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Abstract. We show how the Arnoldi algorithm for approximating a function of a matrix times
a vector can be restarted in a manner analogous to restarted Krylov subspace methods for solving
linear systems of equations. The resulting restarted algorithm reduces to other known algorithms for
the reciprocal and the exponential functions. We further show that the restarted algorithm inherits
the superlinear convergence property of its unrestarted counterpart for entire functions and present
the results of numerical experiments.
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1. Introduction. The evaluation of

f(A)b, where A ∈ Cn×n, b ∈ Cn,(1.1)

and f : C ⊃ D → C is a function for which f(A) is defined, is a common compu-
tational task. Besides the solution of linear systems of equations, which involves the
reciprocal function f(λ) = 1/λ, by far the most important application is the time
evolution of a system under a linear operator, in which case f(λ) = ft(λ) = etλ and
time acts as a parameter t. Other applications involving differential equations require
the evaluation of (1.1) for the square root and trigonometric functions (see [8, 1]).
Further applications include identification problems for semigroups involving the log-
arithm (see, e.g., [29]) and lattice quantum chromodynamics simulations requiring the
evaluation of the matrix sign function (see [34] and the references therein).

In many of the applications mentioned above the matrix A is large and sparse or
structured, typically resulting from discretization of an infinite-dimensional operator.
In this case evaluating (1.1) by first computing f(A) is usually unfeasible, so that
most of the algorithms for the latter task (see, e.g., [18, 5]) cannot be used. The
standard approach for approximating (1.1) directly is based on a Krylov subspace of
A with initial vector b [8, 9, 28, 14, 17, 4, 19]. The advantage of this approach is
that it requires A only for computing matrix-vector products and that, for smooth
functions such as the exponential, it converges superlinearly [8, 28, 31, 17].

One shortcoming of the Krylov subspace approximation, however, lies in the fact
that computing an approximation of (1.1) from a Krylov subspace Km(A, b) of di-
mension m involves all the basis vectors of Km(A, b), and hence these need to be
stored. Memory constraints therefore often limit the size of the problem that can be
solved, which is an issue especially when A is the discrete representation of a partial
differential operator in three space dimensions. When A is Hermitian, the Hermitian
Lanczos process allows the basis of Km(A, b) to be constructed by a three-term recur-
rence. When solving linear systems of equations, this recurrence for the basis vectors
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immediately translates to efficient update formulas for the approximation. This, how-
ever, is a consequence of the simple form of the reciprocal function and such update
formulas are not available for general (nonrational) functions.

When solving non-Hermitian linear systems of equations by Krylov subspace ap-
proximation, a common remedy is to limit storage requirements by restarting the al-
gorithm each time the Krylov space has reached a certain maximal dimension [26, 10].
The subject of this work is the extension of this restarting approach to general func-
tions. How such a generalization may be accomplished is not immediately obvious,
since the restarting approach for linear systems is based on solving successive residual
equations to obtain corrections to the most recent approximation. The availability of
a residual, however, is another property specific to problems where f(A)b solves an
(algebraic or differential) equation.

The remainder of this paper is organized as follows: Section 2 recalls the defi-
nition and properties of matrix functions and their approximation in Krylov spaces,
emphasizing the role of Hermite interpolation, and closes with an error representation
formula for Krylov subspace approximations. In section 3 we introduce a new restarted
Krylov subspace algorithm for the approximation of (1.1) for general functions f . We
derive two mathematically equivalent formulations of the restarted algorithm, the
second of which, while slightly more expensive, was found to be more stable in the
presence of rounding errors.

In section 4 we show that, for the reciprocal and exponential functions, our
restarted method reduces to the restarted full orthogonalization method (FOM; see
[27]) and is closely related to an algorithm by Celledoni and Moret [4], respectively.
We further establish that, for entire functions of order one (such as the exponential
function), the superlinear convergence property of the Arnoldi/Lanczos approxima-
tion of (1.1) is retained by our restarted method. In section 5 we demonstrate the
performance of the restarted method for several test problems.

2. Matrix functions and their Krylov subspace approximation. In this
section we fix notation, provide some background material on functions of matrices
and their approximation using Krylov subspaces, highlight the connection with Her-
mite interpolation, and derive a new representation formula for the error of Krylov
subspace approximations of f(A)b.

2.1. Functions of matrices. We recall the definition of functions of matrices
(as given, e.g., in Gantmacher [15, Chapter 5]): Let Λ(A) = {λ1, λ2, . . . , λk} denote
the k distinct eigenvalues of A ∈ Cn×n and let the minimal polynomial of A be given
by

mA(λ) =
k∏

j=1

(λ− λj)
nj ∈ PK , where K =

k∑

j=1

nj .

Given a complex-valued function f , the matrix f(A) is defined if f (r)(λj) exists for
r = 0, 1, . . . , nj − 1; j = 1, 2, . . . , k. In this case f(A) := qf,A(A), where qf,A ∈ PK−1

denotes the unique polynomial of degree at most K−1 which satisfies the K Hermite
interpolation conditions

q(r)
f,A(λj) = f (r)(λj), r = 0, 1, . . . , nj − 1, j = 1, 2, . . . , k.(2.1)

In the remainder of the paper, we denote the unique polynomial q which interpolates
f in the Hermite sense at a set of nodes {ϑj}kj=1 with multiplicities nj by Ipf ∈ PK−1,
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K =
∑

j nj , where p ∈ PK is a (not necessarily monic) nodal polynomial with zeros
ϑj of multiplicities nj . In this notation, (2.1) reads

qf,A = ImAf.

Our objective is the evaluation of f(A)b rather than f(A), and this can possibly
be achieved with polynomials of lower degree than qf,A. To this end, let the minimal
polynomial of b ∈ Cn with respect to A be given by

mA,b(λ) =
"∏

j=1

(λ− λj)
mj ∈ PL, where L = L(A, b) =

"∑

j=1

mj .(2.2)

Proposition 2.1. Given a function f , a matrix A ∈ Cn×n such that f(A) is
defined, and a vector b ∈ Cn whose minimal polynomial with respect to A is given
by (2.2), there holds f(A)b = qf,A,b(A)b, where qf,A,b := ImA,bf ∈ PL−1 denotes the
unique Hermite interpolating polynomial determined by the conditions

q(r)
f,A,b(λj) = f (r)(λj), r = 0, 1, . . . ,mj − 1, j = 1, 2, . . . , #.

2.2. Krylov subspace approximations. We recall the definition of the mth
Krylov subspace of A ∈ Cn×n and 0 %= b ∈ Cn given by

Km(A, b) := span{b, Ab, ..., Am−1b} = {q(A)b : q ∈ Pm−1}.

By Proposition 2.1, f(A)b lies in KL(A, b). The index L = L(A, b) ∈ N (cf. (2.2)) is
the smallest number for which KL(A, b) = KL+1(A, b). Note that for certain functions
such as f(λ) = 1/λ, we have f(A)b ∈ KL(A, b) \ KL−1(A, b); in general, however,
f(A)b may lie in a space Km(A, b) with m < L.1

In what follows, we consider a sequence of approximations ym := q(A)b ∈
Km(A, b) to f(A)b with polynomials q ∈ Pm−1 which in some sense approximate
f . The most popular of these approaches (see [28, 14, 17]), to which we shall refer as
the Arnoldi approximation, is based on the Arnoldi decomposition of Km(A, b),

AVm = Vm+1H̃m = VmHm + ηm+1,mvm+1e
%
m.(2.3)

Here, the columns of Vm = [v1, v2, . . . , vm] form an orthonormal basis of Km(A, b)
with v1 = b/‖b‖, H̃m = [ηj,"] ∈ C(m+1)×m as well as Hm := [Im,0] H̃m ∈ Cm×m are
unreduced upper Hessenberg matrices, and em ∈ Rm denotes the mth unit coordinate
vector. The Arnoldi approximation to f(A)b is then defined by

fm := βVmf(Hm)e1, where β = ‖b‖.

