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Abstract. We consider the identification of spatially distributed parameters under H1 regular-
ization. Solving the associated minimization problem by Gauss--Newton iteration results in linearized
problems to be solved in each step that can be cast as boundary value problems involving a low-rank
modification of the Laplacian. Using an algebraic multigrid as a fast Laplace solver, the Sherman--
Morrison--Woodbury formula can be employed to construct a preconditioner for these linear problems
which exhibits excellent scaling w.r.t. the relevant problem parameters. We first develop this ap-
proach in the functional setting, thus obtaining a consistent methodology for selecting boundary
conditions that arise from the H1 regularization. We then construct a method for solving the dis-
crete linear systems based on combining any fast Poisson solver with the Woodbury formula. The
efficacy of this method is then demonstrated with scaling experiments. These are carried out for a
common nonlinear parameter identification problem arising in electrical resistivity tomography.
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1. Introduction. The problem of reconstructing a distributed parameter by
the standard output least squares approach leads, after discretization, to a system of
(nonlinear) algebraic equations which is typically solved using Newton-type methods,
requiring the solution of a linearized problem at each step. For Gauss--Newton iter-
ation, this linearized problem involves the Jacobian of the parameter-to-observation
map, resulting in a discrete least squares problem. In the common setting where a
high-dimensional unknown parameter is to be reconstructed from a small number of
observations, this least squares problem is typically rank-deficient. The underdeter-
mined nature combined with the ill-posedness of the underlying continuous inverse
problem make it necessary to regularize the least squares formulation by adding a
penalty term, usually involving norms of spatial derivatives of the unknown. In the
high-dimensional setting, the linearized problems are also solved iteratively, usually
by some variant of Krylov subspace projection methods adapted to least squares prob-
lems. The ill-posed nature of the underlying inverse problem as well as the spectral
distribution of the regularization operator combine to make the preconditioning of the
least squares iteration highly challenging, and many strategies have been proposed.
For parameter identification problems arising from PDEs, the Jacobian is typically a
compact operator (cf. [56], [23, Theorem 4.21]), and it is known that Krylov subspace
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1161

methods such as LSQR converge very slowly for the discretized problem. Tikhonov
regularization, by adding an L2-norm penalty term, changes the setting to a com-
pact perturbation of the identity, which in turn is fundamentally favorable for fast
convergence of Krylov subspace iterations [55, 39, 24, 9]. The spectral properties of
the iteration matrix, however, become much more challenging when regularization in-
volving smoothing terms is employed, leading to large Gauss--Newton inner iteration
counts.

In this work, we address the efficient solution of the nonlinear least squares prob-
lem arising from distributed parameter estimation problems regularized by the H1

norm, sometimes referred to as smoothness regularization. The function to be recon-
structed from observations is represented as piecewise constant w.r.t. a given triangu-
lation of the domain and, following an idea proposed by Schwarzbach and Haber [47],
define its gradient in the regularization term by duality. We derive this formulation
in the continuous setting by expressing the Gauss--Newton updates as the solution
of boundary value problems, which are then discretized using a mixed finite element
method. After discretization, the linear systems arising in each Gauss--Newton step
have a saddle-point structure and are solved by preconditioned MINRES [44, 26] it-
eration. Our preconditioning strategy is based on a known spectrally equivalent pre-
conditioner for the Laplacian, which enters the problem by way of the regularization
term, combined with an application of the Sherman--Morrison--Woodbury formula to
account for the low-rank perturbation arising from the data misfit term. As a result,
we obtain a mesh-independent solver for the nonlinear least squares problem which is
also robust w.r.t. a large range of regularization parameters.

Background references for PDE-based nonlinear parameter identification prob-
lems are [53] and, with a focus on geoelectromagnetic exploration problems, [31].
While less common for parameter identification, H1 regularization is also used in op-
timal control problems involving control and state constraints [2, 19]. The extensive
literature on Krylov projection methods for least squares problems is summarized in
[6, 7]. Finite-precision effects are analyzed in [8], and more recent developments in-
clude extensions of these methods to the class of symmetric quasi-definite problems
in [43], an analysis of LSQR for compact operators in Hilbert space in [17], and an
extensive numerical comparison of the state of the art in Krylov methods and pre-
conditioners for sparse linear least squares problems in [30]. A popular construction
principle for preconditioning matrices of saddle-point structure is based on the ob-
servation that suitable block-triangular and block-diagonal preconditioners result in
a system matrix with a minimal polynomial of degree 2 or 3 [36, 41, 34], for which
Krylov subspace projection will return the exact solution in the same number of steps.
A more comprehensive review of operator preconditioning techniques with special em-
phasis on mixed discretizations and saddle-point problems can be found in [38]. A
large class of preconditioning techniques for general least squares problems are based
on incomplete factorizations [4, 13, 1, 49, 48, 18] as well as inner-outer iteration [40].
Closer to the approach proposed in this work, the idea of using a suitable Laplace
preconditioner for variational inverse problems involving a compact operator, when
the Laplacian is used as a regularization for the normal equations, is explored in [32]
(cf. also [54]). A refinement of this approach is described in [35] and a further variant
proposed in [14]. Image restoration problems are also close to our setting in that the
origin of the least squares problem is a continuous inverse problem and regularization
is a necessity. However, given that there the unknown is an unblurred image, the basic
problem is typically not one of least squares since there are typically as many mea-
surements (pixel values) as unknowns. Once regularization by penalty terms is added,
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A1162 JAN BLECHTA AND OLIVER G. ERNST

however, the formulation is typically that of a minimization problem [5, 20], and a
successful approach here is the class of hybrid projection methods [22, 21]. Particularly
in connection with statistical inverse problems, using preconditioners derived from co-
variance matrices has recently drawn increased attention [16, 15]. Finally, methods
employing the Sherman--Morrison--Woodbury formula for constructing precondition-
ers have been considered by Yin [57] and Benzi and Faccio [3]. In [57], a recursive
factorization technique is employed to apply a preconditioner for Tikhonov-regularized
least squares problems with a Euclidean penalty term. Benzi and Faccio [3] discuss
preconditioning strategies for linear systems with a matrix of the form \bfitA + \gamma \bfitU \bfitU \top 

with a tall-and-skinny matrix \bfitU , a class of problems which includes that addressed
in this paper. It is reported there that efforts to construct a preconditioner using the
Woodbury formula with an approximation of the factor \bfitA  - 1 occurring therein proved
unsuccessful [3, page 4]. By contrast, we will demonstrate this approach for our prob-
lem, in which \bfitA is a discrete Laplacian, to be quite effective. It is fair to remark that
[3] considered a broader class of problems, including the case of singular \bfitA .

The structure of the paper is as follows. Section 2 introduces the problem setting
of H1-regularized parameter estimation, derives the operator equations to be solved
in each Gauss--Newton step, and briefly presents its mixed discretization based on
an inf-sup stable mixed discretization for the Poisson equation. Section 3 presents
three variants of the solution algorithm: (i) a direct approach based on the use of
the Woodbury formula and a factorization of the Laplacian; (ii) a MINRES iteration
preconditioned by the Woodbury formula and a suitable Laplace preconditioner; (iii)
a simplified variant of (ii) that omits the low-rank modification in the Woodbury for-
mula. Section 4 contains an extensive numerical illustration, in which our solution
approach is applied to an electrical resistivity tomography (ERT) problem from geo-
physical exploration in two and three space dimensions. Realistic measurement setups
are considered involving up to thousands of observational data points. The algorithm
is seen to perform efficiently and robustly across a variety of settings. Finally, in
section 5, we summarize our findings and indicate further aspects to be investigated
in subsequent research.

2. Problem formulation. We consider the output-least-squares formulation for
estimating a distributed parameter m \in L2(\Omega ) defined on a bounded domain \Omega \subset \BbbR d

and a (typically nonlinear) parameter-to-observation map g : L2(\Omega )\rightarrow \BbbR M assigning
to each parameter m a set of M observations, from which m is to be reconstructed by
minimizing the misfit

\sum M
i=1 | gi(m) - giobs| 

2
w.r.t. a vector \bfitg obs = \{ giobs\} Mi=1 of observa-

tions. For example, when expm> 0 is the diffusion coefficient of an elliptic forward
problem, this minimization is an ill-posed and severely underdetermined problem
which can be addressed by adding a regularizing penalty term to the data misfit
functional. In this work, we develop efficient computational methods for determining
m when the regularization term is the H1 norm, a common device for promoting
smoothness of the reconstructed function. This leads to the task of minimizing the
objective function

M\sum 

i=1

| gi(m) - giobs| 2 + \beta 

\int 

\Omega 

| \nabla (m - mref)| 2,(2.1)

where \beta > 0 is a regularization parameter and mref denotes a reference or background
value for the unknown m. The regularization thus penalizes the gradient of the devi-
ation from the known background value mref , a common setting in, e.g., geophysical
inverse problems. Consequently, in order for the regularization term to make sense,
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1163

this formulation, which we shall weaken in the following, would require m - mref to
lie in the smaller space H1(\Omega )\subset L2(\Omega ).

To develop a Gauss--Newton iteration for the minimization of (2.1), we will refor-
mulate the first-order optimality condition as a set of normal equations in the function
space setting. The gradient acting on m then becomes a Laplacian, for which spec-
trally equivalent preconditioners are available, allowing efficient iterative solution of
the linearized equation in each Gauss--Newton step. In addition, we recast the op-
timality equations in a mixed formulation, which is well-defined also for m \in L2(\Omega ),
where the gradient in the regularization term is defined by duality.

2.1. Assumptions and notation. We assume that \Omega \subset \BbbR d is a bounded Lip-
schitz domain with boundary partitioned into \partial \Omega = \Gamma D \cup \Gamma N, with \Gamma N, \Gamma D open and
disjoint. For simplicity, we assume | \Gamma D| > 0 to exclude the pure Neumann problem.
We denote by L2(\Omega ) the space of measurable functions f : \Omega \rightarrow \BbbR with finite norm

\| f\| 2 :=
\biggl( \int 

\Omega 

| f | 2
\biggr) 1

2

and by H1(\Omega ) the Sobolev space of such functions f \in L2(\Omega ) with finite norm

\| f\| 1,2 :=
\biggl( \int 

\Omega 

| \nabla f | 2 + | f | 2
\biggr) 1

2

.

