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Abstract
Neural networks are increasingly used to construct numerical solution meth-
ods for partial differential equations. In this expository review, we introduce
and contrast three important recent approaches attractive in their simplicity and
their suitability for high-dimensional problems: physics-informed neural net-
works, methods based on the Feynman–Kac formula and methods based on the
solution of backward stochastic differential equations. The article is accompa-
nied by a suite of expository software in the form of Jupyter notebooks in which
each basic methodology is explained step by step, allowing for a quick assimi-
lation and experimentation. An extensive bibliography summarizes the state of
the art.
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1 INTRODUCTION

The spectacular successes of neural networks in machine learning tasks such as computer vision, natural speech pro-
cessing and game theory as well as the prospect of harnessing the computing power of specialized hardware such as
Google’s Tensor Processing Units and Apple’s Neural Engine designed to efficiently execute neural networks has led the
scientific community to investigate their suitability also for high performance computing tasks. The result is now an
exciting new research field known as scientific machine learning, where techniques such as deep neural networks and
statistical learning are applied to classical problems of applied mathematics. In this expository survey our intention is
to provide an accessible introduction to recent developments in the field of numerical solution of linear and nonlinear
partial differential equations (PDEs) using techniques from machine learning and artificial intelligence.

After decades of research on the numerical solution of PDEs, manifold challenges remain. One that applies to essen-
tially all classical discretization schemes is that they suffer from the curse of dimensionality first formulated by Bellman
in the 1950s in the context of optimal control problems [10]. In its simplest manifestation (see [147] for a more exten-
sive discussion) this notion states that doubling of the number of degrees of freedom in each of d coordinate directions
increases the solution complexity (at least) by a factor of 2d. In a similar spirit, the number of degrees of freedom when dis-
cretizing a 100-dimensional PDE with only 10 nodes in each coordinate direction exceeds the estimated number of atoms
in the universe (around 1080) by several orders of magnitude. One might think that equations in such high dimensions
have little practical relevance, but they are common in mathematical finance and portfolio optimization where the spatial
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dimension is determined by the number of financial assets in the market. Other areas prone to high-dimensional PDE
problems include stochastic control, differential games and quantum physics. The challenge of solving high-dimensional
PDEs has been taken up in a number of papers, and are addressed in particular in Section 3 for linear Kolmogorov PDEs
and in Section 4 for semilinear PDEs in nondivergence form. Another impetus for the development of data-driven solu-
tion methods is the effort often necessary to develop tailored solution methods for different kinds of nonlinear PDEs. This
will play a particular role in Section 2.

Neural networks offer attractive approximation capabilities for highly nonlinear functions. Their compositional
nature contrasts with the more conventional additive form of trial functions in linear function spaces in which PDE solu-
tion approximations are constructed by Galerkin, collocation or finite volume methods. Their computational parametriza-
tion through statistical learning and large-scale optimization methods using modern hardware, software systems and
algorithms are making them increasingly amenable for solving nonlinear and high-dimensional PDEs.

PDE solvers based on (deep) neural networks typically cannot compete with classical numerical solution methods in
low to moderate dimensions—in particular as solving an algebraic equation is generally simpler than solving the highly
nonlinear large-scale optimization problems associated with neural network training. Moreover, they currently lack the
mature error analysis that has been established for traditional numerical methods. In addition, many specialized methods
have been developed over the years for specific problems, often incorporating constraints or physical assumptions directly
into the approximations. On the other hand, the ease with which methods such as the physics-informed neural networks
to be discussed below can be applied to essentially any differential equation makes them attractive for rapid prototyping
when efficiency and high accuracy are not the principal concern.

While we aim to provide a useful overview, research activity in this area is incredibly intense and impossible to cover
exhaustively. Therefore, we have decided to present three approaches that have generated a lot of interest in recent years
in detail in Sections 2–4. Further scientific machine learning methods for solving PDEs are collected in Section 5. Addi-
tionally, we want to draw some attention to another recent overview [9] which contains many references, in particular
works focusing on the solution of PDEs in high-dimensions.