The rationale behind this approximation is that Hm represents the compression of A
onto Km(A, b) with respect to the basis Vm and that b = βVme1.

The non-Hermitian (or two-sided) Lanczos algorithm is another procedure for
generating a decomposition of the form (2.3). In that case the columns of Vm still
form a basis of Km(A, b), albeit one that is, in general, not orthogonal, and the
upper Hessenberg matrices H̃m are tridiagonal (or block tridiagonal if a look-ahead

1For the exponential function it was shown in [28, Theorem 3.6] that etAb ∈ Km(A, b) for all
t ∈ R if and only if m ≥ L.
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technique is employed). The associated approximation to f(A)b is again defined by
fm := βVmf(Hm)e1 (see, e.g., [14, 28, 17]). Both approximations fm, based either
on the Arnoldi or Lanczos decomposition, result from an interpolation procedure: If
q ∈ Pm−1 denotes the polynomial which interpolates f in the Hermite sense on the
spectrum of Hm (counting multiplicities), then

fm = βVmf(Hm)e1 = βVmq(Hm)e1 = q(A)b, m = 1, 2, . . . , L

(see [28, Theorem 3.3]).
For later applications, next we show that similar results hold true for more general

decompositions of Km(A, b). To this end, we introduce a sequence of ascending (not
necessarily orthonormal) basis vectors {wm}Lm=1 such that

Km(A, b) = span{w1,w2, . . . ,wm}, m = 1, 2, . . . , L.(2.4)

As is well known, there exists a unique unreduced upper Hessenberg matrix H =
[ηj,m] ∈ CL×L such that, with W := [w1,w2, . . . ,wL] ∈ Cn×L, there holds AW = WH
and, for m = 1, 2, . . . , L− 1, we have

AWm = Wm+1H̃m = WmHm + ηm+1,mwm+1e
%
m,(2.5)

where H̃m is the (m + 1) × m leading submatrix of H, Hm := [Im,0]H̃m, and
Wm = [w1,w2, . . . ,wm]. We shall refer to (2.5) as an Arnoldi-like decomposition2

to distinguish it from a proper Arnoldi decomposition (2.3). We shall require the fol-
lowing lemma, which is a simple generalization of the corresponding result for (proper)
Arnoldi decompositions (cf. [28, 23]).

Lemma 2.2. For any polynomial q(λ) = αmλm + · · ·+α1λ+α0 ∈ Pm, the vector
q(A)b may be represented in terms of the Arnoldi-like decomposition (2.5) as

q(A)b =

{
β
[
Wmq(Hm)e1 + αmγmwm+1

]
, m < L,

βWLq(HL)e1, m ≥ L,
(2.6)

where γm :=
∏m

j=1 ηj+1,j and βw1 = b. In particular, for any q ∈ Pm−1 there holds
q(A)b = βWmq(Hm)e1.

The proof follows by verifying the assertion for monomials, taking account of the
sparsity pattern of powers of a Hessenberg matrix (see, e.g., [12]).

We next introduce polynomial notation to describe Krylov subspaces. To each
vector wm of the nested basis (2.4) there corresponds a unique polynomial wm−1 ∈
Pm−1 such that wm = wm−1(A)b. Via this correspondence, the Arnoldi-like recur-
rence (2.5) becomes

λ[w0(λ), w1(λ), . . . , wm−1(λ)] = [w0(λ), w1(λ), . . . , wm−1(λ)]Hm

+ ηm+1,m[0, 0, . . . , 0, wm(λ)].
(2.7)

From this equation it is evident that each zero of wm is an eigenvalue of Hm. Moreover,
by differentiating (2.7), one observes that zeros of multiplicity # are eigenvalues of Hm

with Jordan blocks of dimension #. Since Hm is an unreduced Hessenberg matrix and

2We mention that the related term Krylov decomposition introduced by Stewart in [32] refers to a
decomposition of the form (2.5) without the restriction that the basis be ascending and, consequently,
to a matrix H which is not necessarily Hessenberg.
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hence nonderogatory, we conclude that the zeros of wm coincide with the eigenvalues
of Hm counting multiplicity.

Lemma 2.3. Let Hm be the unreduced upper Hessenberg matrix in (2.5) and (2.7)
and let f be a function such that f(Hm) is defined. Then a polynomial qm−1 ∈ Pm−1

satisfies

qm−1(Hm) = f(Hm)

if and only if qm−1 = Iwmf , i.e., if qm−1 interpolates f in the Hermite sense at the
eigenvalues of Hm.

Proof. The proof follows directly from the definition of f(Hm) and the fact that
the zeros of wm are the eigenvalues of Hm with multiplicity.

We summarize the contents of Lemmata 2.2 and 2.3 as follows.
Theorem 2.4. Given the Arnoldi-like decomposition (2.5) and a function f such

that f(A) as well as f(Hm) are defined, we denote by q ∈ Pm−1 the unique polynomial
which interpolates f at the eigenvalues of Hm. Then there holds

fm := βVmf(Hm)e1 = βVmq(Hm)e1 = q(A)b.(2.8)

We shall refer to (2.8) as the Krylov subspace approximation of f(A)b associated
with the Arnoldi-like decomposition (2.5). Note that (2.8) is merely a computational
device for generating the Krylov subspace approximation of f(A)b without explicitly
carrying out the interpolation process. This is an advantage whenever f(Hm)e1 for
m ) n can be evaluated efficiently.

Remark 2.5. We also point out the following—somewhat academic—detail re-
garding finite termination: While Krylov subspace approximations q(A)b are defined
for polynomials q of any degree, Arnoldi-like decompositions, and hence (2.8), are
only available for 1 ≤ m ≤ L = L(A, b). At index m = L, the characteristic poly-
nomial of HL = H coincides with the minimal polynomial mA,b of b with respect
to A (see (2.2)). In view of (2.8) and Proposition 2.1, we then have fL = f(A)b.
In this sense, Krylov subspace approximations of the form (2.8) respect the spectral
distribution of A relevant for b and, in exact arithmetic, possess the finite termination
property. This is in contrast to other approaches such as those based on Chebyshev
or Faber expansions (see below).

Besides those generated by the Arnoldi or Lanczos processes, any ascending ba-
sis {wm}Lm=1 of KL(A, b) or, equivalently, any sequence of polynomials {wm−1}Lm=1

of exact degree m − 1 may be used in the Arnoldi-like decomposition (2.5) or its
polynomial counterpart (2.7), provided a means for obtaining the matrix H̃L of recur-
rence coefficients is available. One such example is the sequence of kernel/quasi-kernel
polynomials associated with the Arnoldi/Lanczos decomposition (see [13]), where the
corresponding Hessenberg matrix is easily constructed from that of the original de-
composition. Approximations based on quasi-kernel polynomials are discussed in [20].
Yet another approach—one which emphasizes the interpolation aspect of the Krylov
subspace approximation—fixes a sequence of nodes

ϑ(1)
1

ϑ(2)
1 ϑ(2)

2

ϑ(3)
1 ϑ(3)

2 ϑ(3)
3

...
...

