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S U M M A R Y
A computational method is given for solving the forward modelling problem for transient
electromagnetic exploration. Its key features are the discretization of the quasi-static Maxwell’s
equations in space using the first-kind family of curl-conforming Nédélec elements combined
with time integration using rational Krylov methods. We show how rational Krylov methods
can also be used to solve the same problem in the frequency domain followed by a synthesis of
the transient solution using the fast Hankel transform, and we argue that the pure time-domain
solution is more efficient. We also propose a new surrogate optimization approach for selecting
the pole parameters of the rational Krylov method which leads to convergence within an a priori
determined number of iterations independent of mesh size and conductivity structure. These
poles are repeated in a cyclic fashion, which, in combination with direct solvers for the discrete
problem, results in significantly faster solution times than previously proposed schemes.

Key words: Numerical solutions; Numerical approximations and analysis; Electromagnetic
theory.

1 I N T RO D U C T I O N

The rapid numerical inversion and simulation of 3-D electromag-
netic (EM) measurements to obtain maps of electromagnetic con-
ductivity of subsurface regions of interest remains one of the major
computational challenges of geoelectromagnetic prospecting. The
‘forward simulation’ or ‘modelling’ step, in which the response of
a given conductivity distribution is computed, is a key element in
the inversion process since it must be carried out multiple times for
each inversion. The availability of fast forward modelling codes is
therefore of crucial importance.

A broad distinction in EM forward modelling schemes is between
‘time-domain’ and ‘frequency-domain’ methods. In the first, the
time evolution of electromagnetic fields is propagated forward in
time, whereas in the latter the Fourier components of these fields
are computed for a suitable collection of frequencies, which are
then transformed numerically to the time domain. Both approaches
are mathematically equivalent and, as we demonstrate below, can
be implemented using rational Krylov methods; however, as will
become clear, simpler and more accurate numerical methods for
TEM forward modelling result when performing all calculations in
the time domain.

The finite-difference time-domain (FDTD) scheme introduced
by Yee (1966) based on staggered tensor product grids in space has
been widely used to model responses of 2-D and 3-D conductivity
structures by time-stepping (Taflove 1995). The Yee discretization
combined with explicit and implicit time-stepping also forms the

basis of transient electromagnetic modelling in the geophysics lit-
erature. Among these are Oristaglio & Hohmann (1984), where
the 2-D problem of transient electromagnetics is solved with an
explicit time-integration scheme proposed by DuFort & Frankel
(1953) combined with an upward continuation boundary condition
at the air–Earth interface. This approach was extended to model 3-D
inhomogeneities in Wang & Hohmann (1993). Commer & Newman
(2004) present a finite-difference scheme for the simulation of tran-
sient electromagnetic fields generated by galvanic sources. They
were able to compute the initial conditions by solving a stationary
3-D Poisson problem, as it appears, for example, in the numerical
solution of the 3-D DC resistivity problem. Moreover, their algo-
rithm was designed to run on parallel computer architectures.

The stability constraints of explicit time-stepping schemes for
the parabolic quasi-static Maxwell’s equations require excessively
small time steps for fine spatial resolution and low conductivities.
Although each time step consists of essentially a matrix-vector
product, small time steps can nonetheless lead to high computa-
tional demands. As demonstrated in Oristaglio & Hohmann (1984),
the DuFort–Frankel scheme allows the time step to increase with
the square root of simulation time as the integration progresses.
However, the initial time step still depends on the smallest conduc-
tivity present in the model. Typical values for the choice of the air
half-space conductivity range between 10−14 and 10−6 S m−1.

Unlike explicit schemes, implicit methods solve a system of lin-
ear equations to obtain the solution for each desired time step.
Goldman & Stoyer (1983) have simulated transients for 2-D
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structures with axial symmetry by implicit time-stepping. Haber
et al. (2002) simulated 3-D transients employing a backward Euler
scheme, a variant of the implicit time-stepping method. At each
time step, they solved the system of linear equations arising from a
finite-volume discretization. The system was solved with a precon-
ditioned biconjugate gradient method.

Transient electromagnetic fields may also be obtained by inverse
Fourier transformation of sufficiently many frequency-domain so-
lutions. Newman et al. (1986) implemented an integral equation
formulation in the frequency domain, and transformed the solutions
back to the time domain using a fast Hankel transform. A similar
approach was proposed by Mulder et al. (2008), who computed
a small number of frequency-domain solutions and transformed a
spline-interpolated set of solutions to the time domain. The dis-
crete times for which a transient can be calculated depend on the
sampling interval as well as the bandwidth of the discrete solutions
given in the frequency domain. Generally, for a transient spanning
from very early to late times, for example, from 10−6 to 10−3 s,
many—typically around 100—frequency-domain solves are neces-
sary, which requires an unreasonably high numerical effort.

Improvements over explicit or implicit time-stepping can be
achieved using Krylov methods. Like time-stepping, polynomial
and rational Krylov subspace methods for solving the quasi-static
Maxwell’s equations require a matrix-vector product or linear sys-
tem solve, respectively, at each iteration step. However, the approx-
imations at the desired time values are obtained by choosing a near-
best approximation from a global Krylov space whose dimension
increases with each Krylov iteration. For the frequency-domain ap-
proach, the solution at the desired frequencies required for Fourier
synthesis are approximated in a similar fashion. Druskin & Knizh-
nerman (1988) used a spectral Lanczos decomposition method to
obtain an arbitrary number of frequency-domain solutions at a sub-
stantially lower numerical cost. Moreover, they pioneered the use
of (polynomial) Krylov methods to evaluate transients directly in
the time domain (Druskin & Knizhnerman 1994; Druskin et al.
1999) and subsequently extended their research to rational Krylov
methods (Druskin et al. 2009, 2010; Knizhnerman et al. 2009;
Druskin & Simoncini 2011; Zaslavsky et al. 2011; Druskin &
Zaslavsky 2012; Druskin et al. 2014). Recently, Börner et al. (2008)
combined the shift-and-invert Krylov method, a particularly simple
rational Krylov method, to evaluate the matrix resolvent function
in the frequency domain, obtaining the time-domain solution via
subsequent fast Hankel transform.

An important issue arising in practice is the treatment of the air
half-space in the presence of topography. The effect of the air layer
on the electromagnetic fields in the subsurface can be accounted
for by imposing a suitable boundary condition on the air–Earth in-
terface. In general, this boundary condition is nonlocal, meaning
that it couples all degrees of freedom associated with the air–Earth
interface, leading to dense submatrices in the finite-element dis-
cretization. In the special case of a flat earth, Fourier-techniques can
be employed to obtain an explicit representation of this dense sub-
matrix (Oristaglio & Hohmann 1984; Goldman et al. 1986, 1989;
Wang & Hohmann 1993) consisting of a convolution type integral,
which has to be assembled and incorporated into the discretized
Maxwell operator. However, inclusion of the nonlocal boundary
condition reduces the overall efficiency of the numerical method
and complicates the implementation. A significant advantage of ra-
tional Krylov methods over explicit time-stepping or polynomial
Krylov methods is the independence of their convergence of mesh
size and conductivity structure. This permits inclusion of the air
half-space in the computational domain, avoiding extra modelling

effort for the nonlocal boundary condition. Instead, the details of
the surface topography are reflected in the finite-element mesh and
the element-wise constant conductivity distribution.

In this paper, which is an extension of Börner et al. (2008) to the
time domain as well as higher-order rational Krylov approximations,
we demonstrate how optimal ‘pole parameters’ which determine a
rational Krylov method can be obtained a priori using a surrogate
optimization technique. The resulting poles are problem and mesh
independent in the sense that they do not change with discretization
features such as mesh size, finite-element order or spectral interval
of the system matrices, nor do they depend on the complexity of
the conductivity structure. This property can be exploited to model
conductivity structures with large coefficient jumps, which appear
naturally when topography has to be included in the geophysical
model. Moreover, our approach produces a cyclic pole sequence
consisting of a small number of distinct poles selected to guarantee
an a priori determined level of accuracy in the transient within a
known number of iterations. When combined with direct methods
for the solution of the discrete linear systems, this leads to consid-
erable computational savings, since the number of matrix factoriza-
tions coincides with the number of distinct poles employed (here
between one and four). In particular, the computational work for the
factorizations can be amortized over all rational Krylov iterations.
An additional benefit of using cyclically repeated poles is that the
linear systems associated with each pole can be solved concurrently
in a parallel computing environment. In this case a larger number
of cyclically repeated poles may be chosen to match the number of
available processing units.