A unique feature of this paper is a collection of accompanying Jupyter notebooks that contain sample Python
implementations of the methods reviewed in Sections 2 to 4 with detailed comments and explanations as well as a
number of numerical experiments. The notebooks are freely available from the GitHub repository https://github.com/
janblechschmidt/PDEsByNNs and can even be executed in Google Collaboratory directly in a web browser with no need
for local installations. Of course, the reader may also download and run the notebooks on her local machine.

The remainder of the paper is organized as follows: Section 2 discusses physics-informed neural networks, a straight-
forward and flexible approach for leveraging machine learning technology on challenging nonlinear PDE problems.
Section 3 and 4 are devoted to recent methods based on the long-established link between PDEs and stochastic processes,
which for high dimensions makes approximations based on sampling attractive due to their dimension independence.
Here neural networks on dedicated hardware can make the sample-based training very efficient. Section 5 provides an
outlook to related developments in this area followed by a concluding Section 6.

2 PHYSICS-INFORMED NEURAL NETWORKS

The flexibility of deep neural networks as a universal technique for function approximation comes at the price of a large
number of parameters to be determined in the supervised learning phase, and therefore typically demands a large volume
of training data. Physics-informed neural networks (PINNs) are a scientific machine learning technique for solving PDE
problems in the small data setting, meaning only the PDE problem data is available rather than a large number of value
pairs of the independent and dependent variables. PINNs generate approximate solutions to PDEs by training a neural
network to minimize a loss function consisting of terms representing the misfit of the initial and boundary conditions
along the boundary of the space-time domain as well as the PDE residual at selected points in the interior. While precur-
sors of this approach date back to the early 1990s [100,101,103,149], the term PINN as well as a surge of ensuing research
activity was initiated by the two-part report [156,157] subsequently published in [159].

We describe the PINN approach for approximating the solution u ∶ [0,T] × → R of an evolution equation

𝜕tu(t, x) + [u](t, x) = 0, (t, x) ∈ (0,T] ×, (1a)

u(0, x) = u0(x), x ∈ , (1b)

https://github.com/janblechschmidt/PDEsByNNs
https://github.com/janblechschmidt/PDEsByNNs
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where  is a nonlinear differential operator acting on u,  ⊂ Rd a bounded domain, T denotes the final time and
u0 ∶  → R the prescribed initial data. Although the methodology allows for different types of boundary conditions, we
restrict our discussion to the inhomogeneous Dirichlet case and prescribe

u(t, x) = ub(t, x), (t, x) ∈ (0,T] × 𝜕, (1c)

where 𝜕 denotes the boundary of the domain  and ub ∶ (0,T] × 𝜕 → R the given boundary data. The method con-
structs a neural network approximation u𝜃(t, x) ≈ u(t, x) of the solution of (1), where u𝜃 ∶ [0,T] × → R denotes a
function realized by a neural network with parameters 𝜃.

In contrast to other learning-based methods that try to infer the solution by a purely data-driven approach, that is,
by fitting a neural network to a number of state-value pairs {(ti, xi,u(ti, xi))}N

i=1, PINNs take the underlying PDE (the
“physics”) into account. Taking advantage of modern machine learning software environments, which provide automatic
differentiation capabilities for functions realized by neural networks, the approximate solution u𝜃 is differentiated with
respect to the time and space variables, which allows the residual of the nonlinear PDE (1a) to be evaluated at a set
of collocation points. In this way, the physics encoded in the differential equation is made available for a loss function
measuring the extent to which the PDE problem (1) is satisfied by u𝜃 .