. . .
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and chooses the basis vectors wm = wm−1(A)b as the associated nodal polynomials

wm−1(λ) = ωm−1(λ− ϑ(m)
1 )(λ− ϑ(m)

2 ) . . . (λ− ϑ(m)
m ), ωm %= 0.

One possible choice of such a node sequence is the zeros of Chebyshev polynomials,
in which case the nested basis vectors correspond to Chebyshev polynomials. Other
choices of node sequences are explored in [19, 22, 20]. Note that, in view of Remark 2.5,
such a basis choice, which is independent of A and b, will generally destroy the finite
termination property.

We also point out that, when f(A) is defined, this need not be so for f(Hm) for
m < L. For the Arnoldi approximation, a sufficient condition ensuring this is that f ,
as a scalar function, be analytic in a neighborhood of the field of values of A. As a
case in point, consider the FOM for solving a nonsingular system of linear equations
Ax = b. The solution is f(A)b with f(λ) = 1/λ and, if the initial approximation is
x0 = 0, the mth FOM iterate is simply the Arnoldi approximation fm = βVmH−1

m e1.
There are well-known examples [3] in which f(A), i.e., A−1, is defined but for which
Hm is singular for one or more of the indices m = 1, . . . , L − 1, a phenomenon
sometimes called a Galerkin breakdown.

2.3. An error representation. We conclude this section with a representation
of the error of the Krylov subspace approximation of f(A)b based on any Arnoldi-like
decomposition or, equivalently, any interpolatory approximation. We shall need the
following notation: Given a function f and a set of nodes ϑ1, . . . , ϑm with associated
nodal polynomial

p(λ) = (λ− ϑ1)(λ− ϑ2) · · · (λ− ϑm),(2.9)

we denote the mth order divided difference of f with respect to the nodes {ϑj}mj=1

by3

∆pf :=
f − Ipf

p
.(2.10)

Theorem 2.6. Given A ∈ Cn×n, b ∈ Cn, and a function f , let (2.5) be an
Arnoldi-like decomposition of Km(A, b) and let wm ∈ Pm−1 be the associated polyno-
mial; cf. (2.7). Then there holds

f(A)b − βWmf(Hm)e1 = βγm[∆wmf ](A)wm+1(2.11)

with γm as in Lemma 2.2.
Proof. We consider first an arbitrary set of nodes ϑ1, . . . , ϑm with associated nodal

polynomial p as in (2.9). From the definition (2.10), there holds f(λ) = [Ipf ](λ) +
[∆pf ](λ)p(λ). Inserting A for λ in this identity and multiplying by b, we obtain

f(A)b = [Ipf ](A)b + [∆pf ](A)p(A)b.

Since Ipf ∈ Pm−1, Lemma 2.2 yields [Ipf ](A)b = βWm[Ipf ](Hm)e1 and, since p ∈ Pm

is monic, p(A)b = βWmp(Hm)e1 + βγmwm+1, giving

f(A)b − βWm[Ipf ](Hm)e1 = β[∆pf ](A)
(
Wmp(Hm)e1 + γmwm+1

)
.

3The source of and justification for this notation can be found in [7].
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Choosing p as the characteristic polynomial wm of Hm, it follows that wm(Hm) = O
by the Cayley–Hamilton theorem and, since Iwmf interpolates f at the eigenvalues
of Hm, there also holds [Iwmf ](Hm) = f(Hm) by Lemma 2.3.

We interpret (2.11) as follows: Further improvement of a Krylov approximation
fm = βVmf(Hm)e1 could be achieved by approximating the error term

f(A)b − fm = f̃(A)b̃

with f̃(λ) := [∆wmf ](λ) and b̃ := βγmwm+1. Note that the modified function f̃ has

the same domain of analyticity as f and the vector b̃ points in the direction of the
last vector in the Arnoldi-like decomposition.

3. A restarted Arnoldi approximation. For the remainder of the paper we
shall restrict the discussion to the Arnoldi approximation of f(A)b. To set this apart
from a general Krylov subspace approximation (2.8) we denote the (orthonormal)
Arnoldi basis vectors by v1, v2, . . . , vL and the Arnoldi decomposition by

AVm = VmHm + ηm+1,mvm+1e
%
m, Vm = [v1, v2, . . . , vm]

(cf. (2.3)). Our results apply to other Krylov subspace approximations with obvious
modifications, some of which we shall point out.

3.1. Short recurrences are not enough. Besides the evaluation of f(Hm),
the computation of the mth Arnoldi approximation fm = βVmf(Hm)e1 requires the
Arnoldi basis Vm, which consists of m vectors of size n. As a consequence, even if
the evaluation of f(Hm) can be accomplished inexpensively, work and storage require-
ments incurred by Vm make this method impractical for moderate to large values of m.
For f(λ) = 1/λ, i.e., when solving linear systems of equations, one can take advantage
of the fact that the Arnoldi process reduces to the Hermitian Lanczos process when
A is Hermitian. In this case the matrices Hm are Hermitian, hence tridiagonal, and
three-term recurrence formulas can be derived for their characteristic polynomials wm.
(The same is true even in the non-Hermitian case when employing the non-Hermitian
Lanczos process, possibly with look-ahead techniques.) If we interpolate f(λ) = 1/λ
at the zeros of the mth basis polynomial wm, the resulting interpolating polynomial
qm−1 = Iwmf satisfies

qm−1(λ) =
wm(0) − wm(λ)

λwm(0)
,(3.1)

and therefore qm−1 and hence also the approximation fm obey a similar three-term
recurrence. The relation (3.1) between the nodal and the interpolation polynomials
can therefore be viewed as the basis for the efficiency of the conjugate gradient method
and other polynomial acceleration methods such as Chebyshev iteration for solving
linear systems of equations.

A relation analogous to (3.1) fails to hold for more complicated (nonrational) func-
tions f such as the exponential function, and therefore short recurrences for the nodal
polynomials do not translate into short recurrences for the interpolation polynomials.
The computation of fm therefore necessitates storing the full Arnoldi basis Vm also
when A is Hermitian. It is therefore of interest to modify the Arnoldi approximation
in a way that allows the construction of successively better approximations of f(A)b
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based on a sequence of Krylov spaces of small dimension.4 Such restarted Krylov
subspace methods are well known for the solution of linear systems of equations; see
[26, 10].