The remainder of this paper is organized as follows: We first re-
call in Section 2 the governing partial differential equations (PDEs)
of geoelectromagnetic induction in the time and frequency domains
and relate these via the Fourier transform. This is followed by a de-
scription of the spatial discretization using Nédélec finite elements
on a tetrahedral mesh, specifying the discrete solutions in the time
and frequency domains. We reformulate the problem in terms of
matrix functions. In Section 3 we derive a rational Krylov method,
also known as the rational Arnoldi method, for the evaluation of the
action of a matrix function on a given vector and show how this can
be applied to solve the discrete problem in the time and frequency
domains. We show how optimal poles can be chosen for the rational
Arnoldi method for which the approximation converges uniformly
with respect to both spatial mesh size and conductivity structure.
In Section 4 we give an algorithmic summary of our method and
conclude in Section 5 with two numerical examples. As a first
problem, we consider a simple model of a layered half-space to
demonstrate that our approach yields accurate results. We compare
the results obtained by our method to results obtained by inverse
Fourier transform of large-scale frequency-domain solutions. The
choice of this simple model ensures that our results can be com-
pared to an analytical solution. As a second numerical example, we
show the performance of our method for a homogeneous half-space
with topography.

2 M AT H E M AT I C A L M O D E L
A N D D I S C R E T I Z AT I O N

2.1 Governing equations

We begin by recalling the governing equations of electromagnetic
induction. Neglecting displacement currents and eliminating the
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magnetic field, the time-dependent Maxwell’s equations for the
electric field intensity e = e(x, t) read

σ∂t e + ∇ × (µ−1∇×e) = −∂t j e, t ∈ R. (1)

The spatial coordinate x is assumed to vary in a computational
domain # ⊂ R3 containing the air–Earth interface. The magnetic
permeability µ = µ0 = 4π · 10−7 Vs/(Am) is that of free space and
the electric conductivity σ = σ (x) is a given function defined on
#. Along the boundary ∂# of # we impose the perfect conductor
boundary condition

n × e = 0, (2)

and we make the implicit assumption that the boundary has been
placed at sufficient distance from sources that the effects of the
boundary conditions are negligible compared to discretization
errors.

2.2 Source terms

We consider a source density j e resulting from a stationary trans-
mitter with a driving current that is shut off at time t = 0, giving

j e(x, t) = q(x)H (−t), (3)

in which H denotes the Heaviside unit step function and the vector
field q the spatial current pattern. Specifically, we consider a trans-
mitter consisting of a small horizontal square wire-loop carrying a
stationary current, thus generating a good approximation of a verti-
cal magnetic dipole. In particular, we note that the resulting current
density is divergence-free, that is,

∇·q = 0. (4)

2.3 Time-domain formulation

Denoting by δ(t) = ∂ tH(t) the Dirac delta distribution concentrated
at the origin t = 0, the combination of (1)–(3) results in the boundary
value problem

σ∂t e + ∇ × (µ−1∇ × e) = q(x)δ(t) on # × R, (5a)

n × e = 0 along ∂# (5b)

for the electric field intensity e as a function of time and space on the
entire time axis. For time-domain simulations it is more convenient
to formulate (5) as the initial-boundary value problem

σ∂t e + ∇ × (µ−1∇ × e) = 0 on # × (0,∞), (6a)

σ e|t=0 = q on #, (6b)

n × e = 0 on ∂# × (0, ∞). (6c)

2.4 Frequency-domain formulation

To formulate the same problem in the frequency domain, we apply
the Fourier transform in time, denoted by the operator F , to both
sides of (1), and introduce the transformed electric field

E(x,ω) := (Fe)(ω) =
∫ ∞

−∞
e(x, t) e−iωt dt, ω ∈ R,

where the ‘angular frequency’ ω has units rad s−1. Observing the
correspondence (FH )(ω) = πδ(ω) + 1

iω , with δ the delta distribu-
tion concentrated at ω = 0, as well as the scaling and derivative
laws for the Fourier transform, we obtain the frequency-domain
equation

∇ × (µ−1∇ × E) + iωσ E = −iωq
(

πδ(ω) − 1
iω

)
, ω ∈ R.

(7)

To simplify the problem, we introduce the impulse-response elec-
tric field ei = ei (x, t) as the solution of (1) with impulsive source
current j e

i (x, t) = q(x)δ(t). In view of the relation (Fδ)(ω) ≡ 1, its
Fourier transform Ei = Ei (x, ω) satisfies

∇ × (µ−1∇ × Ei ) + iωσ Ei = −iωq. (8)

Since both E and Ei in eqs (7) and (8) satisfy the same homogeneous
boundary condition (2) and the same PDE with right-hand sides
which are both scalar multiples of q, we conclude that

E(ω) =
(

πδ(ω) − 1
iω

)
Ei (ω). (9)

Transforming back to the time domain results in the transient solu-
tion

e(x, t) = 1
2π

∫ ∞

−∞
E(x, ω) eiωt dω

= 1
2π

∫ ∞

−∞

(
πδ(ω) − 1

iω

)
Ei (ω) eiωt dω

= 1
2

Ei (0) − 1
2π

∫ ∞

−∞

Ei (ω)
iω

eiωt dω, t ∈ R, (10)

where the DC component Ei (0) vanishes since the source field q is
divergence-free.

2.5 Finite-element discretization

Our numerical approximation for both the time- and frequency-
domain formulations is based on a finite-element discretization in
space using first-kind Nédélec spaces on unstructured tetrahedral
meshes. Theoretical background on Nédélec elements can be found
in Monk (2003); their implementation is described in Gopalakrish-
nan et al. (2005) and Kirby (2014).

2.5.1 Variational formulation

The standard variational formulation for Maxwell’s equations seeks
the electric field in the Sobolev space

H(curl; #) = {u ∈ L2(#)3 : ∇ × u ∈ L2(#)3}.

Here L2(#)3 denotes the space of square integrable 3-D vector
fields defined on #. Since we impose the homogeneous boundary
condition (2) along the entire boundary ∂#, we restrict these fields
further to the subspace of fields with vanishing tangential trace

V := {u ∈ H(curl; #) : n × u = 0 along ∂#}.

Multiplying (6) by an arbitrary stationary vector field φ ∈ V
and integrating by parts yields the variational problem of seeking
e = e(x, t) ∈ C([0,∞);V) such that

(σ∂t e, φ) + (µ−1∇ × e, ∇ × φ) = 0, t ∈ (0, ∞), (11a)

(σ e|t=0, φ) = (q, φ), (11b)

for all φ ∈ V , where ( ·, ·) denotes the inner product on L2(#)3.
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2.5.2 Discretization in space

We employ a Galerkin discretization in space obtained by restricting
the trial and test functions e and φ in the weak form (11) to a finite-
dimensional subspaceVh ⊂ V consisting of first-kind Nédélec finite
elements on a tetrahedral mesh Th . Nédélec elements are a natural
approximation of electromagnetic vector fields in that they are curl-
conforming, that is, they mimic the tangential continuity properties
of the fields under approximation, permitting jumps in the normal
field components whenever the conductivity is discontinuous across
an interface. On each tetrahedron K ∈ Th the functions inVh consist
of vector polynomials v ∈ P3

k−1 ⊕ Sk , where Pk denotes the space
of polynomials in three variables of complete degree k ∈ N0 and