While the focus of other methods employing neural networks for solving PDEs is on mitigating the curse of dimen-
sionality in high dimensions, the strength of PINNs lies in their flexibility in that they can be applied to a great variety
of challenging PDEs, whereas classical numerical approximations typically require tailoring to the specifics of a par-
ticular PDE. In particular, this includes problems from computational physics that are notoriously hard to solve with
classical numerical approaches due to, for example, strong nonlinearities, convection dominance or shocks, see also the
last paragraph in Section 2.4. A further challenge that can be addressed by this approach is the regime with a small
number of data samples, which is common for physical experiments since the acquisition of new data samples is often
expensive.

In [156] the authors introduce the PINN methodology for solving nonlinear PDEs and demonstrate its efficiency
for the Schrödinger, Burgers and Allen–Cahn equations. The focus of the second part [157] lies in the simultaneous
solution of a nonlinear PDE of the form (1a) and the identification of corresponding unknown parameters 𝜆 which enter
the nonlinear part of the differential equation. This problem setting has been studied within the regime of Gaussian
processes in [153,154,168]. For both problem settings, the authors discuss, depending on the type of data available, a
time-continuous and time-discrete approach. We discuss these methods next.

2.1 Continuous time approach

The continuous time approach for the parabolic PDE (1) as described in [156] is based on the (strong) residual of a given
neural network approximation u𝜃 ∶ [0,T] × → R of the solution u with respect to (1a)

r𝜃(t, x) ∶= 𝜕tu𝜃(t, x) + [u𝜃](t, x). (2)

The neural network class considered here are multilayer feed-forward neural networks, sometimes known as multilayer
perceptrons. Such networks are compositions of alternating affine linear W𝓁 ⋅+b𝓁 and nonlinear functions 𝜎𝓁(⋅) called
activations, that is,

u𝜃(z) ∶= W L𝜎L(W L−1𝜎L−1(· · · 𝜎1(W0z + b0) · · · ) + bL−1) + bL,

where W𝓁 and b𝓁 are weight matrices and bias vectors, and z= [t, x]T . This highly nonlinear compositional structure of
the approximating function u𝜃 forms the core of many neural network-based machine learning methods, and has been
found to possess remarkably good approximation properties in many applications.

In general, training a neural network, that is, determining the (typically large number of) parameters 𝜃, using
gradient-based optimization methods [23,58,63,167] such as stochastic gradient descent [23], the Adam optimizer [95],
or AdaGrad [42], requires the derivative of u𝜃 with respect to its unknown parameters W𝓁 and b𝓁 . To incorporate the
PDE residual (2) into the loss function to be minimized, PINNs require a further differentiation to evaluate the differen-
tial operators 𝜕tu𝜃 and  [u𝜃]. Thus the PINN term r𝜃 shares the same parameters as the original network u𝜃(t, x), but
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respects the “physics” of (1a). Both types of derivatives can be easily obtained by automatic differentiation [4] with cur-
rent state-of-the-art machine learning libraries, for example, TensorFlow [1] or PyTorch [141]. In Example 1, we show
how such a PINN can be derived explicitly for the one-dimensional time-dependent eikonal equation.

The PINN approach for the solution of the PDE (1) now proceeds by minimization of the loss functional

𝜙𝜃(X) ∶= 𝜙r
𝜃(X

r) + 𝜙0
𝜃
(X0) + 𝜙b

𝜃
(Xb), (3)

where X denotes the collection of training data and the loss function 𝜙𝜃 contains the following terms:

• the mean squared residual

𝜙r
𝜃(X

r) ∶= 1
Nr

Nr∑
i=1

|||r𝜃 (tr
i , xr

i
)|||2

in a number of collocation points Xr ∶= {(tr
i , xr

i )}
Nr
i=1 ⊂ (0,T] ×, where r𝜃 is the physics-informed neural network (2),

• the mean squared misfit with respect to the initial and boundary conditions

𝜙0
𝜃
(X0) ∶= 1

N0

N0∑
i=1

|||u𝜃

(
t0
i , x0

i
)
− u0

(
x0

i
)|||2 and 𝜙b

𝜃
(Xb) ∶= 1

Nb

Nb∑
i=1

|||u𝜃

(
tb
i , xb

i
)
− ub

(
tb
i , xb

i
)|||2

in a number of points X0 ∶= {(t0
i , x0

i )}
N0
i=1 ⊂ {0} × and Xb ∶= {(tb

i , xb
i )}

Nb
i=1 ⊂ (0,T] × 𝜕, where u𝜃 is the neural

network approximation of the solution u ∶ [0,T] × → R.