The subspace of functions vanishing on \Gamma D is denoted by H1
\Gamma \mathrm{D}

(\Omega )\subset H1(\Omega ), and

\| \nabla f\| 2 :=
\biggl( \int 

\Omega 

| \nabla f | 2
\biggr) 1

2

is a norm on H1
\Gamma \mathrm{D}

(\Omega ) that is equivalent to \| \cdot \| 1,2. The space H(div;\Omega ) consists of all

vector fields \vec{}\sansf : \Omega \rightarrow \BbbR d such that | \vec{}\sansf | \in L2(\Omega ) and div\vec{}\sansf \in L2(\Omega ), and it is equipped
with the norm \| \vec{}\sansf \| div := \| | \vec{}\sansf | \| 2 + \| div\vec{}\sansf \| 2. The subspace of H(div;\Omega ) consisting of
vector fields with vanishing normal trace on \Gamma N is denoted by H\Gamma \mathrm{N}

(div;\Omega ).
Next we assume that the parameter-to-observation map g is given and G\^ateaux-

differentiable with the derivative denoted by J : L2(\Omega )\rightarrow [L2(\Omega )\prime ]M so that

\langle J(m), \delta m\rangle =
\biggl[ 
d

dt
g(m+ t\delta m)

\biggr] 

| t=0

, m, \delta m\in L2(\Omega ).

Therefore, the mapping \delta m \mapsto \rightarrow \langle J(m), \delta m\rangle is assumed to be linear and bounded. The
individual components of g and J are denoted by gi : L2(\Omega ) \rightarrow \BbbR and J i : L2(\Omega ) \rightarrow 
L2(\Omega )\prime , respectively, so that

\langle J i(m), \delta m\rangle =
\biggl[ 
d

dt
gi(m+ t\delta m)

\biggr] 

| t=0

, m, \delta m\in L2(\Omega ), i= 1,2, . . . ,M.

2.2. Primal and mixed regularized least squares formulation. To sim-
plify the following expressions, we rescale the regularized least squares functional
(2.1) by 1/\beta > 0 and obtain the objective function

\Phi \beta (m) = 1
\beta 

M\sum 

i=1

| gi(m) - giobs| 2 +
\int 

\Omega 

| \nabla (m - mref)| 2, m - mref \in H1
\Gamma \mathrm{D}

(\Omega ).(2.2)
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A1164 JAN BLECHTA AND OLIVER G. ERNST

Besides requiring the deviation m  - mref to lie in the smoother space H1(\Omega ), we
impose an essential boundary condition on the portion \Gamma D of the boundary of the
domain \Omega . This is a modeling decision which depends on the type of assumptions
or a priori information available on the unknown parameter m; in this case, m is
assumed to coincide with the background value mref on \Gamma D. As we will see below,
this choice also implicitly imposes a natural boundary condition on \Gamma N.

Taking the first variation (G\^ateaux derivative) of (2.2) in a direction \phi \in H1
\Gamma \mathrm{D}

(\Omega )
and setting it to zero, we arrive at the first-order necessary optimality condition for
minimizing (2.2):

Find m\in H1(\Omega ) such that m - mref \in H1
\Gamma \mathrm{D}

(\Omega ) and

1
\beta 

M\sum 

i=1

(gi(m) - giobs) \langle J i(m), \phi \rangle +
\int 

\Omega 

\nabla (m - mref) \cdot \nabla \phi = 0(2.3)

for all \phi \in H1
\Gamma \mathrm{D}

(\Omega ).

Assuming sufficient regularity, (2.3) can be interpreted as a weak formulation of the
boundary value problem

1
\beta 

M\sum 

i=1

(gi(m) - giobs) (J
i(m))\prime  - \Delta (m - mref) = 0 in \Omega ,(2.4a)

m - mref = 0 on \Gamma D,(2.4b)
\partial 
\partial n (m - mref) = 0 on \Gamma N.(2.4c)

Here (J i(m))\prime \in L2(\Omega ) denotes the Riesz representer of J i(m)\in L2(\Omega )\prime , i.e.,

\langle J i(m), \phi \rangle =
\int 

\Omega 

(J i(m))\prime \phi for all \phi \in L2(\Omega ).(2.5)

Recall that gi(m) - giobs is a number for any fixed m. Hence, for a fixed m, the first
term in (2.4a) is an L2(\Omega )-function in the present setting.

Gauss--Newton linearization of (2.3) is obtained by applying Newton's method to
(2.3) and neglecting the Hessian of g, which is given by

\langle H(m)\phi , \delta m\rangle =
\biggl[ 
d

dt
\langle J(m+ t\delta m), \phi \rangle 

\biggr] 

| t=0

, m\in H1(\Omega ), \phi , \delta m\in H1
\Gamma \mathrm{D}

(\Omega ).

Given an initial value m, associated model-generated responses gim = gi(m), and
the derivatives J i

m = J i(m), i = 1,2, . . . ,M , one step of Gauss--Newton iteration
determines an update m+ \delta m by solving the following problem:

Find \delta m\in H1(\Omega ) such that \delta m+m - mref \in H1
\Gamma \mathrm{D}

(\Omega ) and

1
\beta 

M\sum 

i=1

\langle J i
m, \delta m\rangle \langle J i

m, \phi \rangle +
\int 

\Omega 

\nabla \delta m \cdot \nabla \phi 

= - 1
\beta 

M\sum 

i=1

(gim  - giobs) \langle J i
m, \phi \rangle  - 

\int 

\Omega 

\nabla (m - mref) \cdot \nabla \phi 

for all \phi \in H1
\Gamma \mathrm{D}

(\Omega ).

(2.6)
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1165

The variational equation (2.6) in turn is a weak formulation of the boundary value
problem for the Gauss--Newton correction \delta m:

\Biggl[ 
1
\beta 

M\sum 

i=1

J i
m

\prime \langle J i
m, \cdot \rangle  - \Delta 

\Biggr] 
\delta m= - 1

\beta 

M\sum 

i=1

J i
m

\prime 
(gim  - giobs) +\Delta (m - mref) in \Omega ,(2.7a)

\delta m= - (m - mref) on \Gamma D,(2.7b)
\partial 
\partial n\delta m= - \partial 

\partial n (m - mref) on \Gamma N.(2.7c)

In view of (2.5), the first operator in (2.7a) acting on \delta m can be expressed as

\Biggl[ 
M\sum 

i=1

J i
m

\prime \langle J i
m, \delta m\rangle 

\Biggr] 
(x) =

\int 

\Omega 

\Biggl[ 
M\sum 

i=1

J i
m

\prime 
(x)J i

m

\prime 
(y)

\Biggr] 
\delta m(y)dy,

i.e., as a finite-rank integral operator with kernel
\sum M

i=1 J
i
m

\prime 
(x)J i

m
\prime 
(y)\in L2(\Omega \times \Omega ).

To weaken the regularity requirements on m, we next recast problem (2.6) in a
mixed formulation by introducing the flux variable \vec{}\zeta :=\nabla (\delta m+m - mref):

Find (\vec{}\zeta , \delta m)\in H\Gamma \mathrm{N}
(div;\Omega )\times L2(\Omega ) such that\int 

\Omega 

\vec{}\zeta \cdot \vec{}\psi +

\int 

\Omega 

\delta m div \vec{}\psi = - 
\int 

\Omega 

(m - mref) div \vec{}\psi ,

1

\beta 

M\sum 

i=1

\langle J i
m, \delta m\rangle \langle J i

m, \phi \rangle  - 
\int 

\Omega 

\phi div \vec{}\zeta = - 1

\beta 

M\sum 

i=1

(gim  - giobs) \langle J i
m, \phi \rangle 

for all \vec{}\psi \in H\Gamma \mathrm{N}
(div;\Omega ) and \phi \in L2(\Omega ).

(2.8)

Introducing the operators

\langle Q\vec{}\zeta , \vec{}\psi \rangle :=
\int 

\Omega 

\vec{}\zeta \cdot \vec{}\psi , \vec{}\zeta , \vec{}\psi \in H\Gamma \mathrm{N}
(div;\Omega ),(2.9a)

\langle D\vec{}\zeta ,\phi \rangle :=
\int 

\Omega 

\phi div \vec{}\zeta , \vec{}\zeta \in H\Gamma \mathrm{N}
(div;\Omega ), \phi \in L2(\Omega ),(2.9b)

we can rewrite (2.8) in the block operator form

\left[ 
 
Q D\prime 

D  - 1

\beta 
J \prime 
mJm

\right] 
 
\Biggl[ 
\vec{}\zeta 

\delta m

\Biggr] 
=

\left[ 
 
 - D\prime (m - mref)

1

\beta 
J \prime 
m(\bfitg m  - \bfitg obs)

\right] 
 ,(2.10)

where the occurrences of Jm and J \prime 
m are expressed using duality as

\langle J \prime 
mJm\delta m,\phi \rangle =

M\sum 

i=1

\langle J i
m, \delta m\rangle \langle J i

m, \phi \rangle , \delta m,\phi \in L2(\Omega ),

\langle J \prime 
m(\bfitg m  - \bfitg obs), \phi \rangle =

M\sum 

i=1

(gim  - giobs) \langle J i
m, \phi \rangle , \phi \in L2(\Omega ).

In an analogous way, by defining the operator

\langle L\delta m,\phi \rangle :=
\int 

\Omega 

\nabla \delta m \cdot \nabla \phi , \delta m,\phi \in H1
\Gamma \mathrm{D}

(\Omega ),
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A1166 JAN BLECHTA AND OLIVER G. ERNST

we can rewrite the primal formulation (2.6) as the operator equation

\biggl( 
L+

1

\beta 
J \prime 
mJm

\biggr) 
\delta m= - L(m - mref) - 

1

\beta 
J \prime 
m(\bfitg m  - \bfitg obs).(2.11)

The primal formulation (2.11) can be seen as Schur complement reduction of the mixed
formulation (2.10), in terms of which the Laplacian is represented as L = DQ - 1D\prime .
Indeed, block elimination of \vec{}\zeta in (2.10) gives

\biggl( 
DQ - 1D\prime +

1

\beta 
J \prime 
mJm

\biggr) 
\delta m= - DQ - 1D\prime (m - mref) - 

1

\beta 
J \prime 
m(\bfitg m  - \bfitg obs).(2.12)

We note that Schwarzbach and Haber [47, section 3.2.1] also formulated the H1 reg-
ularization using the mixed formulation (2.10). Their approach consisted of discretiz-
ing by lowest-order Raviart--Thomas elements and approximating Q - 1 by a diagonal
matrix in the Schur complement formulation (2.12). We will instead proceed by con-
sidering the mixed formulation (2.10) and design a solution strategy for this system.