Sk =
{
v ∈ P̃3

k : v · x = 0
}

with P̃k denoting the space of homogeneous polynomials of (exact)
degree k. In our numerical experiments we have used Nédélec ele-
ments of order k = 1 and k = 2, sometimes also known as ‘linear’
and ‘quadratic’ Nédélec elements. The discrete approximation of
the solution of the variational formulation (11) is then obtained by
restricting it to the subspace Vh , that is, by determining eh ⊂ Vh

such that, for all test functions φ ∈ Vh , there holds

(σ∂t eh, φ) + (µ−1∇ × eh, ∇ × φ) = 0, t > 0, (12a)

(σ eh |t=0, φ) = (q,φ). (12b)

Expanding the discrete solution eh ∈ Vh in a basis {φ1, . . . , φN }
of Vh , (12) becomes the ODE initial-value problem

M∂t u(t) + Cu(t) = 0, t ∈ (0, ∞), Mu(0) = q, (13)

for the vector u(t) containing the N coefficients of the finite-element
approximation eh(t) with respect to the Nédélec basis at time t ≥ 0.
Here the mass and curl–curl matrices M and C as well as the vector
q of initial values are given in terms of the Nédélec basis by

[M]i, j = (σφ j , φi ), [C]i, j = (µ−1∇ × φ j , ∇ × φi ),

[q]i = (q, φi ), for i, j = 1, . . . , N .

For the frequency-domain formulation we may employ the same
spatial discretization, in terms of which (8) becomes the linear
system of equations

(C + iωM)u(ω) = −iωq (14)

for the coefficient vector u(ω) of the impulse-response solution at
frequency ω with respect to the Nédélec basis.

2.5.3 Representation as matrix functions

Once the TEM problem has been discretized in space, TEM forward
modelling in either the time- or frequency-domain formulation con-
sists in evaluating the finite-element representation of the solution
of (13) for the desired values of t or, alternatively, solving (14) for
sufficiently many frequencies to construct the transient solution via
fast Hankel transform.

The explicit solution of the semi-discretized time-domain prob-
lem (13) is given in terms of the matrix exponential function

u(t) = exp(−tM−1C)M−1q = f t (A)b, (15)

with

f t (z) = exp(−t z), A = M−1C, b = M−1q.

Similarly, the finite-element discretization (14) of the frequency-
domain problem (8) has the solution

u(ω) = −iω(C + iωM)−1q = −iω(A + iωI)−1b, (16)

so that

u(ω) = gω(A)b with gω(z) = iω
z + iω

.

Applying the inverse Fourier transform (10) back to the time do-
main to the discrete frequency-domain solution vector u(ω) yields

(F−1u)(t) = 1
2π

∫ ∞

−∞
(A + iωI)−1beiωt dω. (17)

To show that the transformed discrete frequency-domain solution
agrees with that of the time domain, we express the latter using
contour integration. Recall that, as an entire function, the function
f t in (15) may be represented as the Cauchy integral

f t (z) = 1
2π i

∫

(

f t (ζ )
ζ − z

dζ, (18)

where ( is a contour surrounding the point z in the complex plane.
The same contour integral may be used to evaluate f t (A) provided
the contour ( contains all eigenvalues of A in its interior. Since

M1/2AM−1/2 = M−1/2CM−1/2,

we see that A is similar to the matrix on the right-hand side, which
is symmetric and, since M is symmetric positive definite and C
symmetric positive semi-definite, is also symmetric positive semi-
definite. The eigenvalues of A therefore lie on the nonnegative real
axis. The zero eigenvalues of C are associated with discrete gradient
fields. These are not present in the given solution due to the fact
that the field q is divergence-free. We may therefore ignore the zero
eigenvalue and use the imaginary axis as the integration contour in
(18). Parametrizing the imaginary axis by −iω, ω ∈ (−∞, ∞), we
obtain

u(t) = f t (A)b = 1
2π i

∫

(

(ζ I − A)−1 f t (ζ ) dζ b

= 1
2π

∫ ∞

−∞
(A + iωI)−1eiωt dω b,

which coincides with (17).

3 R AT I O NA L A R N O L D I
A P P ROX I M AT I O N

We have seen in the previous section that the solution vector u
containing the finite-element coefficients of the solution of the TEM
forward modelling problem can be expressed as a matrix function
applied to a vector: in the time-domain formulation this is the matrix
exponential function (15), while in the frequency domain this is the
(matrix) resolvent function (16). When the matrices involved are
large and sparse, as is the case with matrices arising from finite-
element discretization of Maxwell’s equations, Krylov subspace
methods can be applied to construct efficient approximations of
such matrix function evaluations. In this section we briefly recall a
popular rational Krylov method, also known as the rational Arnoldi
method, for approximating the action f (A)b of a generic matrix
function f. Our variant of this method uses an orthogonalization
procedure in the M-inner product defined as ⟨x, y⟩M := yH Mx with
induced norm ∥x∥M :=

√
⟨x, x⟩M. Here yH denotes the complex

conjugate transpose of y. For the problem under consideration the
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symmetric positive definite matrix M defining the inner product
will be the finite-element mass matrix.

We use the rational Krylov orthogonalization algorithm of Ruhe
(1994) to construct a sequence of orthonormal vectors {v j } j≥1.
Starting with the vector v1 = b/∥b∥M, we determine in each step
a vector v j+1 which is M-orthogonal to the previously generated
vectors v1, v2, . . . , v j . This leads to the recursion

v j+1h j+1, j = (A − ξ j I)−1v j −
j∑

i=1

vi hi, j , j = 1, 2, . . . , m, (19)

where the coefficients are defined as hi, j = ⟨(A − ξ j I)−1v j , vi ⟩M,
and hj + 1, j > 0 is chosen such that ∥v j+1∥M = 1. The numbers
{ξ j }m

j=1 are parameters known as ‘poles’ which define the ra-
tional Krylov method and will be discussed below. It is conve-
nient to collect the computed basis vectors in a matrix Vm+1 =
[v1, v2, . . . , vm+1] ∈ CN×(m+1). Note that by construction we have
VH

m+1MVm+1 = Im+1, where Im+1 ∈ R(m+1)×(m+1) denotes the iden-
tity matrix. We can now define the rational Arnoldi approximation
for f (A)b of order m as

fm := ∥b∥MVm+1 f (Am+1)e1, Am+1 := VH
m+1MAVm+1, (20)

where e1 = [1, 0, . . . , 0]T ∈ Rm+1. The matrix Am+1, also known
as the matrix Rayleigh quotient, is the M-orthogonal projection of A
with respect to Vm+1. It is of size (m + 1) × (m + 1), hence, if m ≪
N, computing f (Am+1) becomes feasible, whereas computing f (A)
is not. As an example, in our numerical experiments in Section 5
we consider values of at most m = 72, whereas N, the number of
degrees of freedom in the finite-element model, can easily range
in the hundreds of thousands. The set of eigenvalues +(Am+1) of
this projected matrix are known as rational Ritz values (see e.g.
Beckermann et al. 2010) and, as we shall see below, play an impor-
tant role in rational Arnoldi approximations.

We next recall two results from the theory of rational Krylov
subspaces which are the key to analysing the accuracy of the asso-
ciated approximations. In essence, they show that the error of the
rational Arnoldi approximation (20) to f (A)b can be bounded in
terms of the error of (scalar) interpolation of the function f on the
set of rational Ritz values by particularly simple rational functions.
The first result characterizes the rational Arnoldi approximation fm

in terms of a rational function rm interpolating the function f. Sev-
eral variants of this result have appeared in the literature, both for
polynomial (Ericsson 1990; Saad 1992) and rational Krylov spaces
(Beckermann & Reichel 2009; Güttel 2010, Theorem 5.8). Here
and in the following, Pm denotes the linear space of all polynomi-
als of degree at most m, and Pm/qm is the linear space of rational
functions of type (m, m) with a prescribed denominator polynomial
qm.