3.2. Krylov approximation after Arnoldi restart. Consider two Krylov
spaces of order m with Arnoldi decompositions

AV (1)
m = V (1)

m H(1)
m + η(1)

m+1,mv (1)
m+1e

%
m,(3.2a)

AV (2)
m = V (2)

m H(2)
m + η(2)

m+1,mv (2)
m+1e

%
m,(3.2b)

where v (1)
1 = b/β and v (2)

1 = v (1)
m+1, i.e., obtained from two cycles of the Arnoldi

process applied to A, beginning with initial vector b and restarted after m steps with

the last Arnoldi basis vector v (1)
m+1 from the first cycle. We note that the columns

of W2m := [V (1)
m , V (2)

m ] form a basis of K2m(A, b), albeit not an orthonormal one,
and we may combine the two proper Arnoldi decompositions (3.2) to the Arnoldi-like
decomposition

AW2m = W2mH2m + η(2)
m+1,mv (2)

m+1e
%
2m,(3.3)

where H2m is the Hessenberg matrix

H2m :=

[
H(1)

m O

η(1)
m+1,me1e%

m H(2)
m

]
.(3.4)

Remark 3.1. We restart the Arnoldi process with v (1)
m+1, which is the most natural

choice. We could, however, restart with any vector of the form

v̂m+1 = V (1)
m y + ym+1v

(1)
m+1 ∈ Km+1(A, b) \ Km(A, b)

with a coefficient vector y = [y1, y2, . . . , ym]% ∈ Cm. In this case we must replace

H(1)
m in (3.4) by the rank-one modification H(1)

m − (η(1)
m+1,m/ym+1)ye%

m and η(1)
m+1,m by

η(1)
m+1,m/ym+1. It is conceivable that this could be used to emphasize certain directions

such as Ritz approximations of certain eigenvectors as is done in popular restarting
techniques for linear systems of equations [21] and eigenvalue calculations [30], but
we shall not pursue this here.

Our objective is to compute the Krylov subspace approximation associated with

(3.3) without reference to V (1)
m . The former is defined as

f2m = [Iw2mf ](A)b = βW2m[Iw2mf ](H2m)e1 = βW2mf(H2m)e1,(3.5)

where w2m is the nodal polynomial with zeros Λ(H(1)
m ) ∪ Λ(H(2)

m ) with multiplicity.
To evaluate the approximation (3.5), we note that f(H2m) is of the form

f(H2m) =

[
f
(
H(1)

m
)

O

X2,1 f
(
H(2)

m
)
]
, X2,1 ∈ Cm×m,(3.6)

4Another remedy, well known from Lanczos-based eigenvalue computations (see [24, Chapter
13]), is to discard the basis vectors no longer needed in the recurrence and either recompute these or
retrieve them from secondary storage when forming the approximation.
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a consequence of the block triangular structure of H2m, whereby (3.5) becomes

f2m = βV (1)
m f(H(1)

m )e1 + βV (2)
m X2,1e1.(3.7)

The first term on the right is the Arnoldi approximation with respect to Km(A, b).

If X2,1e1 were computable, one could discard the basis vectors V (1)
m and use (3.7) to

update the Arnoldi approximation, thus yielding the basis for a restarting scheme.
One conceivable approach is to observe that X2,1 satisfies the Sylvester equation

H(2)
m X2,1 −X2,1H

(1)
m = η(1)

m+1,m[f(H(2)
m )e1e

%
m − e1e

%
mf(H(1)

m )],(3.8)

which follows from comparing the (2, 1) blocks of the identity H2mf(H2m) = f(H2m)
H2m, and one could therefore proceed by solving (3.8). This approach, however,
suffers from the shortcoming that the Sylvester equation (3.8) is only well conditioned

if the spectra of H(1)
m and H(2)

m are well separated (cf. [16, section 15.3]). Since H(1)
m

and H(2)
m are both compressions of the same matrix A, it is to be expected that at

least some of their eigenvalues match very closely.
We shall instead derive a computable expression for X2,1e1 directly by way of

interpolation.

Lemma 3.2. Given two successive Arnoldi decompositions as in (3.2), let w(1)
m ,

w(2)
m , and w2m denote the monic nodal polynomials associated with Λ(H(1)

m ), Λ(H(2)
m ),

and Λ(H2m) = Λ(H(1)
m )∪Λ(H(2)

m ), respectively, with H2m the upper Hessenberg matrix
of the combined Arnoldi-like decomposition (3.3). Then there holds

[Iw2mf ](H2m)e1 =

[
[I

w(1)
m

f ]
(
H(1)

m
)
e1

γ(1)
m [I

w(2)
m

(∆
w(1)

m
f)]

(
H(2)

m
)
e1

]
,(3.9)

where γ(1)
m =

∏m
j=1 η(1)

j+1,j (cf. Lemma 2.2).
Proof. Due to the block triangular structure of H2m as given in (3.6), there holds

[Iw2mf ]

([
H(1)

m O

η(1)
m+1,me1e%

m H(2)
m

])
=

[
[Iw2mf ]

(
H(1)

m
)

O

X2,1 [Iw2mf ]
(
H(2)

m
)
]

(3.10)

with X2,1 as in (3.6). Next, we establish the polynomial identity

[Iw2mf ] = I
w(1)

m
f + I

w(2)
m

(∆
w(1)

m
f)w(1)

m ,(3.11)

which can be seen by noting that both polynomials have the same degree 2m − 1

and interpolate f in the Hermite sense at the nodes Λ(H(1)
m ) ∪ Λ(H(1)

m ). For nodes

ϑ ∈ Λ(H(1)
m ) this is so because w(1)

m (ϑ) = 0 and therefore

[I
w(1)

m
f ](ϑ) + [I

w(2)
m

(∆
w(1)

m
f)](ϑ)w(1)

m (ϑ) = [I
w(1)

m
f ](ϑ) = f(ϑ) = [Iw2mf ](ϑ).

For nodes ϑ ∈ Λ(H(2)
m ) we have

[I
w(1)

m
f ](ϑ) + [I

w(2)
m

(∆
w(1)

m
f)](ϑ)w(1)

m (ϑ) = [I
w(1)

m
f ](ϑ) + [∆

w(1)
m

f ](ϑ)w(1)
m (ϑ)

= f(ϑ) = [Iw2mf ](ϑ)

with the second equality following from the definition (2.10), and (3.11) is established.
The assertion on the first block of the vector (3.9) is now verified by inserting the
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matrix H(1)
m into the polynomials on either side of (3.11), noting that w(1)

m (H(1)
m ) = O,

and multiplying both sides of (3.10) by e1.
To verify the second block of (3.9), we use identity (3.11) to write

[Iw2mf ](H2m) = M (1) + M (2)M (3),

where

M (1) := [I
w(1)

m
f ](H2m), M (2) := [I

w(2)
m

(∆
w(1)

m
f)](H2m), M (3) := w(1)

m (H2m).

The block lower triangular structure of H2m carries over to functions of H2m, giving

M (i) =

[
M (i)

1,1 O

M (i)
2,1 M (i)

2,2

]
, i = 1, 2, 3,

where in addition M (3)
1,1 = w(1)

m (H(1)
m ) = O. In this notation the second block of (3.9)

is given by

X2,1e1 = M (1)
2,1e1 + M (2)

2,2M
(3)
2,1e1.(3.12)

For the first term on the right, we have M (1)
2,1e1 = 0 because, as the (2, 1)-block of

M (1) = [I
w(1)

m
f ](H2m), a polynomial of degree m− 1 in the Hessenberg matrix H2m,

M (1)
2,1 has a zero first column. Next, again by the block lower triangular structure

of H2m, there holds M (2)
2,2 = [I

w(2)
m

(∆
w(1)

m
f)](H(2)

m ). Finally, we note that M (3)
2,1e1 =

γ(1)
m e1. This follows in a similar way as the evaluation of M (1)

2,1e1, but here M (3) =

w(1)
m (H2m) is a polynomial of degree m in the 2m×2m upper Hessenberg matrix H2m.