2.3. Finite element discretization. The H1(\Omega ) formulation (2.11) suggests
an H1(\Omega )-conforming discretization for the parameter m, using, e.g., continuous La-
grange elements. Instead, to allow for parameters m \in L2(\Omega ), we will employ a
standard discretization of the mixed formulation (2.8). Let us assume in the following
that \Omega is polyhedral so that we can consider its simplicial partitions \scrT h. Further, let
finite element spaces Vh \times Qh \subset H\Gamma \mathrm{N}

(div;\Omega )\times L2(\Omega ) be chosen as

Vh \times Qh :=RTk(\scrT h, \Gamma N)\times dPk(\scrT h)

for some order k \in \BbbN 0, where RTk and dPk denote the finite element spaces of Raviart--
Thomas and discontinuous Lagrange of order k counted such that k= 0 corresponds to
the lowest-order case. This is an inf-sup stable discretization for the Poisson equation
in mixed formulation, i.e., the operator given by (2.10) (or, equivalently, (2.8)) without
the J \prime 

mJm term; see [11].
Let \{ \vec{}\psi h

i \} Ki=1 and \{ \phi hi \} Ni=1 denote bases of Vh and Qh, respectively, so that

span\{ \vec{}\psi h
i \} Ki=1 = Vh, K =dimVh,

span\{ \phi hi \} Ni=1 =Qh, N =dimQh.

Inserting the basis elements into (2.9) yields the matrices

\bfitQ \in \BbbR K\times K , (\bfitQ )ij := \langle Q\vec{}\psi h
j ,
\vec{}\psi h
i \rangle ,(2.13a)

\bfitD \in \BbbR N\times K , (\bfitD )ij := \langle D\vec{}\psi h
j , \phi 

h
i \rangle .(2.13b)

Assuming that m, mref \in Qh, these can then be expressed as

\bfitm \in \BbbR N , m(x) =

N\sum 

j=1

(\bfitm )j\phi 
h
j (x), x\in \Omega ,(2.14a)

\bfitm ref \in \BbbR N , mref(x)=

N\sum 

j=1

(\bfitm ref)j\phi 
h
j (x), x\in \Omega .(2.14b)
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1167

We seek to determine (\vec{}\zeta , \delta m)\in Vh \times Qh so that

\bfitzeta \in \BbbR K , \vec{}\zeta (x) =

K\sum 

j=1

(\bfitzeta )j \vec{}\psi 
h
j (x), x\in \Omega ,(2.14c)

\bfitdelta \bfitm \in \BbbR N , \delta m(x) =

N\sum 

j=1

(\bfitdelta \bfitm )j\phi 
h
j (x), x\in \Omega .(2.14d)

Naturally, g and J are restricted to Qh, which gives rise to the vector and the matrix

\bfitg \bfitm \in \BbbR M , (\bfitg \bfitm )i := gi(m),(2.14e)

\bfitJ \bfitm \in \BbbR M\times N , (\bfitJ \bfitm )ij := \langle J i(m), \phi hj \rangle ,(2.14f)

where m \in Qh on the right-hand sides is given by (2.14a). We thus arrive at the
discrete counterpart of (2.10), the block linear system

\left[ 
 
\bfitQ \bfitD \top 

\bfitD  - 1

\beta 
\bfitJ \top 

\bfitm \bfitJ \bfitm 

\right] 
 
\Biggl[ 

\bfitzeta 

\bfitdelta \bfitm 

\Biggr] 
=

\left[ 
 
 - \bfitD \top (\bfitm  - \bfitm ref)

1

\beta 
\bfitJ \top 

\bfitm (\bfitg \bfitm  - \bfitg obs)

\right] 
 .(2.15)

3. Solution of the linear systems using the Woodbury formula. The
linear system (2.15) to be solved for the Gauss--Newton updates is a low-rank per-
turbation of a Poisson problem in the mixed formulation. In this section, we employ
the Woodbury matrix identity (see, e.g., [29, section 2.1.4]) to construct algorithms
for efficiently solving this system. We first consider a direct solution approach which
can benefit from reusing the factorization for the unperturbed problem. As a second
approach, we propose two preconditioners for an iterative solution which can take
advantage of any available efficient solution method for the unperturbed problem.

To this end, we note that any formulation and discretization for the Laplacian
which has an efficient solution method can be used to proceed along the following lines.
Recall that the operators in the infinite-dimensional linear systems (2.10), (2.11), and
(2.12) are seen to be finite-rank perturbations of the Laplacian. But in the following,
we will focus entirely on the discrete mixed formulation (2.15).

3.1. Direct solution. We introduce the following matrices (cf. (2.15)), which
will be useful in constructing the solution schemes:

\bfitA :=

\biggl[ 
\bfitQ \bfitD \top 

\bfitD 0

\biggr] 
\in \BbbR (K+N)\times (K+N),

\bfitS :=\bfitD \bfitQ  - 1\bfitD \top \in \BbbR N\times N ,

\bfitP 2 :=
\bigl[ 
0 \bfitI N

\bigr] 
\in \BbbR N\times (K+N),

(3.1)

where \bfitI N denotes the N\times N identity. The solution of a linear system with coefficient
matrix \bfitA and right-hand side blocks \bfity 1 and \bfity 2 are related via the Schur complement
\bfitS as

\bfitP 2\bfitA 
 - 1

\biggl[ 
\bfity 1

\bfity 2

\biggr] 
=\bfitS  - 1

\bigl( 
\bfitD \bfitQ  - 1\bfity 1  - \bfity 2

\bigr) 
, \bfity 1 \in \BbbR K , \bfity 2 \in \BbbR N .(3.2)

The Schur complement matrix \bfitS is, in general, dense, and hence linear systems with
matrix \bfitS are impractical to assemble and solve. On the other hand, (3.2) implies that

\bfitS  - 1\bfity 2 = - \bfitP 2\bfitA 
 - 1

\biggl[ 
0
\bfity 2

\biggr] 
, \bfity 2 \in \BbbR N ;(3.3)

i.e., the solution of the dense system \bfitS \bfitx 2 = - \bfity 2 can be expressed as the solution of
the sparse saddle-point system
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A1168 JAN BLECHTA AND OLIVER G. ERNST

\bfitA 

\biggl[ 
\bfitx 1

\bfitx 2

\biggr] 
=

\biggl[ 
0
\bfity 2

\biggr] 
.

This is the setting we encounter in the Gauss--Newton update step, where the second
block of the solution of (2.15) is needed and the saddle-point matrix \bfitA \beta ,\bfitm is a low-
rank modification of \bfitA in the second block:

\bfitdelta \bfitm =\bfitP 2\bfitA 
 - 1
\beta ,\bfitm 

\left[ 
 
 - \bfitD \top (\bfitm  - \bfitm ref)

1

\beta 
\bfitJ \top 

\bfitm (\bfitg \bfitm  - \bfitg obs)

\right] 
 , \bfitA \beta ,\bfitm :=\bfitA  - 1

\beta 

\Biggl[ 
0

\bfitJ \top 
\bfitm 

\Biggr] 
\bigl[ 
0 \bfitJ \bfitm 

\bigr] 
.(3.4)

Using the Woodbury formula, we may express \bfitA  - 1
\beta ,\bfitm in terms of \bfitA  - 1 as

\bfitA  - 1
\beta ,\bfitm =\bfitA  - 1 +

1

\beta 
\bfitA  - 1

\Biggl[ 
0

\bfitJ \top 
\bfitm 

\Biggr] \Biggl( 
\bfitI M  - 1

\beta 

\bigl[ 
0 \bfitJ \bfitm 

\bigr] 
\bfitA  - 1

\Biggl[ 
0

\bfitJ \top 
\bfitm 

\Biggr] \Biggr)  - 1 \bigl[ 
0 \bfitJ \bfitm 

\bigr] 
\bfitA  - 1,

where \bfitI M denotes the M \times M identity. Defining the matrix

\bfitH \bfitm :=\bfitS  - 1\bfitJ \top 
\bfitm = - \bfitP 2\bfitA 

 - 1

\Biggl[ 
0

\bfitJ \top 
\bfitm 

\Biggr] 
\in \BbbR N\times M(3.5)

and observing
\bigl[ 
0 \bfitJ \bfitm 

\bigr] 
= \bfitJ \bfitm \bfitP 2, we arrive at the expression for the matrix whose

action is required in the update (3.4):

\bfitP 2\bfitA 
 - 1
\beta ,\bfitm =

\biggl( 
\bfitI N  - 1

\beta 
\bfitH \bfitm 

\Bigl( 
\bfitI M +

1

\beta 
\bfitJ \bfitm \bfitH \bfitm 

\Bigr)  - 1

\bfitJ \bfitm 

\biggr) 
\bfitP 2\bfitA 

 - 1.(3.6)

Combining (3.2) and (3.5), we obtain for the unperturbed problem

\bfitP 2\bfitA 
 - 1

\left[ 
 
 - \bfitD \top (\bfitm  - \bfitm ref)

1

\beta 
\bfitJ \top 

\bfitm (\bfitg \bfitm  - \bfitg obs)

\right] 
 = - (\bfitm  - \bfitm ref) - 

1

\beta 
\bfitH \bfitm (\bfitg \bfitm  - \bfitg obs).(3.7)

Equations (3.4), (3.6), and (3.7) now yield an expression for the update vector as

\bfitdelta \bfitm = - (\bfitm  - \bfitm ref) +
1

\beta 
\bfitH \bfitm 

\Bigl( 
\bfitI M +

1

\beta 
\bfitJ \bfitm \bfitH \bfitm 

\Bigr)  - 1\Bigl( 
\bfitJ \bfitm (\bfitm  - \bfitm ref) - (\bfitg \bfitm  - \bfitg obs)

\Bigr) 
.