Theorem 3.1. The rational Arnoldi approximation fm of f (A)b
defined in (20) satisfies

fm = rm(A)b,

where rm ∈ Pm/qm interpolates f in the Hermite sense (i.e. counting
multiplicities) at the rational Ritz values +(Am+1), and qm(z) =
(z − ξ 1)(z − ξ 2) . . . (z − ξm).

It follows from Theorem 3.1 that the rational Arnoldi approxi-
mation fm is exact if f is itself a rational function in Pm/qm , that is,
a rational function of type (m, m) with prescribed denominator qm.
This exactness implies that fm satisfies a so-called ‘near-optimality
property’ in the M-norm. By near-optimality is meant that the ratio-
nal function rm underlying the rational Arnoldi approximation fm is

close to the best uniform rational approximant to f over the spectral
interval of the matrix A. (The spectral interval is the smallest real
interval containing the eigenvalues of A.) The poles of this rational
function are precisely the ‘pole parameters’ ξ 1, ξ 2, . . . , ξm used
in the recursion (19), and the following theorem is key to our pole
selection approach. Similar results regarding near-optimality in the
2-norm have been given in (Ericsson 1990; Saad 1992; Beckermann
& Reichel 2009; Güttel 2010).

Theorem 3.2. The rational Arnoldi approximation fm to f (A)b
defined in (20) satisfies

∥ f (A)b − fm∥M ≤ 2∥b∥M min
rm∈Pm/qm

max
z∈[α,β]

| f (z) − rm(z)|, (21)

where [α, β] is an interval containing the eigenvalues of A = M−1C.

Proof: A straightforward calculation using the triangle inequal-
ity for vector norms and the fact that, for any rational func-
tion rm ∈ Pm/qm , there holds rm(A)b = ∥b∥MVm+1rm(Am+1)e1 by
Theorem 3.1, shows

∥ f (A)b − fm∥M

= ∥ f (A)b − rm(A)b + rm(A)b − fm∥M

≤ ∥ f (A)b − rm(A)b∥M

+ ∥b∥M · ∥Vm+1rm(Am+1)e1 − Vm+1 f (Am+1)e1∥M.

We now bound from above each of the two terms in this sum. For the
first term we use the facts that g(A) = M−1/2g(M1/2AM−1/2)M1/2

for any function g such that g(A) is a well-defined matrix func-
tion, the matrix M1/2AM−1/2 is Hermitian and similar to A, and
∥M−1/2x∥M = ∥x∥2. We obtain

∥( f − rm)(A)b∥M

= ∥M−1/2( f − rm)(M1/2AM−1/2)M1/2b∥M

= ∥( f − rm)(M1/2AM−1/2)M1/2b∥2

≤ ∥( f − rm)(M1/2AM−1/2)∥2∥M1/2b∥2

= ∥b∥M max
λ∈+(A)

| f (λ) − rm(λ)|.

For the second term we have

∥Vm+1(rm − f )(Am+1)e1∥M

= ∥(rm − f )(Am+1)e1∥2

≤ ∥(rm − f )(Am+1)∥2

≤ max
λ∈+(Am+1)

|rm(λ) − f (λ)|,

where we have used the fact that ∥Vm+1x∥M = ∥x∥2. Adding both
inequalities, noting that +(Am+1) is contained in the spectral interval
of A, and taking the maximum over all admissible rational functions
rm ∈ Pm/qm completes the proof. !

The stated results now enable us to propose our new strategy for
selecting the poles ξ 1, ξ 2, . . . , ξm (the zeros of qm) for the TEM
forward modelling problem.

3.1 Error estimation using a surrogate problem

The near-optimality property stated in Theorem 3.2 means that the
optimization of parameters for the rational Arnoldi approximation
fm defined in (20) essentially reduces to the problem of finding a
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Table 1. Table of parameters for building a rational Krylov space for approximating f t(z) = exp (−tz) for all t ∈ [10−6, 10−3] and z ∈ [0, ∞]. The column
on the left corresponds to the number of rational Krylov iterations (the dimension of the rational Krylov space minus 1). Each cell gives (an approximation
for) the achievable uniform approximation error of f t(z) for all t and z, with the required cyclically repeated poles ξ1, . . . , ξℓ shown in brackets. By (21) the
rational Arnoldi error is bounded by twice the uniform approximation error.

m Error (ℓ = 1 repeated pole) Error (ℓ = 2 repeated poles) Error (ℓ = 3 repeated poles) Error (ℓ = 4 repeated poles)

12 1.71e−02 2.39e−03 2.39e−03 2.29e−03

(−5.66e+04) (−1.26e+04, −7.88e+05) (−8.17e+03, −1.70e+05, −9.99e+05) (−7.04e+03, −3.35e+04, −7.61e+05, −7.61e+05)

24 9.64e−04 1.33e−05 1.42e−05 1.21e−05

(−1.13e+05) (−2.52e+04, −2.56e+06) (−8.36e+03, −2.41e+05, −5.23e+06) (−1.04e+04, −4.08e+04, −1.37e+06, −5.36e+06)

36 2.94e−05 7.45e−08 1.05e−07 6.74e−08

(−1.57e+05) (−3.32e+04, −3.88e+06) (−1.27e+04, −3.76e+05, −6.95e+06) (−2.76e+04, −4.08e+04, −2.45e+06, −6.51e+06)

48 2.00e−06 4.87e−10 8.86e−10 5.08e−10

(−2.14e+05) (−4.59e+04, −5.00e+06) (−2.06e+04, −4.23e+05, −1.23e+07) (−2.76e+04, −6.02e+04, −2.98e+06, −9.62e+06)

60 1.02e−07 2.63e−12 6.88e−12 2.85e−12

(−2.69e+05) (−5.40e+04, −6.30e+06) (−2.60e+04, −5.34e+05, −1.38e+07) (−4.08e+04, −7.32e+04, −4.41e+06, −9.62e+06)

72 3.82e−09 2.11e−14 5.66e−14 2.23e−14

(−3.14e+05) (−6.35e+04, −7.58e+06) (−2.60e+04, −6.73e+05, −1.96e+07) (−3.35e+04, −1.08e+05, −5.36e+06, −1.17e+07)

denominator polynomial qm such that the right-hand side of the
error bound (21) is minimized. Recall that the zeros ξ 1, . . . , ξm

of qm correspond to the poles used in the recursion (19) for con-
structing a basis Vm+1 of the rational Krylov space. Given such a
polynomial qm and an interval [α, β], the min–max expression on
the right of (21) could be computed by the Remez algorithm for
best uniform approximation of f on [α, β] (see e.g. Meinardus &
Schumaker 1967). However, the computation of best rational ap-
proximants can suffer numerical instabilities and, in addition, our
problem is complicated by the fact that we are ultimately interested
in rational approximation of parameter-dependent functions f(z) =
f t(z) = exp (−tz) or f(z) = gω(z) = iω/(z + iω) in the time- and
frequency-domain cases, respectively.

We propose an alternative approach which is tailored to our prob-
lem and computationally more robust: we will estimate the min–max
expression (21) by using the rational Arnoldi method itself, applied
to a diagonal matrix, the inversion of which is trivial, possessing a
sufficiently large and dense spectrum on the nonnegative real axis.
For ease of exposition we first consider the problem of parameter-
independent approximation of f and then introduce the parameter
for f t or gω later.

Given the function f and a denominator polynomial qm, our aim
is to estimate the error

err( f, qm) := min
rm∈Pm/qm

max
z∈[0,+∞]

| f (z) − rm(z)|.

Note that we have formally set [α, β] = [0, +∞] because this
will allow us to obtain error bounds that are independent of the
spectral interval of A (which will lead to a rational Arnoldi method
that converges independently of the spatial mesh and the conductiv-
ity structure, or in other words, exhibits robust convergence). The
quantity max z∈ [0, +∞]|f(z) − rm(z)| will exist if f is bounded on
[0, +∞] and rm has no poles there. Both conditions are naturally
satisfied in our situation where f = f t or f = gω, respectively.