We note that the training data X consists entirely of time-space coordinates. Moreover, individual weighting of each
loss term in (3) may help improve the convergence of the scheme, see for example [163].

2.1.1 Example: Burgers equation

To illustrate the PINN approach we consider the one-dimensional Burgers equation on the spatial domain  = [−1, 1]

𝜕tu + u 𝜕xu − (0.01∕𝜋) 𝜕xxu = 0, (t, x) ∈ (0, 1] × (−1, 1),
u(0, x) = − sin(𝜋 x), x ∈ [−1, 1], (4)

u(t,−1) = u(t, 1) = 0, t ∈ (0, 1].

This PDE arises in various disciplines such as traffic flow, fluid mechanics and gas dynamics, and can be derived from
the Navier–Stokes equations, see [3]. We assume that the collocation points Xr as well as the points for the initial and
boundary data X0 and Xb are generated by random sampling from a uniform distribution. Although uniformly distributed
data are sufficient in our experiments, the authors of [156] employed a space-filling Latin hypercube sampling strategy
[174]. Our numerical experiments indicate that this strategy slightly improves the observed convergence rate, but for
simplicity the code examples accompanying this paper employ uniform sampling throughout.

We choose training data of size N0 =Nb = 50 and Nr = 10 000. In this example, adopted from [156], we assume a deep
neural network of the following structure: the input is scaled elementwise to lie in the interval [− 1, 1], followed by 8
fully connected layers each containing 20 neurons and each followed by a hyperbolic tangent activation function and one
output layer. This setting results in a network containing 3021 trainable parameters (first hidden layer: 2× 20+ 20= 60;
seven intermediate layers: each 20× 20+ 20= 420; output layer: 20× 1+ 1= 21).

The loss functional (3) can be minimized by a number of algorithms, our accompanying code implements gradi-
ent descent-based algorithms as well as a variant of the limited-memory Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm [109] which was also used in the numerical experiments in [156]. Although currently the majority of neural
networks are trained with gradient descent-based methods, BFGS is a quasi-Newton algorithm also often employed for
scientific machine learning tasks.
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F I G U R E 1 Left: PINN approximation u𝜃 of the solution of Burgers equation (4). The shock formation at around t = 0.4 is clearly
visible. Right: Approximate solution u𝜃 of the eikonal equation (5) with sharp edges at t = |x|. Both examples are implemented in the
accompanying Jupyter Notebook PINN_Solver.ipynb

The left panel of Figure 1 shows the approximate solution of the Burgers equation (4) after 5000 training epochs
with the Adam optimizer and learning rate1 𝛿(n) = 0.01 1{n<1000} + 0.001 1{1000≤n<3000} + 0.00 1{3000≤n} which decays in a
piecewise constant fashion.

2.1.2 Example: Eikonal equation

As a second example we consider the one-dimensional eikonal equation backward in time on the domain  = [−1, 1]

−𝜕tu(t, x) + |∇u|(t, x) = 1, (t, x) ∈ [0,T) × [−1, 1],
u(T, x) = 0, x ∈ [−1, 1], (5)

u(t,−1) = u(t, 1) = 0, t ∈ [0,T).

Note that the partial differential equation in (5) can be equally written as a Hamilton–Jacobi–Bellman equation, viz

−𝜕tu(t, x) + sup|c|≤1
{c ∇u(t, x)} = 1, (t, x) ∈ [0,T) × [−1, 1],

which characterizes the solution of an optimal control problem seeking to minimize the distance from a point (t, x) to
the boundary [0,T] × 𝜕 ∪ {T} ×. As is easily verified, the solution is given by u(t, x) = min{1 − t, 1 − |x|}. The fact
that (5) runs backward in time is in accordance with its interpretation as the optimality condition of a control problem.
Note that (5) is transformed into a forward evolution problem (1a) by the change of variables t̂ = T − t.