The computations for constructing this vector within a complete Gauss--Newton min-
imization are summarized in Algorithm 1. It requires a single \bfitL \bfitD \bfitL \top factorization of
the large sparse matrix \bfitA (line \bftwo ). This is done once, prior to the nonlinear iteration;
hence, its computational cost is amortized over the nonlinear solution process. On
the other hand, the fill-in resulting in the factors of \bfitA , especially in three dimen-
sions, makes application of \bfitA  - 1 expensive with complexity considerably larger than
O(N). This occurs M times on line \bffive and thus potentially becomes a bottleneck of
the algorithm if N and/or M are large. Once \bfitH \bfitm is computed, the construction
of the capacitance matrix \bfitC \beta ,\bfitm on line \bffive can proceed very efficiently in O(M2N)
operations as a Level 3 BLAS operation. The dense solve on line \bfsix costs O(M3) and
can be efficiently performed by LAPACK.

The evaluation of the model response and its derivative on line \bffour is assumed
to be available as a given function \bfitm \mapsto \rightarrow (\bfitg \bfitm ,\bfitJ \bfitm ). In many contexts where the
mapping is based on a PDE model, the evaluation of \bfitg \bfitm requires the solution of a
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1169

Algorithm 1 (Gauss--Newton with direct solver).

Input: Parameter-to-observation map \bfitg :\BbbR N\rightarrow \BbbR M , observational data \bfitg obs\in \BbbR M ,
reference parameter \bfitm ref \in \BbbR N , simplicial partition \scrT h of \Omega , Neumann
boundary \Gamma N \subset \partial \Omega , initial guess \bfitm \in \BbbR N , regularization parameter \beta > 0

Output: Final \bfitm \in \BbbR N

\bfone Assemble matrices \bfitQ \in \BbbR K\times K and \bfitD \in \BbbR N\times K according to (2.13)

\bftwo Use a sparse direct solver (e.g., sparse \bfitL \bfitD \bfitL \top ) to factorize

\bfitA =

\biggl[ 
\bfitQ \bfitD \top 

\bfitD 0

\biggr] 

\bfthree repeat

\bffour Compute model response \bfitg \bfitm \in \BbbR M and its derivative \bfitJ \bfitm \in \BbbR M\times N according
to (2.14e, f, and a)

\bffive Use the factorization of \bfitA from above to construct \bfitH \bfitm \in \BbbR N\times M and
\bfitC \beta ,\bfitm \in \BbbR M\times M such that

\bfitH \bfitm := - \bfitP 2\bfitA 
 - 1

\biggl[ 
0

\bfitJ \top 
\bfitm 

\biggr] 
, \bfitC \beta ,\bfitm := \bfitI M + 1

\beta \bfitJ \bfitm \bfitH \bfitm 

\bfsix Solve the capacitance system directly, i.e., find \bfity \in \BbbR M such that

\bfitC \beta ,\bfitm \bfity = \bfitJ \bfitm (\bfitm  - \bfitm ref) - (\bfitg \bfitm  - \bfitg obs)

\bfseven Compute \bfitdelta \bfitm \in \BbbR N as

\bfitdelta \bfitm := - (\bfitm  - \bfitm ref) +
1
\beta \bfitH \bfitm \bfity 

\bfeight \bfitm :=\bfitm + \bfitdelta \bfitm 
\bfnine until happy

forward PDE problem, and the computation of the associated derivative \bfitJ \bfitm can be
performed efficiently using adjoint techniques. This will be the case in the numerical
examples presented in section 4.

3.2. Iterative solution. We consider the block-diagonal preconditioners

\bfitP :=

\biggl[ 
\bfitQ 

\bfitS 

\biggr] 
and \bfitP \beta ,\bfitm :=

\biggl[ 
\bfitQ 

\bfitS + 1
\beta \bfitJ 

\top 
\bfitm \bfitJ \bfitm 

\biggr] 
,(3.8)

with the Laplace Schur complement \bfitS as in (3.1). These are ``ideal"" preconditioners
for \bfitA and \bfitA \beta ,\bfitm , respectively. Indeed, the minimal polynomial of \bfitA \bfitP  - 1 has de-
gree at most 3 [41, Proposition 1], and, as a consequence, minimum residual Krylov
subspace iteration applied to \bfitA \bfitP  - 1 converges in at most three iterations, as shown
by Murphy, Golub, and Wathen [41] (see also [37, Theorem 2.2.3]). This does not
hold for \bfitA \beta ,\bfitm \bfitP  - 1

\beta ,\bfitm , but it is known that the spectrum of \bfitA \beta ,\bfitm \bfitP  - 1
\beta ,\bfitm is contained

in [ - 1, - 1
\phi ]\cup [1, \phi ], where \phi = 1+

\surd 
5

2 ; see [45, Theorem 4]. This inclusion guarantees

two-step linear convergence of MINRES for \bfitA \beta ,\bfitm \bfitP  - 1
\beta ,\bfitm independently of M , N , \beta ,

and the right-hand side; see, e.g., [33, section 3.1] or [25, section 4.2.4].
The action of \bfitP  - 1 and \bfitP  - 1

\beta ,\bfitm is essentially as expensive as that of \bfitA  - 1 and \bfitA  - 1
\beta ,\bfitm ,

respectively; hence, we seek a good and inexpensive approximation of \bfitP  - 1 and \bfitP  - 1
\beta ,\bfitm .

Consider

\^\bfitP 
 - 1

:=

\Biggl[ 
\^\bfitQ 
 - 1

\^\bfitS 
 - 1

\Biggr] 
and \^\bfitP 

 - 1

\beta ,\bfitm :=

\Biggl[ 
\^\bfitQ 
 - 1

\^\bfitS 
 - 1

\beta ,\bfitm 

\Biggr] 
,
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A1170 JAN BLECHTA AND OLIVER G. ERNST

Algorithm 2 (Gauss--Newton with iterative solver).

Input: Parameter-to-observation map \bfitg : \BbbR N\rightarrow \BbbR M , observational data \bfitg obs\in \BbbR M ,
reference parameter \bfitm ref \in \BbbR N , simplicial partition \scrT h of \Omega , Neumann
boundary \Gamma N \subset \partial \Omega , initial guess \bfitm \in \BbbR N , regularization parameter \beta > 0

Output: Final \bfitm \in \BbbR N

\bfone Assemble matrices \bfitQ \in \BbbR K\times K and \bfitD \in \BbbR N\times K according to (2.13)
\bftwo Prepare a mass term preconditioner

\^\bfitQ 
 - 1

:= (diag\bfitQ ) - 1

\bfthree Prepare a Schur complement preconditioner using an algebraic blackbox, e.g.,
algebraic multigrid,

\^\bfitS 
 - 1

:= AMG(\bfitD (diag\bfitQ ) - 1\bfitD \top )

\bffour repeat

\bffive Compute model response \bfitg \bfitm \in \BbbR M and its derivative \bfitJ \bfitm \in \BbbR M\times N according
to (2.14e, f, and a)

\bfsix Compute \bfitdelta \bfitm \in \BbbR N using Algorithm 3 or Algorithm 4
\bfseven \bfitm :=\bfitm + \bfitdelta \bfitm 
\bfeight until happy

where

\^\bfitQ 
 - 1

:= (diag\bfitQ ) - 1,

\^\bfitS 
 - 1

:= AMG(\bfitD \^\bfitQ 
 - 1

\bfitD \top ),

\^\bfitS 
 - 1

\beta ,\bfitm := \^\bfitS 
 - 1  - 1

\beta 
\^\bfitS 
 - 1

\bfitJ \top 
\bfitm (\bfitI M + 1

\beta \bfitJ \bfitm 
\^\bfitS 
 - 1

\bfitJ \top 
\bfitm ) - 1\bfitJ \bfitm 

\^\bfitS 
 - 1
.

The preconditioner \^\bfitP 
 - 1

was introduced by Powell and Silvester [46] for precondition-
ing the mixed Laplacian \bfitA . We can employ this preconditioner also for \bfitA \beta ,\bfitm , which
is, in view of (3.4), a perturbation of \bfitA by at most rank M . The expressions for
\^\bfitP 
 - 1

\beta ,\bfitm follow easily by requiring, in analogy to (3.8), that \^\bfitS \beta ,\bfitm = \^\bfitS + 1
\beta \bfitJ 

\top 
\bfitm \bfitJ \bfitm and

by using the Woodbury matrix identity.
Algorithm 2 summarizes the Gauss--Newton procedure based on iterative solu-

tion of the linearized problems. It invokes either Algorithm 3, which employs \^\bfitP 
 - 1

\beta ,\bfitm 

as a preconditioner, or Algorithm 4, which uses \^\bfitP 
 - 1

. The latter omits the correc-
tion due to the Woodbury formula, hence bypassing the computations involving the

capacitance matrix \bfitC \beta ,\bfitm = \bfitI M + 1
\beta \bfitJ \bfitm 

\^\bfitS 
 - 1

\bfitJ \top 
\bfitm , and thus results in a less expensive

preconditioner. As it fails to account for the low-rank modification due to the data
misfit term, it is expected to deteriorate with increasing M . We will confirm this

experimentally in section 4. Additionally, we will see that \^\bfitP 
 - 1

\beta ,\bfitm , in contrast to \^\bfitP 
 - 1

,
provides robustness w.r.t. \beta ; see Figure 6.

The preconditioned MINRES procedures in Algorithms 3 and 4 correspond to
different minimization problems,

MINRES
\bigl( 
\bfitA \beta ,\bfitm , \^\bfitP 

 - 1

\beta ,\bfitm ,\bfitb ,\bfitx 0

\bigr) 
: \| \bfitr k\| \^\bfitP 

 - 1
\beta ,\bfitm 

= min
p\in \scrP 0

k

\| p(\bfitA \beta ,\bfitm 
\^\bfitP 
 - 1

\beta ,\bfitm )\bfitr 0\| \^\bfitP 
 - 1
\beta ,\bfitm 

,

MINRES
\bigl( 
\bfitA \beta ,\bfitm , \^\bfitP 

 - 1
,\bfitb ,\bfitx 0

\bigr) 
: \| \bfitr k\| \^\bfitP 

 - 1 = min
p\in \scrP 0

k

\| p(\bfitA \beta ,\bfitm 
\^\bfitP 
 - 1

)\bfitr 0\| \^\bfitP 
 - 1 ,

(3.9)

© 2024 Jan Blechta and Oliver G. Ernst

D
ow

nl
oa

de
d 

04
/0

2/
24

 to
 1

34
.1

09
.1

55
.2

36
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1171

Algorithm 3 (MINRES with the Laplace--Woodbury preconditioner \^\bfitP 
 - 1

\beta ,\bfitm ).