In order to avoid working with an unbounded interval we intro-
duce the variable ẑ ∈ [1, 2], the transformation z = (ẑ − 1)−1 − 1,
the transformed function f̂ (ẑ) = f (z), and the transformed denom-
inator q̂m(ẑ) = (ẑ − ξ̂1) · · · (ẑ − ξ̂m), where each ξ̂ j = (ξ j + 1)−1 + 1.
Instead of the above expression for the error we now consider

err( f, qm) = min
r̂m∈Pm/q̂m

max
ẑ∈[1,2]

| f̂ (ẑ) − r̂m(ẑ)|.

We then use the rational Arnoldi method for approximating
f̂ (Â)̂b in the Euclidean inner product with a diagonal surrogate
matrix Â having sufficiently dense eigenvalues in [1, 2], and the
vector b̂ = [1, . . . , 1]T . Let the associated rational Arnoldi approx-
imation be denoted as f̂m = r̂m(Â)̂b. Then by the diagonal form of
Â and the definition of b̂ we have

∥ f̂ (Â)̂b − f̂m∥∞ = max
λ̂∈+(Â)

| f̂ (λ̂) − r̂m(λ̂)|

≤ max
ẑ∈[1,2]

| f̂ (ẑ) − r̂m(ẑ)|, (22)

where the expression on the left-hand side is easy to compute as
f̂ (Â)̂b is explicitly known (a function of a diagonal matrix is the
diagonal matrix of the function values). Note that building a rational
Krylov basis with Â is computationally inexpensive as we only need
to solve linear systems with diagonal matrices.

As becomes clear from (22) we can only compute an approximate
upper bound for err( f, qm) with the described procedure. However,
the inequality in (22) can be expected to be sufficiently sharp if
+(Â) is a sufficiently dense discretization of [1, 2], so that ‘spec-
tral adaptation’ in the rational Arnoldi method does not yet occur
(which means that the method behaves as if the spectrum of Â were
a continuum). A detailed analysis of spectral adaptation in the ra-
tional Arnoldi method is given in Beckermann et al. (2010) and
Beckermann & Güttel (2012), where it is shown that the region of
‘deflated eigenvalues’ depends on the ratio m/N̂ , that is, the number
of rational Arnoldi iterations m compared to the size N̂ of the surro-
gate matrix Â. For all numerical results reported below, specifically
in Table 1, we have used m ≤ 72 and found that, with a diagonal
matrix Â having N̂ = 3000 equidistant eigenvalues in the interval
[1, 2], no noticeable spectral adaptation occurred. Further increase
of N̂ did not change the results in any digit reported in Table 1.

We remark that more elaborate strategies for choosing N̂ and the
eigenvalues of the surrogate Â could be motivated by the interpola-
tion characterization in Theorem 3.1. For example, one could start
with a small number of N̂1 = 2m equispaced eigenvalues and then
refine the spectrum to N̂2, N̂3, . . . eigenvalues by adding geomet-
ric means of rational Ritz values. We have not implemented such
a strategy here as the pole optimization is a one-time calculation
requiring negligible computing time compared to the solution of the
forward modelling problem.
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3.2 Pole optimization

Now that err( f, qm) can be estimated efficiently for a given qm and
any function f = f t (all rational Arnoldi approximants f̂t

m for f t (Â)̂b
can be extracted from the same rational Krylov space), it remains
to find a fixed ‘optimal’ qm which minimizes err( f t, qm) uniformly
for all parameters t ∈ [tmin, tmax]. This constitutes a constrained
nonlinear optimization problem:

(P0) Find qm(z) =
∏m

j=1(z − ξ j ) such that

max
t∈[tmin,tmax]

err( f t , qm) ≈ max
t∈[tmin,tmax]

∥ f̂ t (Â)̂b − f̂
t
m∥∞

is minimal, with the constraint that the poles ξ j be negative.

To enable the efficient solution of this problem we have applied
two further constraints. First, we assume that m is divisible by an
integer ℓ < m and qm is factored in the form

qm(z) =
ℓ∏

j=1

(z − ξ j )m/ℓ.

This reduces the problem of finding m parameters to that of find-
ing merely ℓ parameters. Note, however, that this constraint on the
factorization of qm leads to the somewhat counter-intuitive effect
that, for m constant, the error err( f t, qm) may slightly increase as
the number of distinct parameters ℓ increases (see e.g. Table 1). The
poles ξ 1, . . . , ξℓ correspond to shifts in linear system solves in (19),
so reusing the shifts for m/ℓ rational Arnoldi iterations is conve-
nient when direct solvers are employed (see also the discussion in
Section 4).

Second, for f t(z) = exp (−tz) we can restrict the set of admis-
sible poles further by considering the best uniform rational ap-
proximant rm of the form pm(z)/(z − ξ )m, pm ∈ Pm , minimizing
max z∈ [0, ∞]|exp (−z) − rm(z)|, that is, the rational approximant hav-
ing all poles concentrated at ξ < 0. By scaling z to tz we find that the
best uniform rational approximant rm of type (m, m) with concen-
trated negative poles that minimizes max z ∈ [0, ∞]|exp (−tz) − rm(z)|
must be of the form pm(z)/(tz − ξ )m, pm ∈ Pm , that is, all poles are
concentrated at ξ/t < 0. It is therefore reasonable to restrict the
poles ξ 1, . . . , ξℓ for uniform approximation of f t(z) = exp (−tz)
with t ∈ [tmin, tmax] to the interval [ξmin, ξmax], where ξmin < 0 is
the optimal concentrated pole of the rational approximant pm(z)/
(tz − ξmin)m for exp (−tminz), and ξmax = ξmintmin/tmax.

Summarizing, we have arrived at the following optimization
problem:

(P1) Find qm(z) =
∏ℓ

j=1(z − ξ j )m/ℓ such that

max
t∈[tmin,tmax]

err( f t , qm) ≈ max
t∈[tmin,tmax]

∥ f̂ t (Â)̂b − f̂
t
m∥∞

is minimal, with the constraint that all ξ j ∈ [ξmin, ξmax].

We have used MATLAB to solve this minimization problem for
the time interval [tmin, tmax] = [10−6, 10−3], with m = 12, 24,
. . . , 72 and ℓ = 1, 2, 3, 4. As this problem seems to have many
local minima, we determined the parameters ξ 1, . . . , ξℓ by first
performing a global search on a coarse discretization of [ξmin, ξmax]
with 100 logarithmically equispaced points, and then refining the
result using MATLAB’s fmincon routine. The surrogate problem
was of size N̂ = 3000. The results are reported in Table 1.

This table can be used in the following way: if no parallel solution
of linear systems is desired, Table 1 reveals that it is most efficient

to use two cyclically repeated poles. To determine the optimal poles
for a time interval of, say, [10−6, 10−3], one reads off the two poles in
the first row for which the desired level of accuracy is reached. The
first column of this row then gives the number of required rational
Arnoldi iterations m. For example, to achieve an error level below
2 × 7.45·10−8 [the factor 2 comes from the error bound (22)] it is
sufficient to run m = 36 rational Arnoldi iterations, repeating the
two poles ξ 1 = −3.32·104 and ξ 2 = −3.88·106 cyclically 18 times.
By the scaling argument given above, the table can also be used
for other time intervals consisting of three decades. For the time
interval [10−5, 10−2], for example, the poles have to be replaced by
ξ 1/10 and ξ 2/10.

The poles in Table 1 have been optimized to give a uniformly small
approximation error over a time interval. We note that it is also eas-
ily possible to optimize the poles with respect to a positive weight
function w(t) by minimizing maxt∈[tmin,tmax] w(t) · err( f t , qm). This
can be used to improve the approximation in certain parts of the
time interval, such as for late times, particularly when the asymp-
totic behaviour of the transient is known from analytic solutions
(cf. Ward & Hohmann 1987).

3.3 Relation to existing work and other pole
selection strategies

In this section we briefly review some other pole selection strategies.
For a more detailed survey we refer to Güttel (2013).