Again by the sparsity structure of powers of Hessenberg matrices, the first column

of M (3)
2,1 is a multiple of e1. Comparing coefficients reveals this multiple to be γ(1)

m .
Inserting these quantities in (3.12) establishes the second block of identity (3.9), and
the proof is complete.

Remark 3.3. We note that the same proof applies when the two Krylov spaces
are of different dimensions m1 and m2.

Comparing coefficients in (3.7) and (3.9) reveals that X2,1e1 = γ(1)
m [∆

w(1)
m

f ]
(
H(2)

m
)
e1,

and we summarize the resulting basic restart step in the following theorem.
Theorem 3.4. The Krylov subspace approximation (3.5) based on the Arnoldi-

like decomposition (3.3) is given by

f2m = βV (1)
m f

(
H(1)

m

)
e1 + βγ(1)

m V (2)
m [∆

w(1)
m

f ]
(
H(2)

m

)
e1.(3.13)

Proof. The proof follows immediately from (3.5) upon inserting the representation
for [Iw2mf ](H2m) given in Lemma 3.2: Starting with (3.5), we obtain

f2m = βW2mf(H2m)e1

= β
(
V (1)
m [I

w(1)
m

f ]
(
H(1)

m

)
e1 + V (2)

m γ(1)
m [I

w(2)
m

(∆
w(1)

m
f)]

(
H(2)

m

)
e1

)

= βV (1)
m f

(
H(1)

m

)
e1 + βγ(1)

m V (2)
m [∆

w(1)
m

f ]
(
H(2)

m

)
e1,

where the last equality follows from the interpolation properties of I
w(1)

m
and

I
w(2)

m
.
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3.3. The restarting algorithm. Theorem 3.4 suggests the following scheme for
a Krylov approximation of f(A)b based on the restarted Arnoldi process with cycle
length m: The first approximation f (1) is simply the usual Arnoldi approximation

with respect to the first Krylov space Km(A, b), i.e., f (1) = βV (1)
m f(H(1)

m )e1. The

next Krylov space is generated with the initial vector v (1)
m+1 and, according to (3.13),

the correction to f (1) required to obtain the Krylov subspace approximation of f(A)b
with respect to the Arnoldi-like decomposition (3.3) is given by

f (2) = f (1) + βγ(1)
m V (2)

m [∆
w(1)

m
f ]
(
H(2)

m

)
e1.

The effect of restarting is seen to be a modification of the function f to ∆(1)
wm

f and

a replacement of the vector b by βγ(1)
m v (1)

m+1. Note that this is in line with the error
representation (2.3) in that, after restarting, we are in fact approximating the error
term and using this approximation as a correction. The computation of this update
requires storing a representation of ∆

w(1)
m

f as well as the current approximation f (1),

but the Arnoldi basis V (1)
m can be discarded. Proceeding in this fashion, we arrive at

the restarting scheme given in Algorithm 1.

Algorithm 1: Restarted Arnoldi approximation for f(A)b

Given: A, b, f
f (0) := f , f (0) := 0, b(0) := b, γ(0) := ‖b‖.
for k = 1, 2, . . . until convergence do

Compute the Arnoldi decomposition AV (k)
m = V (k)

m H(k) + η(k)
m+1,mb(k)e%

m of

Km(A, b(k−1)).

Update the approximation f (k) := f (k−1) + γ(k−1)V (k)
m f (k−1)(H(k)

m )e1.

γ(k) := γ(k−1)
∏m

j=1 η(k)
j+1,j

f (k) := ∆
w(k)

m
f (k−1), where w(k)

m is the characteristic polynomial of H(k)
m .

Remark 3.5. Algorithm 1 is formulated for Krylov spaces of constant dimension
m in each restart cycle, but this dimension can vary from cycle to cycle.

Although Algorithm 1 appears very attractive from a computational point of
view, numerical experiments with a MATLAB implementation have revealed it to be
afflicted with severe stability problems. The cause of this seems to be the difficulty
of numerically computing interpolation polynomials of high degree (see also [33]).

We therefore turn to a slightly less efficient variant of our restarting scheme, which
our numerical tests indicate to be free from these stability problems. The generic step
of this second variant of the restarted Arnoldi algorithm proceeds as follows: After
k − 1 cycles of the algorithm, we may collect the entirety of Arnoldi decompositions
in the (k − 1)-fold Arnoldi-like decomposition

AW(k−1)m = W(k−1)mH(k−1)m + η(k−1)
m+1,mv (k−1)

m+1 e%
(k−1)m

with W(k−1)m = [V (1)
m V (2)

m . . . V (k−1)
m ]. Combining this with the Arnoldi decomposi-

tion

AV (k)
m = V (k)

m H(k)
m + η(k)

m+1,mv (k)
m+1e

%
m

of the next Krylov space Km(A, v (k−1)
m+1 ), we obtain the next Arnoldi-like decomposi-
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tion

AWkm = WkmHkm + η(k)
m+1,mv (k)

m+1e
%
km

with Wkm = [W(k−1)m, V (k)
m ] and

Hkm =

[
H(k−1)m O

η(k−1)
m+1,me1e%

(k−1)m H(k)
m

]
.

Denoting by wkm the characteristic polynomial of Hkm, formula (2.11) for the Krylov
subspace approximation with respect to an Arnoldi-like decomposition gives

f (k) = βWkmf(Hkm)e1 = f (k−1) + βV (k)
m [f(Hkm)e1](k−1)m+1:km,(3.14)

where the subscript in the last term is meant to refer to the vector with the last
m components of f(Hkm)e1. (3.14) provides an alternative update formula for the
restarted Arnoldi approximation. It is somewhat less efficient than that given in
Algorithm 1 in that it requires storing Hkm and the evaluation of f(Hkm), but we
have found it to be much stabler than the former. The second variant is summarized
in Algorithm 2.

Algorithm 2: Restarted Arnoldi approximation for f(A)b (variant 2)

Given: A, b, f
f (0) := f , f (0) := 0, b(0) := b, β := ‖b‖.
for k = 1, 2, . . . until convergence do

Compute the Arnoldi decomposition AV (k)
m = V (k)

m H(k)
m + η(k)

m+1,mb(k)e%
m of

Km(A, b(k−1)).
if k = 1 then

Hkm := H(1)
m

else

Hkm :=

[
H(k−1)m O

η(k−1)
m+1,me1e%

(k−1)m H(k)
m

]
.

Update the approximation f (k) := f (k−1) + βV (k)
m [f(Hkm)e1](k−1)m+1:km.

4. Properties of the restarted Arnoldi algorithm.

4.1. Special cases. In this section we recover some known algorithms as special
cases of the restarted Arnoldi approximation.

4.1.1. Linear systems of equations. We begin by showing that for f(λ) = 1/λ
we recover the well-known restarted FOM for solving linear systems of equations [27].
With Iwmf for this case given in (3.1), there results

[∆wmf ](λ) =
1

wm(0)

1

λ
,

so that the representation (2.11) becomes

A−1b = βVmH−1
m e1 +

βγm
wm(0)

A−1vm+1 = fm +
βγm
wm(0)

A−1vm+1,
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where fm denotes the mth FOM iterate. The associated residual is therefore

rm = b −Afm =
βγm
wm(0)

vm+1,(4.1)

which leads to

A−1b = fm + A−1rm.