Input: \bfitm \in \BbbR N , \bfitg \bfitm \in \BbbR M , \bfitJ \bfitm \in \BbbR M\times N , \beta > 0

Output: \bfitdelta \bfitm \in \BbbR N

\bfone \^\bfitH \bfitm := \^\bfitS 
 - 1

\bfitJ \top 
\bfitm 

\bftwo \bfitC \beta ,\bfitm := \bfitI M + 1
\beta \bfitJ \bfitm 

\^\bfitH \bfitm 

\bfthree Compute Cholesky factor \bfitL \beta ,\bfitm \in \BbbR M\times M such that \bfitL \beta ,\bfitm \bfitL \top 
\beta ,\bfitm =\bfitC \beta ,\bfitm 

\bffour Run MINRES:
\biggl[ 

\bfitzeta 
\bfitdelta \bfitm 

\biggr] 
:= MINRES

\bigl( 
\bfitA \beta ,\bfitm , \^\bfitP 

 - 1

\beta ,\bfitm ,\bfitb ,\bfitx 0

\bigr) 
,

where the system operator \bfitA \beta ,\bfitm : \BbbR K+N \rightarrow \BbbR K+N and the preconditioner

\^\bfitP 
 - 1

\beta ,\bfitm : \BbbR K+N \rightarrow \BbbR K+N are represented matrix-free by formulas

\bfitA \beta ,\bfitm 

\biggl[ 
\bfitzeta 

\bfitdelta \bfitm 

\biggr] 
=

\Biggl[ 
\bfitQ \bfitzeta +\bfitD \top \bfitdelta \bfitm 

\bfitD \bfitzeta  - 1
\beta (\bfitJ 

\top 
\bfitm (\bfitJ \bfitm \bfitdelta \bfitm ))

\Biggr] 
,

\^\bfitP 
 - 1

\beta ,\bfitm 

\biggl[ 
\bfity 1

\bfity 2

\biggr] 
=

\Biggl[ 
\^\bfitQ 
 - 1

\bfity 1

\^\bfitS 
 - 1

\bfity 2  - 1
\beta (

\^\bfitH \bfitm (\bfitL  - \top 
\beta ,\bfitm (\bfitL  - 1

\beta ,\bfitm ( \^\bfitH 
\top 
\bfitm \bfity 2))))

\Biggr] 

and the right-hand side \bfitb \in \BbbR K+N and the initial guess \bfitx 0 \in \BbbR K+N are given by

\bfitb :=

\Biggl[ 
 - \bfitD \top (\bfitm  - \bfitm ref)

1
\beta \bfitJ 

\top 
\bfitm (\bfitg \bfitm  - \bfitg obs)

\Biggr] 
, \bfitx 0 :=

\Biggl[ 
0

0

\Biggr] 
.

Algorithm 4 (MINRES with the Laplace preconditioner \^\bfitP 
 - 1

).

Input: \bfitm \in \BbbR N , \bfitg \bfitm \in \BbbR M , \bfitJ \bfitm \in \BbbR M\times N , \beta > 0

Output: \bfitdelta \bfitm \in \BbbR N

\bfone Run MINRES: \biggl[ 
\bfitzeta 

\bfitdelta \bfitm 

\biggr] 
:= MINRES

\bigl( 
\bfitA \beta ,\bfitm , \^\bfitP 

 - 1
,\bfitb ,\bfitx 0

\bigr) 
,

where the system operator \bfitA \beta ,\bfitm : \BbbR K+N \rightarrow \BbbR K+N and the preconditioner

\^\bfitP 
 - 1

\beta ,\bfitm : \BbbR K+N \rightarrow \BbbR K+N are represented matrix-free by formulas

\bfitA \beta ,\bfitm 

\biggl[ 
\bfitzeta 

\bfitdelta \bfitm 

\biggr] 
=

\Biggl[ 
\bfitQ \bfitzeta +\bfitD \top \bfitdelta \bfitm 

\bfitD \bfitzeta  - 1
\beta (\bfitJ 

\top 
\bfitm (\bfitJ \bfitm \bfitdelta \bfitm ))

\Biggr] 
,

\^\bfitP 
 - 1
\biggl[ 
\bfity 1

\bfity 2

\biggr] 
=

\Biggl[ 
\^\bfitQ 
 - 1

\bfity 1

\^\bfitS 
 - 1

\bfity 2

\Biggr] 

and the right-hand side \bfitb \in \BbbR K+N and the initial guess \bfitx 0 \in \BbbR K+N are given by

\bfitb :=

\Biggl[ 
 - \bfitD \top (\bfitm  - \bfitm ref)
1
\beta \bfitJ 

\top 
\bfitm (\bfitg \bfitm  - \bfitg obs)

\Biggr] 
, \bfitx 0 :=

\biggl[ 
0
0

\biggr] 
.
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A1172 JAN BLECHTA AND OLIVER G. ERNST

where \scrP 0
k denotes the set of polynomials of degree at most k normalized to p(0) = 1,

\bfitr k = \bfitb  - \bfitA \beta ,\bfitm \bfitx k are the true residuals corresponding to the kth iterates \bfitx k =
[\bfitzeta \top 

k , \bfitdelta \bfitm 
\top 
k ]

\top , and the norm \| \bfitx \| \bfitM = (\bfitx \top \bfitM \bfitx )1/2 for a symmetric positive definite
\bfitM . In particular, one can see that different residual norms are used.

To assess the complexity of Algorithm 3, we assume that the black-box pre-

conditioners \^\bfitQ 
 - 1

and \^\bfitS 
 - 1

are optimal; i.e., the actions \^\bfitQ 
 - 1

\bfity 1, \^\bfitS 
 - 1

\bfity 2 on vectors
\bfity 1 \in \BbbR K , \bfity 2 \in \BbbR N are performed in O(K) and O(N) floating-point operations, re-
spectively. In the settings under consideration, we have M \leq N (typically M \ll N)
and O(K) =O(N). Moreover, we do not distinguish between complexity for number
of floating point operations and execution times. A breakdown of the complexity of
the steps in Algorithm 3 is as follows:

line \bfone . M applications of \^\bfitS 
 - 1

, i.e., O(MN);
line \bftwo . dense matrix-matrix multiply; O(M2N);
line \bfthree . dense Cholesky factorization; O(M3);

line \bffour . cost per one MINRES step is O(MN) because \bfitQ \bfitzeta , \bfitD \top \bfitdelta \bfitm , \bfitD \bfitzeta , \^\bfitQ 
 - 1

\bfity 1,

and \^\bfitS 
 - 1

\bfity 2 are O(N); \bfitJ \top 
\bfitm (\bfitJ \bfitm \bfitdelta \bfitm ), \^\bfitH 

\top 
\bfitm \bfity 2, and \^\bfitH \bfitm \cdot are O(MN); and

\bfitL  - \top 
\beta ,\bfitm \cdot and \bfitL  - 1

\beta ,\bfitm \cdot are O(M2).
If the number of MINRES iterations remains constant independent of M and N , one
observes that the overall complexity of Algorithm 3 is dominated by O(M2N) due to
the assembly of the capacitance matrix on line \bftwo . On the other hand, this operation
would typically be carried out by the Level 3 BLAS routine gemm, thus very efficiently
(in terms of utilizing the theoretical floating point capability of the CPU). Note that
one must not assemble (\bfitJ \top 

\bfitm \bfitJ \bfitm ), which would be a dense \BbbR N\times N matrix and thus
would degrade the complexity to O(N2). We will demonstrate via the numerical
experiments in section 4 that the number of MINRES iterations in Algorithm 3 tends
to be constant.

On the other hand, the simplified Algorithm 4 has, by the same reasoning, com-
plexity of only O(MN) per MINRES iteration, but the number of MINRES iterations
tends to increase as M and N grow, which we will see confirmed in section 4. More-
over, Algorithm 4 is not robust w.r.t. \beta ; see Figure 6.

4. An application: ERT. Consider a conducting medium occupying a do-
main \Omega \subset \BbbR d characterized by an unknown spatially varying electrical conductivity
\sigma true : \Omega \rightarrow (0,\infty ). ERT (also known as the direct current (DC) resistivity method in
the geophysical exploration literature) reconstructs the unknown \sigma true from voltage
measurements of stationary electric fields excited by known synthetic DC sources.
We model the excitation current by a source-sink pair of point sources of known DC
current strength. This corresponds physically to a current source connected to the
medium at two distinct points by way of cables (conductors), while the cables them-
selves are not part of the conductivity model \sigma true but are rather represented as a point
source and point sink, respectively. The response of the medium to this excitation can
be measured as a voltage (potential difference) at two other points in the medium.
By varying the placement of current source-sink and/or the voltage electrode posi-
tions, one can perform multiple measurements. Ultimately, one wishes to reconstruct
a conductivity distribution \widetilde \sigma which is consistent with these measurements. A finite
set of such measurements is likely to be explained equally well by multiple different
values of \widetilde \sigma , indicating that the problem is underdetermined. Moreover, the (inverse)
problem of reconstructing conductivity from potential measurements is well known to
be ill-posed. As a selection criterion, one can ask for extra smoothness of \widetilde \sigma and thus
regularize the inverse problem. In any case, it is clear that, except for special cases,
it cannot be expected that \widetilde \sigma = \sigma true.
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1173

Consider a bounded Lipschitz domain \Omega \subset \BbbR d, d= 2,3, and electrical conductivity
\sigma \in L\infty (\Omega ), \sigma \geq \sigma 0 > 0. Assume that \partial \Omega = \gamma D\cup \gamma N with open and disjoint \gamma D, \gamma N and
such that | \gamma D| > 0. Note that \gamma D and \gamma N are, in general, different from \Gamma D and \Gamma N

from (2.2). We consider the diffusion equation for the stationary electric potential u,

 - div\sigma \nabla u= f in \Omega ,(4.1a)

u= 0 on \gamma D,(4.1b)
\partial 
\partial nu= 0 on \gamma N,(4.1c)

where we employ the homogeneous boundary conditions (4.1b, c) for simplicity. The
electric potential ux\mathrm{A}x\mathrm{B} for a unit current source-sink pair xA \not = xB in \Omega \cup \gamma N is then
defined as the distributional solution of (4.1) with f := \delta x\mathrm{A}  - \delta x\mathrm{B} . Note that it makes
sense to place xA and/or xB on \gamma N. The distributional solution ux\mathrm{A}x\mathrm{B}

does not belong
to the Sobolev space H1(\Omega ). Nevertheless, ux\mathrm{A}x\mathrm{B}

is continuous in \Omega \setminus (xA \cup xB); see
[42, equation (3)]. One can therefore define the voltage difference

ux\mathrm{A}x\mathrm{B}
(xM) - ux\mathrm{A}x\mathrm{B}

(xN) = \langle \delta x\mathrm{M}
 - \delta x\mathrm{N}

, ux\mathrm{A}x\mathrm{B}
\rangle (4.2)

between any two points xM, xN \in \Omega \setminus (xA \cup xB). We define the solution operator
for (4.1):

A - 1
\sigma : f \mapsto \rightarrow u such that \sigma , f, and u satisfy (4.1) in the sense of distributions.