The problem of optimizing a single repeated negative pole for ap-
proximating exp(−t0A)b for a single time point t0 was considered
in Eshof & Hochbruck (2006). In case of a single pole the corre-
sponding rational approximation problem can be transformed into
an equivalent polynomial approximation problem, and this problem
can be solved numerically using the polynomial Remez algorithm
(Eshof & Hochbruck 2006), a stable implementation of which is
available, for example, in the Chebfun system, see Driscoll et al.
(2014). Our problem of uniform approximation on a time interval
[tmin, tmax] can be seen as a generalization, but in the case of two or
more cyclically repeated poles it does not seem to be possible to find
an equivalent polynomial formulation. A result bounding the error
of rational Arnoldi approximants with cyclically repeated poles in
terms of the error of single pole approximants was given in Güttel
(2010, pp. 113–115).

A different route for computing poles which are asymptotically
optimal for all t > 0 was followed in Druskin et al. (2009). Here the
constructed negative poles are given in terms of elliptic functions
and it is shown that the rational Arnoldi method with these param-
eters will converge ‘for all time parameters’t > 0 with a geometric
rate given by

lim sup
m→∞

∥ exp(−tA)b − ft
m∥1/m ≃ exp

(
− π 2

4 log(2/δ)

)
, (23)

where µ =
(

1−δ
1+δ

)2
and δ =

√
λmin
λmax

, with λmax and λmin denoting the

largest and smallest nonzero eigenvalues of A, respectively. The
convergence rate on the right of (23) deteriorates with a growing
condition number λmax/λmin of A, hence this approach cannot be
expected to give convergence independent of mesh or conductivity
structure. On the other hand, the rate is independent of the length of
the time interval [tmin, tmax]. Finally, we remark that these asymp-
totically optimal pole sequences consist of pairwise distinct poles,
so no factorizations of shifted matrices can be reused in the rational
Arnoldi method when a direct solver is employed.
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Figure 1. Trace of the tetrahedral finite-element mesh used for the layered
half-space model on the plane z = 0 (air–Earth interface). Panel (a): view of
computational domain from above. Panel (b): zoom into the area containing
transmitter and receiver.

3.4 Relation between frequency- and time-domain
approaches

We have discussed an approach for approximating the transient of
the TEM solution directly in time domain. However, as mentioned in
Section 1, an alternative approach is to synthesize the time-domain
solution from frequency-domain solutions by computing the inverse
Fourier transform (10). The latter can be approximated numerically
to desired accuracy by fast Hankel transform (FHT) techniques as
described in Johansen & Sørensen (1979) and refined in Christensen
(1990), where also bounds on the number of frequency-domain
solutions required for a sufficiently accurate transient can be found.
By using rational Krylov approximation in the frequency domain
a uniformly accurate solution approximation u(ω) is available for
all frequencies as soon as a rational Krylov space of sufficiently
large dimension has been constructed (cf. Börner et al. 2008). As a
consequence, considerably fewer frequency-domain problems need
to be solved than necessary to obtain an accurate transient via the
FHT.

In both the time and frequency domains the rational Krylov spaces
are constructed using the same matrix A and initial vector b, but may
differ in the pole sequence, which should be chosen in an optimal
fashion for the function gω in the frequency domain and f t in the
time domain. We argue that the frequency-domain approximation
followed by FHT cannot yield a significantly better approximation
than that obtained in the time domain: the FHT results in a time-
domain approximation which is a linear combination of vectors from
the rational Krylov space built from frequency-domain solutions.
One could then, using the same poles as in the frequency domain,
construct a rational Krylov approximation of f t (A)b, and the near-
optimality of the rational Krylov approximation (see Theorem 3.2)
would select an approximation which is at least as good as the FHT-
transformed frequency-domain approximation. Using poles in the
time domain which are chosen in an optimal fashion for the function
f t would only further improve this approximation. For this reason we
restrict ourselves to the time-domain case in the following sections.

4 A L G O R I T H M I C A S P E C T S

We now summarize the method discussed in the previous sections as
an algorithm, with an emphasis on some implementation issues. We
only concentrate on the time-domain problem. Referring to Section
2.5.3, we recall that our aim is to approximate u(t) = exp(−tA)b
for multiple t ∈ [tmin, tmax], where A = M−1C and b = M−1q stem
from the finite-element discretization described in Section 2.5.2.

Algorithm 1 Rational Arnoldi approximation of exp(−tA)b.

Inputs: Finite-element matrices C and M, vector b, time points
t ∈ [tmin, tmax], parameters m, ℓ and poles ξ1, . . . , ξℓ from Table 1.
Output: Rational Arnoldi approximations ft

m for exp(−tA)b and
all time points t of interest.
01 FOR p = 1, . . . , ℓ,
02 Compute Cholesky factorizations LpLH

p = C − ξpM.
03 END
04 Set v1 := b/∥b∥M.
05 FOR j = 1, . . . , m,
06 Solve LpLH

p w = Mv j for w, where p =
(( j − 1) mod ℓ) + 1.

07 FOR i = 1, . . . , j ,
08 Compute hi, j := ⟨w, vi ⟩M and w := w − vi hi, j .
09 END
10 Set v j+1 := w/∥w∥M.
11 END
12 Compute Am+1 := VH

m+1CVm+1, Vm+1 = [v1, . . . , vm+1].
13 Compute ft

m := ∥b∥MVm+1 exp(−tAm+1)e1 for all t .

The method consists of constructing an orthonormal basis Vm+1

of a rational Krylov space using the orthogonalization algorithm by
Ruhe (1994) in the M-inner product.1 This algorithm implements
the recursion (20) and corresponds to lines 4–11 in Algorithm 1.
Note that each iteration j of (19) ‘formally’ amounts to the solution
of a shifted linear system with A = M−1C, which generally is a
dense matrix even if C and M are sparse. Practically, however, we
can rewrite (19) equivalently as

v j+1h j+1, j = (C − ξ j M)−1Mv j −
j∑

i=1

vi hi, j ,

1
A MATLAB implementation of this algorithm is available in the Rational
Krylov Toolbox (Berljafa & Güttel 2014) which can be downloaded from
http://guettel.com/rktoolbox.
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Three-dimensional modelling using Krylov methods 2033

Figure 2. Scaled absolute errors (eq. (22)) of the rational Arnoldi approximations (20) of orders m = 1, 2, . . . , 24 for ℓ = 1, 2, 3 with respect to a higher-order
rational Arnoldi approximation (m = 72, ℓ = 2) for all desired times t ∈ [10−6. . . 10−3] s, where the poles used are those optimized for m = 24. The dashed
lines indicate the guaranteed uniform Arnoldi approximation error after m = 24 iterations; cf. Table 1 and the error bound (21).
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Figure 3. Scaled absolute errors (eq. 22) of the rational Arnoldi approximations (20) of orders m = 1, 2, . . . , 36 for ℓ = 1, 2, 3 with respect to a higher-order
rational Arnoldi approximation (m = 72, ℓ = 2) for all desired times t ∈ [10−6. . . 10−3] s, where the poles used are those optimized for m = 36. The dashed
lines indicate the guaranteed uniform Arnoldi approximation error after m = 24 iterations; cf. Table 1 and the error bound (21).
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Three-dimensional modelling using Krylov methods 2035

Figure 4. Layered half-space model, first-order Nédélec elements: comparison of transients ∂ tbz(t) evaluated at x = (100, 0, 0) m obtained from the analytical
solution (black), the ‘brute-force’ solution (green) obtained by inverse Fourier transform of the frequency-domain solutions (14), and rational Arnoldi
approximation (red) of order m = 12 and m = 24 (left and right columns) using ℓ = 1, 2, 3 cyclically repeated poles (top, middle and bottom row).

which shows that iteration j requires the solution of a linear system
with C − ξ j M, which is sparse. With the negative poles presented
in Table 1 these shifted linear systems are symmetric positive def-
inite and can be solved either by an iterative method like multigrid
or conjugate gradients (Saad & van der Vorst 2000), or by a di-
rect method (Cholesky factorization, see, for example, Golub &

Van Loan 1996). If Cholesky factorizations are employed, as in
our numerical experiments reported in Section 5, then one can use
to great advantage that our poles listed in Table 1 are repeated
cyclically, that is, the number of matrix factorizations is only as
large as the number of distinct poles ℓ. The ℓ Cholesky factors
can be precomputed as shown in lines 1–3 of Algorithm 1. As
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Figure 5. Layered half-space model, second-order Nédélec elements: comparison of transients ∂ tbz(t) evaluated at x = (100, 0, 0) m obtained from the
analytical solution (black), the ‘brute-force’ solution (green) obtained by inverse Fourier transform of the frequency-domain solutions (14), and rational
Arnoldi approximation (red) of order m = 12 and m = 24 (left and right columns) using ℓ = 1, 2, 3 cyclically repeated poles (top, middle and bottom row).

the factorization phase typically makes up the bulk of the com-
putation time in a direct solver, repeated poles lead to signifi-
cant savings in time-to-solution, as the computing effort for the
ℓ Cholesky factorizations is amortized over all rational Krylov
iterations.

