \Lambda +

n

\| \Delta \bfitk (a\nabla u\infty )\| Lp
\mu (\bfGamma ;L2(D))\underbrace{}  \underbrace{}  

term II

.

We would like to take the limit on both sides and verify that the two terms on the
right-hand side tend to zero, which we analyze separately in the following.
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Term I. Assuming for a moment that we can apply the dominated convergence
theorem to exchange the sum and the limit, we would get

lim
n\rightarrow \infty 

\sum 
\bfitk \in \Lambda +

\infty 

\| \Delta \bfitk (a\nabla (u\infty  - un))\| Lp
\mu (\Gamma ;L2(D))

=
\sum 

\bfitk \in \Lambda +
\infty 

lim
n\rightarrow \infty 

\| \Delta \bfitk (a\nabla (u\infty  - un))\| Lp
\mu (\Gamma ;L2(D)) by dominated convergence

\leq 
\sum 

\bfitk \in \Lambda +
\infty 

lim
n\rightarrow \infty 

\beta (\bfitk )\| a\nabla (u\infty  - un)\| C(\bfGamma ;L2(D)) by Prop. 5.1, \beta (\bfitk ) :=
\prod M

m=1(1 + ckm)\theta 

\leq 
\sum 

\bfitk \in \Lambda +
\infty 

lim
n\rightarrow \infty 

\beta (\bfitk )amax\| u\infty  - un\| C(\bfGamma ;H1
0 (D)) recalling the def. of amax in (5.7)

= 0 by Lemma 5.5.

In order to apply Lebesgue's dominated convergence, we need to check that there
exists a function g : \scrF \rightarrow [0,\infty ) such that, for all n \in \BbbN and \bfitk \in \Lambda +

\infty ,
(5.9)

\| \Delta \bfitk (a\nabla u\infty )\| Lp
\mu (\Gamma ;L2(D)) + \| \Delta \bfitk (a\nabla un)\| Lp

\mu (\Gamma ;L2(D)) \leq g(\bfitk ) and
\sum 

\bfitk \in \Lambda +
\infty 

g(\bfitk ) < \infty .

The bounding function g is obtained by Lemma 5.6: there exists a constant C < \infty 
such that

\| \Delta \bfitk (a\nabla u\infty )\| Lp
\mu (\Gamma ;L2(D)) + \| \Delta \bfitk (a\nabla un)\| Lp

\mu (\Gamma ;L2(D)) \leq 2C g(\bfitk ),

with

g(\bfitk ) :=

\Biggl( 
M\prod 

m=1

(1 + ckm)2\theta +1

\Biggr) 
\bfitrho  - \bfitk .

The required summability of g is derived by Lemma 5.3, i.e.,

\sum 
\bfitk \in \Lambda +

\infty 

2C g(\bfitk ) \leq 2C
\sum 
\bfitk \in \scrF 

\Biggl( 
M\prod 

m=1

(1 + ckm)2\theta +1

\Biggr) 
\bfitrho  - \bfitk < \infty .

Term II. To verify that the limit of the second term is also zero, observe that
the dominated convergence theorem in (5.9) implies\sum 

\bfitk \in \Lambda +
\infty 

\| \Delta \bfitk (a\nabla u\infty )\| Lp
\mu (\bfGamma ;L2(D)) < \infty .

Together with the fact that \Lambda +
\infty \subseteq 

\bigcup 
n\in \BbbN \Lambda +

n , this implies the final result

lim
n\rightarrow \infty 

\sum 
\bfitk \in \Lambda +

\infty \setminus \Lambda +
n

\| \Delta \bfitk (a\nabla u\infty )\| Lp
\mu (\Gamma ;L2(D)) = 0.

By Lemma 5.7, the three assumptions of Theorem 2.3 have been verified, proving
convergence of the described adaptive algorithm.
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5.2. Proof of Theorem 4.4.

Proof. Again we prove the assertion by applying Theorem 2.3, i.e., verifying the
three assumptions of Theorem 2.3. The first holds by assumption and the third by
construction of Algorithm 3.1; cf. Remark 2.4. Thus, it remains again to verify the
second assumption of Theorem 2.3. We set

\Lambda +
n := \Lambda n \cup \scrC n = \Lambda n \cup R(\Lambda n)

as well as

(5.10) \widehat \eta n(\bfitk ) := \Biggl\{ \| \Delta \bfitk u\| Lp
\mu (\bfGamma ;\scrH ), \bfitk \in \Lambda +

n ,

0 otherwise

and define

(5.11) \eta \infty (\bfitk ) :=

\Biggl\{ 
\| \Delta \bfitk u\| Lp

\mu (\bfGamma ;\scrH ), \bfitk \in \Lambda +
\infty ,

0 otherwise,
\Lambda +
\infty :=

\bigcup 
n\in \BbbN 

\Lambda +
n .