With this definition, we may express the quantity in (4.2) as

\langle \delta x\mathrm{M}
 - \delta x\mathrm{N}

,A - 1
\sigma (\delta x\mathrm{A}

 - \delta x\mathrm{B}
)\rangle = \langle \delta x\mathrm{A}

 - \delta x\mathrm{B}
,A - 1

\sigma (\delta x\mathrm{M}
 - \delta x\mathrm{N}

)\rangle 

=

\int 

\Omega 

\sigma \nabla A - 1
\sigma (\delta x\mathrm{A}

 - \delta x\mathrm{B}
) \cdot \nabla A - 1

\sigma (\delta x\mathrm{M}
 - \delta x\mathrm{N}

),
(4.3)

and the G\^ateaux derivative of this quantity is readily expressed as1

\delta \sigma \mapsto \rightarrow  - 
\int 

\Omega 

\delta \sigma \nabla A - 1
\sigma (\delta x\mathrm{A}

 - \delta x\mathrm{B}
) \cdot \nabla A - 1

\sigma (\delta x\mathrm{M}
 - \delta x\mathrm{N}

),(4.4)

which is a linear functional.
It is convenient to introduce the change of variablesm= log\sigma for the conductivity

so that for m \in L\infty (\Omega ), one has 0 < exp(ess inf\Omega m) \leq \sigma \leq exp(ess sup\Omega m). The
solution map A - 1

exp(m) is then well-defined for all m \in L\infty (\Omega ), as the boundedness

condition 0<\sigma \leq \sigma \leq \sigma <\infty is equivalent to m\in L\infty (\Omega ).
A practical ERT survey consists of multiple measurements using different combi-

nations of points xiA, x
i
B, x

i
M, and xiN for i = 1,2, . . . ,M . Following (4.3) and (4.4),

we express the quantity of interest and its derivative as

(4.5)

gi(m) := ki

\int 

\Omega 

exp(m)\nabla A - 1
exp(m)(\delta xi

\mathrm{A}
 - \delta xi

\mathrm{B}
) \cdot \nabla A - 1

exp(m)(\delta xi
\mathrm{M}
 - \delta xi

\mathrm{N}
),

J i(m)\delta m := - ki
\int 

\Omega 

\delta m exp(m)\nabla A - 1
exp(m)(\delta xi

\mathrm{A}
 - \delta xi

\mathrm{B}
) \cdot \nabla A - 1

exp(m)(\delta xi
\mathrm{M}
 - \delta xi

\mathrm{N}
)

for i= 1,2, . . . ,M.

1This follows along the lines of the formula d(A - 1) =  - A - 1 dAA - 1, which is valid for any
invertible matrix A. Concerning the G\^ateaux derivative of the singular integral (4.3), additional
rigor and care in the choice of the function spaces are needed, but this is beyond the scope of this
work; hence, we proceed just formally.

© 2024 Jan Blechta and Oliver G. Ernst

D
ow

nl
oa

de
d 

04
/0

2/
24

 to
 1

34
.1

09
.1

55
.2

36
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



A1174 JAN BLECHTA AND OLIVER G. ERNST

Here we have introduced additional scaling factors ki given by

ki :=

\left\{ 
   
   

\pi 

 - log | xiA  - xiM| + log | xiB  - xiM| + log | xiA  - xiN|  - log | xiB  - xiN| 
, d= 2,

2\pi 

| xiA  - xiM|  - 1  - | xiB  - xiM|  - 1  - | xiA  - xiN| 
 - 1

+ | xiB  - xiN| 
 - 1 , d= 3,

(4.6)

for i= 1,2, . . . ,M.

These geometric factors only depend on the coordinates of the electrodes. Their
purpose is that the original voltage measurement (4.3) is transformed into a quantity
known as apparent resistivity.2 This is a commonly applied method of scaling the data
gi(m) - giobs, i= 1, . . . ,M .

In practice, the placement of electrodes xiA, x
i
B, x

i
M, and xiN is critical for the

goal of approximating the original conductivity distribution, i.e., \widetilde \sigma \approx \sigma true. The
geophysics literature contains a number of established electrode placement designs;
see, e.g., [51, section 8.5] or [52] and the references therein. In the examples below,
we consider what is known as a pole-dipole configuration. Figure 1 shows a sequence
of one-dimensional electrode configurations, which exhibit increasing measurement
resolution but with sensitivity only in regions increasingly closer to the surface as
the configuration is refined. This sequence was chosen to obtain a series of problems
which are each meaningful for the underlying inverse problem and at the same time
illustrate the performance of the preconditioners across a wide range of values for the
finite element mesh size, number of measurements, and regularization parameter. In
the framework of (4.5) and (4.6), the xiB-electrode is modeled as an electrode placed
at \infty (resp., at \gamma D) in the context of the boundary datum (4.1b). Hence, \delta xi

\mathrm{B}
does

not contribute to (4.5), and the factors ki are obtained by taking limit | xiB| \rightarrow \infty 
in (4.6). These one-dimensional configurations are typically used in ERT surveys
along the upper boundary of a two-dimensional vertical cross section. For surveys
over a three-dimensional region, it is common to construct a two-dimensional surface
electrode configuration as the Cartesian product of the one-dimensional pattern.

In the following, we illustrate the performance of the aforementioned algorithms
with a sequence of parameter identification experiments in an idealized ERT setting.
We aim to reconstruct an a priori known conductivity anomaly against a homoge-
neous background. We consider a sequence of problems involving a checkerboard
anomaly structure of increasing complexity with decreasing depth in accordance with
the sensitivity and resolution capability of the chosen electrode configuration designs.
Sequences of problems in two (the left column in Figure 2) and three (the top row in
Figure 3) spatial dimensions are carefully chosen to work well with the aforementioned
electrode configuration. In particular, because the spacing of electrodes decreases with
finer configurations, the survey is only sensitive in an increasingly shallow region be-
low the surface. This rather artificial scenario allows us to reconstruct an increasingly
finer pattern with only M =O(N) measurements (see Figure 1), thus allowing us to
increase the parameters M and N many times before exhausting computer resources
(see Table 1).

2Ameasurement gi(m) from (4.5) gives apparent constant resistivity of a homogeneous half space.
Precisely, it holds true that gi(log\sigma 0) = 1/\sigma 0, for a constant \sigma 0 > 0, half-space domain \Omega = \{ x\in \BbbR d,
xd > 0\} , and xi

\mathrm{A}, xi
\mathrm{B}, x

i
\mathrm{M}, xi

\mathrm{N} \in \{ x \in \BbbR d, xd = 0\} . This is derived using Green's functions for the
Laplace Dirichlet problem in a half space.
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1175PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A15

Fig. 1. The first five pole-dipole electrode configurations used in the numerical examples, start-
ing from Nele = 17 distinct electrode positions (left) and reaching as many as Nele = 257 positions
(right). The vertical axes enumerate measurement number i = 1, 2, . . . ,M and the horizontal axes
represent electrode x-position with Nele distinct equidistant positions in the interval x \in [ - 50, 50].
Transmitter electrodes xi

A (\triangledown ), receiver electrodes xi
M (\times ), xi

N (\times ), second transmitter electrode

xi
B placed at \infty (not shown), i = 1, 2, . . . ,M . The measurements i = 1, 2, . . . , 2Nele  - 8 use the

spacing 2, e.g., for i = 1, the electrodes are at positions 1, 3, 5, for i = 2 the positions 2, 4, 6,
etc. The measurements i = 2Nele  - 7, . . . , 4Nele  - 24 use the spacing 4 and the measurements
i = 4Nele - 23, . . . , 6Nele - 56 use the spacing 8. Total number of measurements is M = 6Nele - 56.

known as apparent resistivity .2 This is a commonly applied method of scaling the
data gi(m) - giobs, i = 1, . . . ,M .

In practice, the placement of electrodes xiA, x
i
B, x

i
M, and xiN is critical for the

goal of approximating the original conductivity distribution, i.e., \widetilde \sigma \approx \sigma true. The
geophysics literature contains a number of established electrode placement designs;
see, e.g., [51, section 8.5] or [52] and the references therein. In the examples below
we consider what is known as a pole-dipole configuration. Figure 1 shows a sequence
of one-dimensional electrode configurations, which exhibit increasing measurement

2A measurement gi(m) from (4.5) gives apparent constant resistivity of homogeneous half space.
Precisely, it holds true that gi(log \sigma 0) = 1/\sigma 0, for a constant \sigma 0 > 0, half-space domain \Omega = \{ x \in 
\BbbR d, xd > 0\} , and xi

A, xi
B, x

i
M, xi

N \in \{ x \in \BbbR d, xd = 0\} . This is derived using Green's functions for
the Laplace Dirichlet problem in half space.

Fig. 1. The first five pole-dipole electrode configurations used in the numerical examples, start-
ing from N\mathrm{e}\mathrm{l}\mathrm{e} = 17 distinct electrode positions (left) and reaching as many as N\mathrm{e}\mathrm{l}\mathrm{e} = 257 positions
(right). The vertical axes enumerate measurement number i = 1,2, . . . ,M , and the horizontal axes
represent electrode x-position with N\mathrm{e}\mathrm{l}\mathrm{e} distinct equidistant positions in the interval x \in [ - 50,50].
Transmitter electrodes xi

\mathrm{A} (\triangledown ), receiver electrodes xi
\mathrm{M} (\times ), xi

\mathrm{N} (\times ), second transmitter electrode xi
\mathrm{B}

placed at \infty (not shown), i = 1,2, . . . ,M . The measurements i = 1,2, . . . ,2N\mathrm{e}\mathrm{l}\mathrm{e}  - 8 use the spacing
2; e.g., for i = 1, the electrodes are at positions 1,3,5; for i = 2, the electrodes are at positions
2,4,6; etc. The measurements i= 2N\mathrm{e}\mathrm{l}\mathrm{e} - 7, . . . ,4N\mathrm{e}\mathrm{l}\mathrm{e} - 24 use the spacing 4, and the measurements
i= 4N\mathrm{e}\mathrm{l}\mathrm{e}  - 23, . . . ,6N\mathrm{e}\mathrm{l}\mathrm{e}  - 56 use the spacing 8. Total number of measurements is M = 6N\mathrm{e}\mathrm{l}\mathrm{e}  - 56.