Finally, we note that the matrix Rayleigh quotient Am+1 defined
in (20) can be computed inexpensively via projection of C, using
again the fact that A = M−1C:

VH
m+1MAVm+1 = VH

m+1CVm+1 = Am+1.
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Figure 6. Absolute error of the approximate transient ∂t b
(m)
z (t) evaluated at x = (100, 0, 0) m extracted from rational Arnoldi approximations of order m =

12, 24, . . . , 72 using ℓ = 1, 2, 3 cyclically repeated poles compared with the transient ∂ tbz(t) obtained from the analytical solution for the layered half-space.

The rational Arnoldi approximations ft
m defined in (20) can then

be computed from the same rational Krylov space for all time points
t ∈ [tmin, tmax] of interest (lines 12 and 13 of Algorithm 1).

5 N U M E R I C A L E X P E R I M E N T S

We present a series of numerical experiments for two model prob-
lems to illustrate the important features of the rational Arnoldi

approximation in the time domain. In the first set we con-
sider the transient response of a vertical magnetic dipole lo-
cated atop a layered half-space. For this model problem there is
a closed-form solution available (see Ward & Hohmann 1987),
which can be used as a reference solution to analyse the con-
tributions of the errors due to the boundary condition, the
finite-element discretization and the rational Arnoldi approxi-
mation. We are able to verify that the convergence of the
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Figure 7. Plot of run times in seconds required to obtain a rational Arnoldi
approximation of order m = 12, 24, . . . , 72 for linear and quadratic Nédélec
elements and ℓ = 1, 2, 3 cyclically repeated poles.

rational Arnoldi approximation is uniform in both time and spatial
discretization.

A model with terrain topography serves as a second numeri-
cal example. This illustrates one of the advantages of using rational
Krylov approximations, as the computational domain can be chosen
to include the air half-space without significant impact on the con-
vergence behaviour. This is in contrast to time-stepping schemes,
where the minimum conductivity from inclusion of the air layer
leads to excessively small time steps, and to polynomial Krylov
subspace methods, for which the iteration count increases with low
conductivities. We illustrate the benefit of accounting for topogra-
phy by comparison with a flat-earth model.

5.1 Layered half-space

We first consider the model of a layered half-space. A layer with
an electrical resistivity of 30 # · m and a thickness of 30 m is
embedded in a homogeneous half-space of 100 # · m at a depth of
100 m. A vertical magnetic dipole source is approximated by a small
10 × 10 m2 horizontal loop located at the Earth’s surface, that is,
at z = 0.

The computational domain # consists of a cube of side length
2 km centred at the origin, which is also the centre of the square
transmitter coil. We used the mesh generator of the COMSOL

Multiphysics R⃝ finite-element package (Version 3.5a) to generate
a tetrahedral mesh. By making the line segments which form the
transmitter coil sufficiently small and specifying a sufficiently small
maximal element size in the vicinity of the observation point, we
obtained a mesh which is locally refined near the transmitter and
receiver. Fig. 1 shows the trace of the tetrahedral mesh looking
down on the surface z = 0, where the local refinement in the vicin-
ity of both the dipole source and the receiver is visible. The mesh

employed for the computations consists of 24,582 tetrahedra. The
matrices M and C in the time- and frequency-domain discretizations
(13) and (14) have dimensions N = 27 623 and N = 152 078 for the
Nédélec spaces of order k = 1 and k = 2, respectively.

Fig. 2 shows the decrease of the absolute error ∥ f t (A)b − ft
m∥M

scaled by ∥b∥M with respect to a sufficiently accurate reference
solution of the discrete problem as the rational Arnoldi iteration
progresses. Each curve within the plots corresponds to the error
against the order m of the rational Krylov approximation for one
discrete time between t = 10−6 s and 10−3 s, the location of which
within the time interval is coded by the transition from red (10−6 s)
to blue (10−3 s). Results are given for spatial discretization with
Nédélec elements of order k = 1 (left column) and k = 2 (right
column), each using ℓ = 1, 2 and 3 cyclically repeated poles (rows
one, two and three). The reference solution consisted of a rational
Arnoldi approximation of high order m = 72 for ℓ = 2. The choice
of this particular reference solution is based on the observation that,
with a value of 2.11 × 10−14, the approximation error of f t(z) is
smallest for all times t when m = 72 and ℓ = 2 (cf. Table 1).

The poles were optimized for the rational Arnoldi approximation
of order m = 24 (cf. Table 1). The dashed black line denotes the
error level guaranteed by (21) in combination with Table 1. By
construction of our optimized poles, all error curves are below this
error level when the approximation order is 24 (even a bit earlier,
although this is not guaranteed by our error bound). We note that in
the case of one cyclically repeated pole (top row), the guaranteed
accuracy as given in Table 1 is at a level which is larger than
the initial error, so that in these cases all error curves lie entirely
below this level. This is a consequence of plotting (scaled) absolute
errors, since the approximated field quantities are very small. Fig. 3
shows the same plots with poles optimized for m = 36. Here the
guaranteed error is lower than the initial error also for the case of a
single cyclically repeated pole.

As one can observe from Table 1, using ℓ = 3 (or ℓ = 4) poles
does not result in further error decrease compared to using only
ℓ = 2 cyclically repeated poles. However, using a higher number
of cyclically repeated poles offers more potential for parallel fac-
torization of the shifted matrices as mentioned in Section 1. In a
first level of parallelization, each of the ℓ Cholesky factorizations in
line 2 of Algorithm 1 may be carried out concurrently by a different
processing unit. Further parallelization within each factorization is,
of course, also possible.

For the purpose of comparison a frequency domain-based solu-
tion was computed in addition to the time-domain approximation.
To eliminate the effect of the error due to the rational Arnoldi ap-
proximation in the frequency-domain solution, we computed the
latter directly, that is, solved the full discrete system, at all frequen-
cies required by the FHT in order to obtain a sufficiently accurate
transient. In the following, we refer to this approximation as the
‘brute-force frequency-domain solution’, which differs from the
analytical solution only by the finite-element discretization error.
Fig. 4 shows, for a first-order Nédélec discretization, a comparison
of the accuracy of the transient ∂ tbz(t) evaluated at x = (100, 0, 0)

Table 2. Summary of runtimes for the layered half-space model consisting of 24 582
tetrahedra.