We conclude that in this case the exact correction c to the Arnoldi approximation
fm is the solution of the residual equation Ac = rm, leading to the problem of
approximating f(A)rm, which in restarted FOM is carried out using a new Krylov
space with initial vector rm. As an aside, we observe that (4.1) implies that the FOM
residual norm can be expressed as

‖rm‖ =
βγm

|wm(0)| =
β
∏m

j=1 ηj+1,j

|detHm| ,

an expression first given in [4].

4.2. Initial value problems. We consider the initial value problem

y ′(t) = Ay(t), y(0) = b(4.2)

with A ∈ Cn×n, b ∈ Cn (independent of t) with solution

y(t) = ft(A)b, ft(λ) = etλ.(4.3)

The Arnoldi approximation of (4.3) with respect to (2.3) is given by

ym(t) = Vmu(t), u(t) = βetHme1, β = ‖b‖.(4.4)

As is easily verified, the associated approximation error dm(t) := y(t) − ym(t) as a
function of t satisfies the initial value problem

(∂t −A)dm(t) = rm(t), dm(0) = 0,(4.5)

in which the forcing term rm(t), which plays the role of a residual, is given by

rm(t) := ηm+1,me%
1 u(t)vm+1 = βηm+1,me%

metHme1vm+1 =: ρm(t)vm+1.(4.6)

In [4] (see also [19]) Celledoni and Moret propose a restarted Krylov subspace scheme
for solving (4.2) based on the variation of constants formula

dm(t) = Ft(A)vm+1, Ft(λ) :=

∫ t

0
e(t−s)λρm(s) ds,(4.7)

for the solution of the residual equation (4.5) using repeated Arnoldi approximations
of Ft(A)vm+1 in a manner similar to Algorithm 1. We note that, in contrast to Al-
gorithm 1, their method requires a time-stepping scheme in addition to the Krylov
approximation. As the approximate solution (4.4) of (4.2) is an Arnoldi approxima-
tion, the error representation (4.7) must coincide with that given in (2.11). To provide
more insight on the restarted Arnoldi approximation for solving initial value prob-
lems, we proceed to show explicitly that the two error representations are the same.
The key is the proper treatment of the parameter t. Denoting the error representation
(2.11) with f = ft by

d̃m(t) = βγm[∆wmft](A)vm+1,(4.8)

we prove the following result.



2494 MICHAEL EIERMANN AND OLIVER G. ERNST

Theorem 4.1. The error representation (4.8) for the Arnoldi approximation of
(4.3) as a function of t solves the initial value problem (4.5).

Proof. The initial condition d̃m(0) = 0 follows from the fact that f0 ≡ 1 and,
since this function is interpolated without error, the associated divided difference is
zero.

To verify that d̃m solves the differential equation, note first that differentiating
the interpolant of ft with respect to the parameter t results in

∂t[Iwmft] = Iwm(∂tft).(4.9)

This can be seen by writing the interpolant as

[Iwmft](λ) =
k∑

j=1

nj−1∑

"=0

f (")
t (ϑj) qj,"(ϑj),

k∑

j=1

nj = m,

in terms of the Hermite basis polynomials qj," ∈ Pm−1, characterized by

q(p)
j," (ϑq) = δj,q δ",p, j, q = 1, 2, . . . , k, #, p = 0, 1, . . . , nj − 1,

and exchanging the order of differentiation. As a consequence of (4.9) and the fact
that (∂tft)(λ) = λft(λ), we also have

∂t[∆wmft] = ∆wm(∂tft) = ∆wm(gft), where g(λ) = λ.

The product formula for divided differences (see, e.g., [25, Theorem 1.3.3]) now yields

∂t[∆wmft](λ) = λ[∆wmft](λ) + πm−1(t),(4.10)

where πm−1(t) is the leading coefficient of Iwmft. Inserting A for λ in the scalar
equation (4.10) and multiplying by vm+1 now gives us

(∂t −A)d̃m(t) = βγm

(
A[∆wmft](A) + πm−1(t)I −A[∆wmft](A)

)
vm+1

= βγmπm−1(t)vm+1.

A comparison with (4.6) reveals that what remains to be shown is that

γm
ηm+1,m

πm−1(t) = e%
metHme1.

The term on the right is the entry at the (m, 1) position of the matrix etHm =
[Iwmft](Hm). Due to the sparsity pattern of powers of an upper Hessenberg matrix,
this entry is given by

m−1∏

j=1

ηj+1,jπm−1(t) =
γm

ηm+1,m
πm−1(t)

and the proof is complete.
The uniqueness of the solution of (4.5) together with Theorem 4.1 now imply once

more that d̃m(t) = dm(t). We emphasize again that our restarted Arnoldi method
approximates these error terms directly without recourse to a time-stepping scheme.



A RESTARTED KRYLOV METHOD FOR MATRIX FUNCTIONS 2495

4.3. Convergence. The full Arnoldi approximation is known to converge su-
perlinearly for the exponential function, as shown in, e.g., [17, 8]. For the case of
solving linear systems of equations, i.e., the Arnoldi approximation for the function
f(λ) = 1/λ, it is known that restarting the process can degrade or even destroy con-
vergence. In this section we show that, for sufficiently smooth functions, restarting the
Arnoldi approximation preserves its superlinear convergence. We state the following
result for entire functions of order one (cf. [2, section 2.1]), a class which includes the
exponential function, and note that the result generalizes to other orders with minor
modifications.

Theorem 4.2. Given A ∈ Cn×n and an entire function f of order one, let

{ϑ(m)
j }mj=1,m ≥ 1, denote an arbitrary node sequence contained in the field of values

W (A) of A with associated nodal polynomials wm ∈ Pm. Then there exist constants
C and γ which are independent of m such that

‖f(A)b − [Iwmf ](A)b‖ ≤ C
γm−1

(m− 1)!
‖b‖ for all m.(4.11)

Proof. We recall the well-known Hermite representation theorem for the interpo-
lation error (cf. [6, Theorem 3.6.1]): Let Γ ⊂ C be a contour which contains W (A),
and hence also the interpolation nodes, in its interior, which we denote by Ω. Then
for all λ ∈ Ω we have

f(λ) − [Iwmf ](λ) =
1

2πi

∫

Γ

f(t)

t− λ

wm(λ)

wm(t)
dt.(4.12)

By replacing f with f − p in (4.12), we obtain for arbitrary polynomials p ∈ Pm−1

the identity

f(λ) − [Iwmf ](λ) =
1

2πi

∫

Γ

f(t) − p(t)

t− λ

wm(λ)

wm(t)
dt.

Inserting A for λ on both sides, multiplying with b, and taking norms gives

‖f(A)b − [Iwmf ](A)b‖ =
1

2π

∥∥∥∥
∫

Γ
[f(t) − p(t)](tI −A)−1wm(A)

wm(t)
dt b

∥∥∥∥ .(4.13)

We now bound each factor of the integrand. For any unit vector u ∈ Cn, we have
uHAu ∈ W (A), and thus, for all t ∈ Γ,

dist(Γ,W (A)) ≤ |t− uHAu | = |uH(tI −A)u | ≤ ‖(tI −A)u‖.