Two-dimensional test case. We consider the half-disk domain \Omega := \{ (x, z) \in \BbbR 2,
z > 0,

\surd 
x2 + z2 < 80\} . The line \{ z = 0\} represents the ground surface where mea-

surements are taken using electrodes placed as described in Figure 1. Following geo-
physical convention, the half-space \{ z > 0\} represents the subsurface consisting of
a medium with (here a priori known) conductivity distribution \sigma true as in Figure 2
(left), displaying a series of increasingly finer anomalous conductivity patterns im-
posed on a background medium of constant conductivity. The opposite side \{ z < 0\} 
represents the air half-space of negligible conductivity, which is thus excluded from
the domain and modeled by a vanishing normal component of the electric field (4.1c)
on \gamma N := \{ z = 0\} . For simplicity, we consider (4.1b) on \gamma D := \partial \Omega \setminus \gamma N. This description
fully specifies the functions m \mapsto \rightarrow gi(m) and m \mapsto \rightarrow J i(m), i= 1,2, . . . ,M .

For the configurations, the first five of which are indicated in Figure 2, we compute
the finite element approximations of the quantities giobs := gi(log\sigma true), i= 1,2, . . . ,M ,
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A18 JAN BLECHTA AND OLIVER G. ERNST

Fig. 2. True resistivities 1
\sigma true

(on the left) and the result of inversion using Algorithm 3 (on

the right) for the 2D example. The series of configurations (from top to bottom) corresponds to
the first five configurations of electrodes; see Figure 1. Majority of the medium has background
resistivity 1

\sigma ref
= 3500 (blue, on the left) with presence of anomaly resistivity 7000 (red, on the left).

The positions of the electrodes at the surface are indicated by the black vertical bar (| , on the left).

Fig. 2. True resistivities 1
\sigma \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}

(on the left) and the result of inversion using Algorithm 3 (on

the right) for the two-dimensional example. The series of configurations (from top to bottom)
corresponds to the first five configurations of electrodes; see Figure 1. The majority of the medium
has background resistivity 1

\sigma \mathrm{r}\mathrm{e}\mathrm{f}
= 3500 (blue, on the left) with presence of anomaly resistivity 7000

(red, on the left). The positions of the electrodes at the surface are indicated by the black vertical
bar (| , on the left).

which serve as the (synthetic) observational data for inversion. Note that these data
are noisy due to the discretization error (although the meshes used to generate the
values giobs are finer compared to the meshes for the inversion). The reference value is
taken to be mref := log\sigma ref as in Figure 2, and \Gamma D in (2.2) is taken as \Gamma D := \partial \Omega . Two
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A1177

Table 1
Performance characteristics of the numerical experiments. Timings t\bfone , t\bftwo , and t\bfthree for substeps

of Algorithm 3 for each Gauss--Newton step i. Number of MINRES iterations n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} and overall
runtime t\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m} for Algorithms 3 and 4 to solve the normal equations \bfitA \beta ,\bfitm \bfitx = \bfitb within tolerance
\| \bfitr k\| 2/\| \bfitb \| 2 \leq 10 - 7 in the Euclidean norm. Cases marked \dagger did not converge to the prescribed

tolerance in 2(K +N) iterations (recall that \bfitA \beta ,\bfitm \in \BbbR (K+N)\times (K+N)); tolerance 10 - 6 was reached
in all these cases.

Algorithm 3 Algorithm 4

N\mathrm{e}\mathrm{l}\mathrm{e} N M i t\bfone [s] t\bftwo [s] t\bfthree [s] n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} t\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m} [s] n\mathrm{i}\mathrm{t}\mathrm{e}\mathrm{r} t\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m} [s]

two
dimensions

(\beta = 0.1)

17 840 46 1 0.01 0.0019 0.0001 4 0.02 79 0.02
2 0.01 0.0007 0.0001 11 0.02 286 0.07

33 1584 142 1 0.03 0.0029 0.0050 4 0.07 737 0.38

2 0.03 0.0019 0.0024 12 0.05 3526 1.58
65 3140 334 1 0.16 0.0116 0.0010 4 0.19 1921 6.46

2 0.15 0.0113 0.0007 14 0.22 15878\dagger 39.69

129 6012 718 1 0.61 0.0930 0.0026 4 0.80 3441 33.71
2 0.63 0.0885 0.0118 14 1.09 29883\dagger 331.63

257 11644 1486 1 2.49 0.4523 0.0133 4 3.24 5700 180.17
2 2.64 0.4656 0.0139 17 3.88 58798\dagger 2016.60

513 22884 3022 1 11.01 1.8966 0.0668 4 13.98

2 10.78 1.9269 0.0567 14 15.40
1025 44848 6094 1 44.22 14.6608 0.3928 4 63.39

2 44.93 14.6799 0.3932 12 69.61

2049 89608 12238 1 190.69 117.3031 3.0011 6 330.03
2 199.42 117.3992 2.9831 14 357.53

4097 178232 24526 1 848.10 932.6321 23.4441 7 1943.20

2 847.55 932.3276 22.3924 14 1963.20

three
dimensions

(\beta = 105)

81 120192 216 1 5.58 0.1238 0.0005 130 24.19 156 15.77
2 5.61 0.1209 0.0004 132 20.98 160 15.43

169 262464 728 1 54.31 2.6834 0.0036 123 139.58 210 94.94

2 53.76 2.6758 0.0028 125 169.42 215 72.15
289 452736 1564 1 171.92 10.1975 0.0155 124 394.06 291 277.57

2 176.60 10.2716 0.0153 126 392.27 297 314.99

441 679296 2940 1 536.86 53.4599 0.1874 136 1208.20 425 1363.20
2 516.93 53.4413 0.0981 139 1259.60 438 1204.00

625 937408 4700 1 1146.50 184.4371 0.2116 131 2840.50 526 2989.20

2 1270.10 183.5881 0.2154 136 2988.60 542 3100.70

Gauss--Newton steps with a fixed value of the regularization parameter \beta := 0.1 are
performed, and the resistivity distributions in Figure 2 (on the right) are obtained.
The meshes for the inversion (see Figure 2) are a priori refined around the electrode
positions, which are at the surface \{ z = 0\} , so that the meshes scale as N =O(N ele);
see Table 1.

Three-dimensional test case. Here we consider the semispherical domain \Omega :=
\{ (x, y, z)\in \BbbR 3, z > 0,

\sqrt{} 
x2 + y2 + z2 < 80\} . The measurements are again taken on the

surface \{ z = 0\} using the grid of electrodes shown in Figure 3. One uses the pole-
dipole scheme (as described in Figure 1) along the x-direction for all possible y= const
profiles and then the same in the y-direction for all possible x = const profiles. By
analogy, the true resistivity model is also constructed in a Cartesian product fashion;
see Figure 3.

The remaining details are analogous to the two-dimensional test case above with
the exception that different values of the regularization parameter \beta were necessary to
obtain good reconstructions. The question of choosing the best value of the regulariza-
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PARAMETER IDENTIFICATION WITH H1 REGULARIZATION A19

3203 3435 3667 3898 4130

7000

z = 0.00 z = 0.00 z = 0.00 z = 0.00 z = 0.00

z = 5.00 z = 3.33 z = 2.50 z = 2.00 z = 1.67

z = 10.00 z = 6.67 z = 5.00 z = 4.00 z = 3.33

z = 15.00 z = 10.00 z = 7.50 z = 6.00 z = 5.00

z = 20.00 z = 13.33 z = 10.00 z = 8.00 z = 6.67

z = 25.00 z = 16.67 z = 12.50 z = 10.00 z = 8.33

z = 30.00 z = 20.00 z = 15.00 z = 12.00 z = 10.00

z = 35.00 z = 23.33 z = 17.50 z = 14.00 z = 11.67

Fig. 3. Series of 3D computational examples of increasing difficulty (left to right). Domain
indicated by slices x = 0, y = 0, and z = 0 (top row); electrode positions indicated by black dots
(top row). True resistivities 1

\sigma true
in the majority of the medium is 1

\sigma ref
= 3500, with presence of

anomaly resistivity 7, 000 (top row, red blocks). Result of inversion using Algorithm 3 with \beta = 105

(remaining rows; sections through z = const planes); the slices framed in the red frame correspond
to the top and the bottom of the anomalous resistivity (red blocks).