Nédélec order k = 1 k = 2

Problem size N = 27 623 N = 152 078
Brute-force solution 66.36 s 739.14 s
Construction of rational Krylov basis for m = 24 and ℓ = 3 3.0 s 28.7 s
Evaluation of formula (21) 0.05 s 0.08 s
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Three-dimensional modelling using Krylov methods 2039

Figure 8. Trace of the tetrahedral finite-element mesh used for model with topography. Panel (a) perspective view. Panel (b) view from above the air–Earth
interface. Panel (c) vertical slice along the plane y = 0. The air layer, which has a thickness of 1000 m, has been omitted in all pictures.

obtained for a rational Arnoldi approximation of order m = 12 (left
column) and m = 24 (right column) based on one, two and three
cyclically repeated poles (rows one, two and three), against the an-
alytical solution (black line) and the brute-force frequency-domain

approximation (green line). For times greater than t ≈ 2 × 10−6 s, it
can be observed that an approximation essentially indistinguishable
from the brute-force approximation is achieved already for m =
12. For m = 24 there is little or no visual difference between all
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Figure 9. Topography model, comparison of transients ∂ tbz(t) at four different locations: rational Arnoldi approximation of order m = 36 (red), analytical
solution for flat homogeneous half-space (black) and brute-force solution obtained by inverse Fourier transform of frequency-domain solutions (green). Panels
(a)–(d) correspond to the four evaluation locations x = (−130, 0, 0) m, x = (0, 0, 38) m, x = (130, 0, 0) m and x = (270, 0, 0) m, respectively. The 20 × 20 m2

transmitter loop source is centred at x = (200, 0, 0) m. The spatial discretization uses Nédélec elements of order k = 2.

solutions. The difference to the analytical solution is due to the spa-
tial discretization error, which is improved in the analogous plots in
Fig. 5 for a second-order Nédélec discretization based on the same
mesh.

Fig. 6 shows the absolute error between the transient ∂t b(m)
z (t) ex-

tracted from rational Arnoldi approximations of orders m = 12, 24,
. . . , 72 and the analytical transient solution against time for first (left
column) and second (right column) order Nédélec discretization at
a fixed spatial point x = (100, 0, 0) m. It can be observed that,
except for the lowest-order rational Arnoldi approximation with m
= 12, all transient errors are essentially identical, which indicates
that discretization error dominates the total error in these cases.
Slight differences can be observed at late times for the second-order
Nédélec discretization (right column), where higher order rational
Arnoldi approximations achieve a somewhat lower absolute error.

A summary of run times is given in Fig. 7, where we observe the
quadratic dependence on the rational Arnoldi approximation order
m with a higher constant for quadratic Nédélec elements.

For the construction of the rational Krylov basis Vm+1 we have
used ℓ = 1, 2, 3 poles which have been repeated 1, 2, . . . , 6 times,
thus yielding rational Arnoldi approximations of order m = 12, 24,
. . . , 72. The appropriate poles are listed in Table 1. The numerical

effort is dominated by the number of Cholesky factorizations nec-
essary (one for each pole), and one additional factorization2 for the
evaluation of the vector b = M−1q. Even though a linear system
has to be solved in each rational Arnoldi iteration, the cyclic rep-
etition of the poles yields remarkable savings in computation time
(Table 2).

5.2 Homogeneous subsurface with topography

As outlined above, our proposed pole selection method yields ratio-
nal Arnoldi approximations which exhibit a uniform convergence
that is independent of the properties of the underlying spatial dis-
cretization and conductivity distribution. Therefore, it seems attrac-
tive to include the air layer in the computational domain, which

2
This additional factorization can be avoided by discarding the vector b
from the rational Krylov basis, which amounts to removing the first column
of Vm+1. The rational functions underlying the resulting rational Arnoldi
approximants will then be of type (m − 1, m). Only for ease of exposition we
preferred to describe and analyse our algorithm for diagonal approximants
(m, m).
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Three-dimensional modelling using Krylov methods 2041

Figure 10. Topography model: snapshots of the induced current system
given in A m−2 at times t = [10−6, 10−5, 10−4] s taken at the plane y = 0.

allows for the modelling of topography. The use of finite element
for the spatial discretization further adds to this benefit, as it allows
for greater flexibility in approximating a curved air–Earth interface.
We demonstrate this by computing transients generated by a vertical
magnetic dipole source laid out atop a homogeneous half-space in
the vicinity of a morphological hill-shaped feature. The interface
between the air and the conducting half-space shows a moderate

Table 3. Summary of runtimes for the topography model consisting of
28 849 tetrahedra.

Nédélec order k = 2

Problem size N = 181 302
Brute-force solution 899.4 s
Construction of rational Krylov basis for m = 36 and ℓ = 3 44.86 s
Evaluation of formula (20) 0.09 s

morphology accentuated at the centre of the plane z = 0 around
x = y = 0 m. The hill has a height of 38 m and a circular shape
with a diameter of approximately 200 m (Fig. 8). At large distance
from the hill, the interface between air and Earth is a horizontal
plane aligned with z = 0. Fig. 8 shows the trace of the tetrahedral
mesh from various azimuth and elevation angles. For the numerical
experiments we have chosen Nédélec elements of order k = 2. The
mesh consists of 28 849 tetrahedral elements yielding N = 181 302
degrees of freedom.

A comparison of transients ∂t b(m)
z (t) extracted from a rational

Arnoldi approximation of order m = 36 using ℓ = 2 cyclically
repeated poles measured in the plane y = 0 at the points x =
[−130, 0, 130, 270] m and z = [0, 38, 0, 0] m with an analytical
solution ∂ tbz(t) obtained at the plane z = 0 are plotted in panels
(a)–(d) of Fig. 9. There is no visible difference between the solution
extracted from the rational Arnoldi approximation and the brute-
force solution obtained by inverse Fourier transform of frequency-
domain solutions (14). Hence, the choice of the rational Arnoldi
approximation of order m = 36 using ℓ = 2 cyclically repeated
poles yields numerical errors which are negligible compared to the
spatial discretization error.

Compared to the flat-earth response of the homogeneous half-
space (black line), a distinct distortion of the transient signal
∂t b(m)

z (t) is visible at early times in the vicinity of the hill (see panels
(a) and (b) in Fig. 9), whereas at late times the response agrees well
with the asymptotic behaviour of a homogeneous half-space. This is
another indication that the discretization error is sufficiently small
in this example.

Snapshots of the magnitude of the horizontal component of the
induced electrical current system J in A m−2 across the plane y =
0 are given in Fig. 10 for times t = [10−6, 10−5, 10−4] s.

Tables 2 and 3 give a breakdown of the run times required for
the different phases of the solution process for both numerical test
cases. The computations were carried out in MATLAB R⃝ R2012b
pinned to 8 cores of an Intel R⃝ Xeon R⃝ E5-4620 (Sandy Bridge)
system (2.2 GHz). For the direct sparse linear solves we employed
the PARDISO solver (Schenk & Gärtner 2004) as contained in the
Intel R⃝ Math Kernel Library.

It can be observed that the computation of the rational Arnoldi
approximant using formula (20) is negligible compared to the con-
struction of the rational Krylov basis Vm+1. The resulting run time is
still far below the brute-force approximation in which all frequency-
domain solutions required for the Fourier transform to the time
domain are computed by solving full finite-element systems (14).

6 C O N C LU S I O N S

We have presented a computational method for 3-D transient elec-
tromagnetic forward modelling based on Nédélec finite-element
discretization in space and rational Krylov approximation for the
time integration. Once the finite-element discretization in space is
given, the method requires only the selection of a small number
of cyclically repeated poles which parametrize the rational Arnoldi
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method. These poles can be obtained from Table 1 depending on the
desired accuracy or, if sparse direct solvers are to be employed for
the finite-element systems in parallel, on the available level of paral-
lelism. The attractive main feature of our rational Arnoldi approach
is the uniform accuracy in time independent of spatial mesh width
or conductivity structure. Moreover, the cyclic reuse of a small num-
ber of poles allows the amortization of a small number of matrix
factorizations over the generation of the rational Krylov basis. This
represents an advantage over previously proposed pole sequences
which are not mesh independent and require a new matrix factoriza-
tion at every rational Krylov iteration. If iterative methods are used
to solve the finite-element systems an added benefit is that the poles
as given in Table 1 lie well separated from the origin, suggesting
that the resulting shifted linear systems are well-conditioned. By
expressing the time and frequency-domain problems in terms of
matrix functions we have emphasized both the relationship of the
two formulations as well as how both can be solved using rational
Krylov approximation.
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