We verify in Lemma 5.8 below (which is similar to Lemmas 5.6 and 5.7) that

lim
n\rightarrow \infty 

\| \eta \infty  - \widehat \eta n\| \ell 1 = 0,

which concludes the proof.

Lemma 5.8. Let the assumptions of Theorem 4.4 be satisfied. Then there exists
a constant C < \infty such that for any \bfitk \in \scrF 

(5.12) \| \Delta \bfitk u\| Lp
\mu (\bfGamma ;\scrH ) \leq C g(\bfitk ), g(\bfitk ) :=

\Biggl( 
M\prod 

m=1

(1 + \widetilde ckm)
\widetilde \theta (1 + ckm)\theta 

\Biggr) 
\bfitrho  - \bfitk .

Moreover, we have (\eta \infty (\bfitk ))\bfitk \in \scrF \in \ell 1(\scrF ) for \eta \infty (\bfitk ) as given in (5.11) and, therefore,
for \widehat \eta n as in (5.10)

lim
n\rightarrow \infty 

\| \eta \infty  - \widehat \eta n\| \ell 1 = 0.

Proof. In the following we denote the norm in Lp
\mu (\Gamma ;\scrH ) and C(\Gamma ;\scrH ) simply by

\| \cdot \| Lp and \| \cdot \| C , respectively. By employing the polynomial expansion of u and the
Cauchy--Schwarz inequality, we obtain

\| \Delta \bfitk u\| Lp =

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| \sum 
\bfiti \in \scrF 

u\bfiti \Delta \bfitk P\bfiti 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
Lp

\leq 
\sum 
\bfiti \in \scrF 

\| u\bfiti \| \scrH \| \Delta \bfitk P\bfiti \| Lp

\leq 

\Biggl( \sum 
\bfiti \in \scrF 

\bfitrho 2\bfiti \| u\bfiti \| 2\scrH 

\Biggr) 1/2 \Biggl( \sum 
\bfiti \in \scrF 

\bfitrho  - 2\bfiti \| \Delta \bfitk P\bfiti \| 2Lp

\Biggr) 1/2

,

where \bfitrho \in \BbbR M is as assumed in Theorem 4.4. By assumption the first term is bounded
by a constant

Cu,\bfitrho :=

\Biggl( \sum 
\bfiti \in \scrF 

\bfitrho 2\bfiti \| u\bfiti \| 2\scrH 

\Biggr) 1/2

< \infty .
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Concerning the second term, we first note that

\Delta \bfitk P\bfiti =

M\prod 
m=1

\Delta km
Pim \equiv 0 if \exists m : im \leq m(km  - 1).

Hence, we require \bfiti \geq m(\bfitk  - 1) + 1 \geq \bfitk for \Delta \bfitk P\bfiti \not \equiv 0 and therefore obtain by
Proposition 5.1 and the assumption (4.8)\sum 

\bfitk \in \scrF 

\bfitrho  - 2\bfitk \| \Delta \bfitk P\bfiti \| 2Lp =
\sum 
\bfiti \geq \bfitk 

\bfitrho  - 2\bfiti \| \Delta \bfitk P\bfiti \| 2Lp \leq 
\sum 
\bfiti \geq \bfitk 

\bfitrho  - 2\bfiti \| \Delta \bfitk P\bfiti \| 2C

\leq 
\sum 
\bfiti \geq \bfitk 

\bfitrho  - 2\bfiti 

\Biggl( 
M\prod 

m=1

(1 + ckm)\theta 

\Biggr) 
\| P\bfiti \| C(\bfGamma ;\BbbR )

\leq \gamma (\bfitk )
\sum 
\bfiti \geq \bfitk 

\bfitrho  - 2\bfiti \beta (\bfiti )2,

with

\beta (\bfiti ) :=
M\prod 

m=1

(1 + \widetilde cim)
\widetilde \theta , \gamma (\bfitk ) :=

M\prod 
m=1

(1 + ckm)\theta .