For arbitrary v ∈ Cn, it follows that ‖(tI −A)v‖ ≥ dist(Γ,W (A))‖v‖ and therefore

‖(tI −A)−1‖ ≤ 1

dist(Γ,W (A))
.(4.14)

Similarly, since the nodes ϑ(m)
j are contained in W (A) by assumption, we have

|wm(t)| = |(t− ϑ(m)
1 )(t− ϑ(m)

2 ) · · · (t− ϑ(m)
m )| ≥ dist(Γ,W (A))m, t ∈ Γ.(4.15)

Moreover, with r(A) := max{|λ| : λ ∈ W (A)} denoting the numerical radius of A, we
may bound ‖wm(A)‖ by

‖wm(A)‖ ≤
m∏

j=1

‖A− ϑjI‖ ≤
m∏

j=1

(‖A‖ + ϑj) ≤ [3r(A)]m,(4.16)

which follows from the well-known inequality ‖A‖ ≤ 2r(A) and since ϑ(m)
j ∈ W (A).
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Thus, from (4.13), (4.14), (4.15), (4.16), and the fact that p ∈ Pm−1 was arbitrary,
we obtain the bound

‖f(A)b − [Iwmf ](A)b‖ ≤ #(Γ)

2π

infp∈Pm−1 ‖f − p‖∞,Ω [3r(A)]m

dist(Γ,W (A))m+1
‖b‖,

where #(Γ) denotes the length of the contour Γ and ‖ · ‖∞,Ω denotes the supremum
norm on Ω. The assertion now follows from the convergence rate of best uniform
approximation of entire functions of order one by polynomials. In particular, it is
known (see [11]) that there exist constants C̃ and γ̃ such that

inf
p∈Pm−1

‖f − p‖∞,Ω ≤ C̃
γ̃m−1

(m− 1)!
.

Corollary 4.3. The restarted Arnoldi approximation converges superlinearly
for entire functions of order one.

Proof. This follows from Theorem 4.2 by noting that, for the Arnoldi approxi-
mation, the set of interpolation nodes for each restart cycle are Ritz values of A and
therefore contained in W (A).

5. Numerical experiments. In this section we demonstrate the behavior of the
restarted Arnoldi approximation for the exponential function using several examples
from the literature. All computations were carried out in MATLAB version 7.0 (R14)
on a 1.6 GHz Power Mac G5 computer with 1.5 GB of RAM.

5.1. Three-dimensional heat equation. Our first numerical experiment is
based on one from [14]: Consider the initial boundary value problem

u̇−∆u = 0 on (0, 1)3 × (0, T ),(5.1a)

u(x, t) = 0 on ∂(0, 1)3 for all t ∈ [0, T ],(5.1b)

u(x, 0) = u0(x), x ∈ (0, 1)3.(5.1c)

When the Laplacian is discretized by the usual seven-point stencil on a uniform grid
involving n interior grid points in each Cartesian direction, problem (5.1) reduces to
the initial value problem

u̇(t) = Au(t), t ∈ (0, T ),

u(0) = u0,

with an N ×N matrix A (N = n3) and an initial vector u0 consisting of the values
u0(x) at the grid points x, the solution of which is given by

u(t) = ft(A)u0 = etAu0.(5.2)

As in [14], we give the initial vector in terms of its expansion in eigenfunctions of the
discrete Laplacian as

u i,j,k
0 =

∑

i′,j′,k′

1

i′ + j′ + k′
sin(ii′πh) sin(jj′πh) sin(kk′πh).

Here h = 1/(n + 1) is the mesh size and the triple indexing is relative to the lexico-
graphic ordering of the mesh points in the unit cube.
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Table 5.1
The full Arnoldi approximation applied to the three-dimensional heat equation with h = 1/36

and t = 0.1 = nsteps∆t. The dimension m of the Krylov spaces is chosen as the smallest to result
in an error ‖e‖2 less than 10−10 at t = 0.1.

∆t nsteps m Time [s] ‖e‖2

1e-1 1 72 12.0 7.76e-11
5e-2 2 51 10.5 8.47e-11
2e-2 5 36 13.7 8.54e-11
1e-2 10 29 18.3 2.09e-11
5e-3 20 22 22.7 5.13e-11
1e-3 100 13 42.4 1.55e-11
5e-4 200 11 62.6 5.36e-12
1e-4 1000 8 172.2 1.20e-12
5e-5 2000 7 299.3 1.72e-12

Table 5.2
The restarted Arnoldi approximation applied to the three-dimensional heat equation with h =

1/36 and t = 0.1. The dimension m of the Krylov spaces is chosen to coincide with the runs in
Table 5.1 and now the number of restarts k is chosen as the smallest to result in an error ‖e‖2 less
than 10−10 at t = 0.1.

∆t k m Time [s] ‖e‖2

1e-1 2 51 10.2 2.22e-17
1e-1 2 36 5.2 3.61e-12
1e-1 3 29 5.0 7.78e-15
1e-1 4 22 4.1 9.54e-15
1e-1 6 13 2.2 4.37e-11
1e-1 7 11 1.8 1.29e-11
1e-1 10 8 1.7 7.01e-11
1e-1 12 7 1.6 3.27e-11

We first consider the case n = 35 and repeat a calculation in [14], where (5.2) is
approximated at t = 0.1 using the unrestarted Arnoldi approximation. Writing the
solution in the form u(t) = (e∆tA)ku0, where k∆t = t, one can compute the solution
using k applications of the Arnoldi approximations involving the matrix ∆tA, which
has a smaller spectral interval than A and hence results in faster convergence. There
is thus a tradeoff between using Krylov spaces of small dimension and having to take a
small number of time steps of length ∆t. The results in Table 5.1 show the execution
times which result from fixing the time step ∆t and using the smallest Krylov subspace
dimension m which results in a Euclidean norm of less that 10−10 for the error vector
e of the unrestarted Arnoldi approximation. We observe that using smaller time steps
does allow one to use smaller Krylov spaces, but at a higher cost in terms of execution
time.

We next consider the same problem, but instead of taking several time steps with
the full Arnoldi approximation, we reduce the size of the Krylov spaces by restarting
after every m steps. The results are given in Table 5.2. The dimension m of the
Krylov spaces is chosen to coincide with the corresponding runs from Table 5.1, but
now the number of restarts k is chosen as the smallest to result in an error less than
10−10. Again there is a tradeoff between the size of the Krylov space and the number
of restarts required until convergence. In contrast to Table 5.1, however, we note that
the total execution times decrease rather than increase when smaller Krylov spaces
are employed, in spite of the fact that this requires more restart cycles. Moreover,
the longest execution time of the restarted variant is less than half of the shortest
execution time of any of the full Arnoldi approximation runs.
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Fig. 5.1. Error norm histories for the restarted Arnoldi approximation applied to the three-
dimensional heat equation with n = 50, i.e., N = 125 000, for several restart lengths m.

Table 5.3
Execution times for the runs depicted in Figure 5.1: m denotes the restart length and k the

number of restart cycles.

m k Time [s]
∞ 1 1948
20 20 206
10 45 146
6 87 153

Finally, we consider the same problem for a finer discretization with n = 50,
resulting in a matrix of dimension N = 125 000. We apply the restarted Arnoldi
approximation with restart lengths m = 6, 10, and 20 using the full Arnoldi approx-
imation (m = ∞) as a reference. Each iteration is run until the accuracy no longer
improves. The resulting error curves are shown in Figure 5.1, and the corresponding
execution times in Table 5.3. We observe here that the method requires successively
more restart cycles to converge as the restart length is decreased. Convergence, how-
ever, is merely delayed and is maintained down to the smallest restart length m = 6.
In terms of execution time, there appears to be a point of diminishing returns using
shorter and shorter restart lengths, as the shortest execution time was obtained for
m = 10.