Fig. 3. Series of three-dimensional computational examples of increasing difficulty (left to
right). Domain indicated by slices x = 0, y = 0, and z = 0 (top row); electrode positions indi-
cated by black dots (top row). True resistivities 1

\sigma \mathrm{t}\mathrm{r}\mathrm{u}\mathrm{e}
in the majority of the medium is 1

\sigma \mathrm{r}\mathrm{e}\mathrm{f}
= 3500,

with presence of anomaly resistivity 7000 (top row, red blocks). Result of inversion using Algorithm 3
with \beta = 105 (remaining rows; sections through z = const planes); the slices framed in the red frame
correspond to the top and the bottom of the anomalous resistivity (red blocks).
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A20 JAN BLECHTA AND OLIVER G. ERNST

2243 3046 3848 4651 5454

7000

\beta = 103.0 \beta = 103.5 \beta = 104.0 \beta = 104.5 \beta = 105.0

z = 0.00 z = 0.00 z = 0.00 z = 0.00 z = 0.00

z = 2.50 z = 2.50 z = 2.50 z = 2.50 z = 2.50

z = 5.00 z = 5.00 z = 5.00 z = 5.00 z = 5.00

z = 7.50 z = 7.50 z = 7.50 z = 7.50 z = 7.50

z = 10.00 z = 10.00 z = 10.00 z = 10.00 z = 10.00

z = 12.50 z = 12.50 z = 12.50 z = 12.50 z = 12.50

z = 15.00 z = 15.00 z = 15.00 z = 15.00 z = 15.00

z = 17.50 z = 17.50 z = 17.50 z = 17.50 z = 17.50

Fig. 4. A fixed 3D example (third column from Figure 3, Nele = 289, N = 452736, M = 1564)
computed for series of regularization parameters \beta using Algorithm 3.Fig. 4. A fixed three-dimensional example (third column from Figure 3, N\mathrm{e}\mathrm{l}\mathrm{e} = 289, N =
452736, M = 1564) computed for series of regularization parameters \beta using Algorithm 3.

tion parameter is beyond the scope of this paper. Nevertheless, we experimented with
a number of choices and noticed how this affects the performance of the algorithms.
For the sake of illustration, we indicate in Figure 4 the effect of the regularization
parameter on the reconstructed conductivity.
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104 105 106 107 108 109 1010

1
0
−
3

1
0
0

1
0
3

MN

t n
o
rm

[s
]

i = 1 (Algorithm 3)

i = 2 (Algorithm 3)

i = 1 (Algorithm 4)

i = 2 (Algorithm 4)

i = 1 (Algorithm 1)

i = 2 (Algorithm 1)

slope O(MN)

slope O(M2N)

107 108 109 1010

1
0
1

1
0
2

1
0
3

1
0
4

MN

t n
o
rm

[s
]

3D

2D

(β = 105)

i = 1 (Algorithm 3)

i = 2 (Algorithm 3)

i = 1 (Algorithm 4)

i = 2 (Algorithm 4)

i = 1 (Algorithm 1)

i = 2 (Algorithm 1)

slope O(MN)

slope O(M2N)

Fig. 5. Time for solving normal equations t\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m} for the two-dimensional (top) and three-
dimensional (bottom) example. Each timing corresponds to the runtime of Algorithm 3, Algorithm 4,
or lines \bffive --\bfseven of Algorithm 1 in each Gauss--Newton step i.

The linear systems resulting from two-dimensional discretizations of (4.1) were
solved using a sparse direct method and in three dimensions using conjugate gra-
dient iteration preconditioned by an algebraic multigrid cycle. These choices make
the approximation of A - 1

exp(m) in (4.5) and in turn the computation of \bfitg \bfitm and \bfitJ \bfitm 

sufficiently inexpensive and scalable, leaving the main effort in the solution of (2.15),
which is the primary concern of this work.

The numerical experiments were implemented using MATLAB, HSL MI20 [12],
and Gmsh [28]. The plots were produced using matlab2tikz [27] and PyVista [50].
The complete code for reproducing the experiments is available in [10].

Table 1 and Figure 5 show that the computational cost of the examples agrees
with the expected complexity as predicted in subsection 3.2. In particular, we can
see that the dominating cost of Algorithm 3 is O(MN), but we can see the O(M2N)
term becoming effective for larger values ofM . The Cholesky factorization for O(M3)
(value t\bfthree in Table 1) and the matrix-matrix product for O(M2N) (value t\bftwo in Table 1)
have a small multiplicative constant, as these would typically run very efficiently
in LAPACK and BLAS, respectively. Nevertheless, it is clear that O(M2N) will
dominate for larger problems.

Figure 6 shows the performance of a fixed three-dimensional test case depending
on the value of the regularization parameter \beta . In particular, Algorithm 3 is seen to
exhibit robust performance independent of \beta . For this, one has to pay the price of
computing and factoring the capacitance matrix. Algorithm 4, on the other hand,
shows strong dependence of the required number of MINRES steps on the value of
\beta and MN . Although Algorithm 4 may sometimes be a less expensive alternative,
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103 104 105

1
0
2
.5

1
0
3

β

t n
o
rm

[s
]

3D (Nele = 289, N = 452736, M = 1564)

i = 1 (Algorithm 3)

i = 2 (Algorithm 3)

i = 1 (Algorithm 4)

i = 2 (Algorithm 4)

103 104 105

1
0
2

1
0
2
.5

1
0
3

β

n
it
e
r

3D (Nele = 289, N = 452736, M = 1564)

i = 1 (Algorithm 3)

i = 2 (Algorithm 3)

i = 1 (Algorithm 4)

i = 2 (Algorithm 4)

Fig. 6. Time for solving normal equations t\mathrm{n}\mathrm{o}\mathrm{r}\mathrm{m} (top) and number of MINRES iterations (bot-
tom) for a fixed three-dimensional example (third column from Figure 3) with series of regularization
parameters \beta .

Table 2

Algorithm 3 Algorithm 4

employed preconditioner \^\bfitP 
 - 1
\beta ,\bfitm 

\^\bfitP 
 - 1

\bfitJ \top 
\bfitm \bfitJ \bfitm handled by Woodbury Krylov

cost per MINRES iteration O(M2N) O(MN)

number of MINRES iterations O(1) O(M\gamma 1\beta  - \gamma 2 ), \gamma 1, \gamma 2 > 0

overall robustness \checkmark \times 

Algorithm 3 should generally be preferred for its robustness. To this end, we also

note that with a better implementation of the solver for \^\bfitS 
 - 1

, one might achieve
more favorable timings for the computation of the capacitance matrix. We have
used HSL MI20 [12], which is fully sequential in contrast to the threaded BLAS used
in other parts of the code; eight threads were used where applicable. Moreover,

HSL MI20 only implements \^\bfitS 
 - 1

\bfitz for a single-column vector \bfitz , but we need, on line \bfone 

in Algorithm 3, to apply \^\bfitS 
 - 1

to all the M columns of \bfitJ \top 
\bfitm . This operation therefore

runs sequentially column by column, which is certainly not optimal in utilizing the
theoretical floating-point performance and memory bandwidth of the machine. This
implementation drawback penalizes Algorithm 3 in this experimental performance
assessment, and it should be kept in mind that Algorithm 3 can be more favorable
than Algorithm 4 whenever a suitable AMG implementation is available.

Furthermore, we have observed that for lower values of the regularization param-
eter \beta (for example, the two-dimensional case with \beta = 0.001, which is not shown in

the paper), the solutions produced with preconditioners \^\bfitP 
 - 1

\beta ,\bfitm and \^\bfitP 
 - 1

may differ
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A1182 JAN BLECHTA AND OLIVER G. ERNST

significantly, although they were solved to the same residual accuracy in the Euclidean
norm: \| \bfitr k\| 2/\| \bfitb \| 2 \leq 10 - 7. Note that this has always been used as the stopping crite-
rion in MINRES, although the minimization intrinsic to the preconditioned MINRES
process minimizes a different quantity;3 see (3.9).

5. Conclusion and outlook. We have formulated a nonlinear parameter iden-
tification problem subject to H1 regularization and its Gauss--Newton linearization as
a second-order boundary value problem including a consistent interpretation of possi-
ble choices of boundary conditions as they result from the nature of the regularization
procedure. For a standard inf-sup stable mixed discretization, we have proposed a
number of efficient and robust solution strategies of the linear systems arising from the
Gauss--Newton linearization. The proposed methods included a direct method, a pre-
conditioned iterative scheme based on the Woodbury formula, and a preconditioned
iterative scheme in which the low-rank perturbation is not accounted for by the pre-
conditioner and must be compensated by the Krylov iteration. In a series of extensive
numerical experiments, we have performed scaling tests w.r.t. the relevant problem
parameters for a challenging parameter identification problem arising in ERT.

In Table 2, we summarize our findings concerning the interplay between the ef-
ficiency and quality of the two considered preconditioners. Note that regarding the
indicated scaling of MINRES iterations required to solve the linear system to pre-
scribed tolerance, we do not have a rigorous theoretical argument but merely empir-
ical findings specific to the class of problems we solved; see Table 1 for the observed
dependence on M and Figure 6 for the dependence on \beta . Specifically, the MINRES

convergence behavior for \^\bfitP 
 - 1

is sure to be problem dependent and likely depends on
the distribution of singular values of \bfitJ \bfitm . The simple parametrization M\gamma 1 observed
here may only apply when \bfitJ \bfitm 's are selected from a narrow class. We have observed

that the variant with the full preconditioner \^\bfitP 
 - 1

\beta ,\bfitm exhibits robustness of convergence

for a range of parameter values M , N , and \beta , while the cheaper preconditioner \^\bfitP 
 - 1

can suffer from slow convergence (Figure 6) or even stagnation (Table 1).
In future work, we would like to investigate data sparse approximation and fast

solution of the capacitance matrix equation in applying the Woodbury formula, e.g.,
using \scrH -matrix methods and/or randomized low-rank approximations. This would

allow applying the preconditioner \^\bfitP 
 - 1

\beta ,\bfitm with a lower complexity than O(M2N).

Reproducibility of computational results. This paper has been awarded
the ``SIAM Reproducibility Badge: code and data available"", as a recognition that
the authors have followed reproducibility principles valued by SISC and the scientific
computing community. Code and data that allow readers to reproduce the results in
this paper are available at https://doi.org/10.5281/zenodo.6855783.

Acknowledgment. The authors are grateful to Mathias Scheunert (Technische
Universit\"at Bergakademie Freiberg) for programming mesh generation for the com-
putational examples.

3This is MATLAB's actual behavior: MINRES(A, b, tol, maxit, M1, M2, x0) mathematically
means, for \bfitA symmetric and \bfitP symmetric positive definite, \| \bfitr k\| \bfitP  - 1 =minp\in \scrP 0

k
\| p(\bfitA \bfitP  - 1)\bfitr 0\| \bfitP  - 1 ,

\| \bfitr \bfitP 
k \| \bfitP = minp\in \scrP 0

k
\| p(\bfitP  - 1\bfitA )\bfitr \bfitP 

0 \| \bfitP , or \| \bfitr \bfitL 
k \| 2 = minp\in \scrP 0

k
\| p(\bfitL  - 1\bfitA \bfitL  - \top )\bfitr \bfitL 

0 \| 2, where all of these

are equivalent formulations through \bfitr k = \bfitb  - \bfitA \bfitx k, \bfitr \bfitP 
k = \bfitP  - 1\bfitr k, \bfitr \bfitL 

k = \bfitL  - 1\bfitr k, \bfitL \bfitL \top = \bfitP and
preconditioner \bfitP is given by M1 and M2 as per the function's docstring. On the other hand, the
function uses the Euclidean stopping criterion \| \bfitr k\| 2 \leq tol\| \bfitb \| 2, regardless of the preconditioner
and the initial guess.
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