Hence, by Proposition 5.4 we have for a finite constant C\sum 
\bfiti \geq \bfitk 

\bfitrho  - 2\bfiti \beta (\bfiti )2 \leq C\bfitrho  - 2\bfitk \beta (\bfitk )2,

and thus
\| \Delta \bfitk u\| Lp \leq Cu,\bfitrho C

1/2 \gamma (\bfitk )\beta (\bfitk )\bfitrho  - \bfitk , \bfitk \in \scrF ,

which proves (5.12). Moreover, by Lemma 5.3 we know that (g(\bfitk ))\bfitk \in \scrF \in \ell 1(\scrF ), and
hence also (\widehat \eta n(\bfitk ))\bfitk \in \scrF , (\eta \infty (\bfitk ))\bfitk \in \scrF \in \ell 1(\scrF ), n \in \BbbN . Finally, we have by definition of
\eta \infty and \widehat \eta n that

\| \eta \infty  - \widehat \eta n\| \ell 1 =
\sum 

\bfitk \in \Lambda +
\infty \setminus \Lambda +

n

\| \Delta \bfitk u\| Lp \leq Cu,\bfitrho C
1/2

\sum 
\bfitk \in \Lambda +

\infty \setminus \Lambda +
n

g(\bfitk ).

The summability (g(\bfitk ))\bfitk \in \scrF \in \ell 1(\scrF ) and \Lambda +
\infty =

\bigcup 
n\in \BbbN \Lambda +

n then yield the desired result

lim
n\rightarrow \infty 

\| \eta \infty  - \widehat \eta n\| \ell 1 \leq lim
n\rightarrow \infty 

\sum 
\bfitk \in \Lambda +

\infty \setminus \Lambda +
n

g(\bfitk ) = 0.

6. Conclusions. We have proved convergence of an adaptive sparse collocation
algorithm for approximating the solution of an elliptic PDE with a high-dimensional
parameter \bfity \in [ - 1, 1]M , applying the analysis technique from [6], developed for the
stochastic Galerkin FEM, to a slight variation of the algorithm proposed by Guignard
and Nobile in [33]. In this sense, our work can be seen as an extension of [33], where
a very close variant of the algorithm considered here was presented and analyzed
numerically, but without convergence proof.

The algorithms we propose here and that in [33] are both modifications of the well-
known dimension-adaptive sparse grid algorithm due to Gerstner and Griebel in that
they replace the hierarchical surplus error indicators with a rigorous residual-based
error estimator. As a by-product of our analysis we also obtain a convergence proof for
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the Gerstner--Griebel algorithm applied to the same problem, under the assumption
that the hierarchical surplus error indicator is also a reliable error estimator. The con-
vergence proof is tailored to the specific problem, i.e., an elliptic PDE with parametric
diffusion coefficient depending affinely on a finite number of parameters. Because the
algorithm is based on a residual-based error estimator, the analysis is problem-specific
and must be adapted for each new PDE as well as for different forms (e.g., nonlin-
ear) of the random diffusion coefficient. However, we expect that a large part of the
machinery proves valid or at least extensible in a straightforward way. Particularly, if
reliable error estimators (for the approximation error w.r.t. the parameter variables)
are available, only a stability condition of these estimators w.r.t. un needs to be es-
tablished in order to verify the crucial second condition of the general convergence
theorem, Theorem 2.3. Our analysis in section 5.1 can serve as a blueprint for doing so.

Regarding possible extensions of this work, we point out that the convergence
analysis we have presented proves convergence but does not provide a rate. This
might be achieved by a saturation assumption following again the line of proof in [6]
for adaptive stochastic Galerkin FEM. Conversely, the extension of the specific model
problem to the important case of the diffusion coefficient resulting from the param-
etrization of a log-normal random field is deemed to be more challenging. Another
important yet challenging addition to our work would be to extend the convergence
result to the infinite-dimensional case, i.e., to consider countably many parameters
M = \infty in the affine expansion of the diffusion coefficient (2.2). This would pose both
theoretical and algorithmic challenges: on the theoretical side, our proof would need
to be revisited since some constants are not bounded when M \rightarrow \infty (in particular,
the constant C in Lemma 5.6; cf. (5.8)). From the algorithmic point of view, having
M = \infty would lead to margin sets of infinite cardinality, which is, of course, unfeasible.
Under the assumption that \| am\| L\infty in (2.2) are monotone decreasing (this assumption
could be weakened), a possible approach would be to implement a so-called ``buffering""
procedure, as discussed in [33] (see also [47, 15, 42, 26]); such an algorithm would start
by considering only the first M0 < \infty parameters, and any time a parameter is ``acti-
vated"" (i.e., a collocation point is added along that parameter dimension for the first
time), the total number of considered parameters would increase by one in such a way
that there are always M0 considered but yet ``unactivated"" parameters in the buffer.

A further interesting follow-up would be to carry out an extensive numerical
study on a number of different PDEs for which finite element error estimators are
available, and investigate numerically whether Algorithm 4.1 consistently displays
good performance (i.e., similar to the GG algorithm) for all the PDEs considered.
These numerical investigations exceed the scope of this work and are left for future
research.
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