5.2. Skew-symmetric problem. Our next example is taken from [17]. We
consider a matrix A with 1001 equidistant eigenvalues in [−20i, 20i]. In contrast to
[17], we choose A to be block diagonal and real (and not diagonal and complex) in
order to avoid complex arithmetic, as follows:

A = blockdiag(B0, B1, . . . , B500) ∈ R1001×1001,

B0 = 0,

Bj = j
25

[
0 1
−1 0

]
, j = 1, 2, . . . , 500.

(5.3)
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Fig. 5.2. Error norm histories for the skew-symmetric problem of dimension n = 1001.

The vector b is a random vector5 of unit norm. The error curve of the full Arnoldi
approximation (m = ∞) as well as those of the restarted Arnoldi approximation with
restart lengths m = 2, 4, and 6 are shown in Figure 5.2.

We observe that the errors associated with the restarted Arnoldi approximations
initially increase before tending to zero. We also observe that the final accuracy of
the approximation deteriorates with decreasing restart length. This indicates that the
restart length m is too small to “resolve” the spectral interval of A.

For an explanation, recall that the Arnoldi approximations fm of exp(A)b can be
viewed as the result of an interpolation process: fm = qm−1(A)b, where qm−1 is an
interpolating polynomial for the exponential function. For the unrestarted Arnoldi
method, the interpolation nodes are the Ritz values of A with respect to Km(A, b),
which are approximately uniformly distributed over [−20i, 20i] (cf. Figure 5.3, where
the imaginary parts of the Ritz values are shown6.) For the restarted Arnoldi method
(with restart length m), however, the interpolation nodes are the collection of the
Ritz values of A with respect to several Krylov spaces Km

(
A, b(j)

)
, j = 0, 1, . . . , k−1

(after k restarts). These are far from uniformly distributed in [−20i, 20i], but rather
tend to accumulate at m discrete points (see Figure 5.3).

In the extreme case of restart length one, all interpolating nodes equal ϑ = 0 (at

least in exact arithmetic) and the interpolating polynomial qk−1(λ) =
∑k−1

j=0
1
j!λ

j is

simply the truncated Taylor expansion of exp(λ). It is well known that, for |λ| /
0, intermediate partial sums are much larger than the final limit. An analogous
statement holds for Hermite interpolating polynomials of the exponential function at
too few nodes.

The phenomenon described above becomes more pronounced if we increase the
spectral interval of A: Again, we consider the matrix A of (5.3), but now of dimension
10001 with equidistant eigenvalues in [−200i, 200i]. The resulting error curves for the
restart lengths m = 5, 10, 20, and 40 are shown in Figure 5.4.

5Generated by the MATLAB syntax randn(’state’,0); b = randn(1001,1)
6Note that all Ritz values are purely imaginary because A is skew-symmetric and b is real.
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Fig. 5.3. Interpolation nodes for the skew-symmetric problem of dimension n = 1001.

Fig. 5.4. Error norm histories for the skew-symmetric problem of dimension n = 10001.
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Table 5.4
The restarted Arnoldi approximation applied to the skew-symmetric problem of dimension

10001, for several restart lengths m (cf. Figure 5.4).

m Matrix vector
products

Time[s] Final
accuracy

Largest
error

Largest error

Final accuracy
∞ 260 367 2.5e−14 1.4e+01 [1] 1.8e−14
40 280 48 7.8e−14 6.3e+01 [160] 1.2e−14
20 280 26 2.1e−12 2.3e+02 [140] 8.9e−15
10 270 16 2.9e−09 6.8e+05 [140] 4.3e−15
5 275 13 2.1e−01 2.2e+13 [145] 9.7e−15

Table 5.4 shows the number of matrix-vector products and the execution times
which were required to reach a final accuracy for different restart length m. We also
list the largest intermediate error (and after how many matrix-vector multiplications
it is observed). Note that for every m the quotient of this largest error and the final
accuracy approximately equals the machine precision of 2e− 16.

5.3. Convection-diffusion problem. Our final example is taken from [19, Ex-
ample 6.1]: We consider the initial boundary value problem

u̇−∆u + τ1ux1 + τ2ux2 = 0 on (0, 1)3 × (0, T ),

u(x, t) = 0 on ∂(0, 1)3 for all t ∈ [0, T ],

u(x, 0) = u0(x), x ∈ (0, 1)3.

Discretizing the Laplacian by the usual seven-point stencil and the first-order deriva-
tives, ux1 and ux2 , by central differences on a uniform grid with step size h = 1/(n+1)
leads—as in section 5.1—to an ordinary initial value problem

u̇(t) = Au(t), t ∈ (0, T ),

u(0) = u0

with the matrix

A = In ⊗ [In ⊗ C1] + [B ⊗ In + In ⊗ C2] ⊗ In

of dimension N = n3. Here,

B = 1
h2 tridiag(1,−2, 1), Cj = 1

h2 tridiag(1 + µj ,−2, 1 − µj), j = 1, 2,

where µj = τjh/2. The nonsymmetric matrix A is a popular test matrix because its
eigenvalues are explicitly known: If |µj | > 1 (for at least one j), they are complex;
more precisely (cf. [19]),

Λ(A) ⊂ 1
h2 [−6 − 2 cos(πh) Re(θ), −6 + 2 cos(πh) Re(θ)]

× 1
h2 [−2i cos(πh) Im(θ), 2i cos(πh) Im(θ)]

with θ = 1 +
√

1 − µ2
1 +

√
1 − µ2

2. As in [19], we choose h = 1/16, τ1 = 96, τ2 = 128
(τ1 = τ2 = 320) which leads to µ1 = 3, µ2 = 4 (µ1 = µ2 = 10), and approximate etAb,
where t = h2 and b = [1, 1, . . . , 1]%. The resulting error norm histories are shown
in Figure 5.5. In the second example we again observe transient error growth. We
attribute this, as in the skew-symmetric example, to the sufficiently large imaginary
parts of the eigenvalues of h2A, which lie in

[−8.0,−4.0] × i[−13.1, 13.1] for µ1 = 3, µ2 = 4
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Fig. 5.5. Error norm histories for the restarted Arnoldi approximation applied to the
convection-diffusion problem with n = 15, i.e., N = 3375 for several restart lengths m. As in
[19], we chose µ1 = 3, µ2 = 4 (top), and µ1 = µ2 = 10 (bottom).

and

[−8.0,−4.0] × i[−39.0, 39.0] for µ1 = µ2 = 10,

respectively.

6. Conclusions. We have shown how Krylov subspace methods for approximat-
ing f(A)b may be restarted. This permits the application of schemes like the Arnoldi
approximation to very large matrices using a fixed amount of storage space. For func-
tions f which are entire of order one, the restarted method retains the superlinear
convergence property of the unrestarted method. In addition, we have identified the
relationship of the restarted method to known algorithms in the cases f(λ) = 1/λ and
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ft(tλ) = etλ. Moreover, we have demonstrated that the method performs well on sev-
eral numerical examples from the literature. Related issues such as characterizing the
convergence of the Arnoldi approximation using potential theoretic methods as well
as yet more efficient implementations of the restarted algorithm will be the subject
of future research.
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