The neural network model chosen for this particular problem can be simpler. We decided to use only two hidden
layers with 20 neurons in each, resulting in 501 unknown parameters (first hidden layer: 2× 20+ 20= 60; one interme-
diate layer: 20× 20+ 20= 420; output layer: 20× 1+ 1= 21). To account for the lack of smoothness of the solution, we
choose a nondifferentiable activation function, although the hyperbolic tangent function seems to be able to approximate
the kinks in the solution sufficiently well. Here, we decided to use the leaky rectified linear unit (leaky ReLU) activation

1The chosen learning rates used in the Adam optimizer in this section are not based on any hyperparameter optimization but were selected in a way
that ensured stable and reliable results.
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T A B L E 1 Number of successful attempts to learn the solution of the eikonal equation (5) for different network
architectures for 10 randomly initialized sets of training data with Nr = 2000, N0 = 25 and Nb = 50

One hidden layer Two hidden layers

Activation 3 neurons 10 neurons 25 neurons 3 neurons 10 neurons 25 neurons

ReLU 0 3 8 0 5 3

Leaky ReLU 0 9 10 1 7 10

Note: An attempt is considered successful if it achieves a training loss below the threshold 𝜙𝜃(X) < 10−10.

function [114]

𝜎(z) =

{
z if z ≥ 0,
0.1 z otherwise,

which displays a nonvanishing gradient when the unit is not active, that is, when z< 0. The approximate solution after
Nepochs = 10 000 epochs of training with the Adam optimizer [95] and a piecewise constant learning rate

𝛿(n) = 0.11{n<3000} + 0.01 1{3000≤n<7000} + 0.001 1{7000≤n} (6)

is displayed in the right panel of Figure 1. Noting that the explicit solution of the eikonal equation is a piecewise linear
function on a convex polyhedral domain, closer inspection yields the closed-form expression

u(t, x) = ReLU(x + 1) − ReLU(x + t) − ReLU(x − t),

which can be represented exactly by a neural network with one hidden layer containing three neurons. In order to study
the capability of the PINN approach combined with the Adam optimizer to recover the solution of this problem we con-
ducted an experiment for which we counted the number of successful attempts to train the model to achieve a training
loss below the threshold 𝜙𝜃(X) < 10−10. Otherwise, when a maximum number of iterations of 100 000 was reached, the
algorithm had most often converged to a local minimum and no further decrease of the loss could be expected. We com-
pared the activation functions leaky ReLU (slope 0.1 for negative values) and standard ReLU (zero slope for negative
values) on a set of different network architectures for 10 uniformly drawn sets of training data with Nr = 2000, N0 = 25
and Nb = 50 with learning rate as given in (6). Table 1 shows the absolute number of successes among 10 independent
runs, indicating clearly that the leaky ReLU outperforms standard ReLU in this case.

We conclude this section with the explicit derivation of a PINN for a neural network with a single hidden layer.

Example 1. For the one-dimensional eikonal equation (5) the PDE residual is obtained as

r(t, x) ∶= −𝜕tu(t, x) + |∇u|(t, x) − 1.

For simplicity we consider a single hidden layer neural network with only three neurons, resulting in the solution
approximation

u𝜃(t, x) = U𝜎

(
W

[
t
x

]
+ b

)
+ c

with unknown weight matrices U ∈ R1,W ∈ R3×2 and bias vectors b ∈ R3, c ∈ R1, and an activation function 𝜎 ∶ R → R

acting componentwise on its input. We further abbreviate the values of the hidden layer by z=W[t, x]T + b. The chain
rule now yields the partial derivatives

𝜕tu𝜃(t, x) = U diag(𝜎′(z)) W∶,1 and 𝜕xu𝜃(t, x) = U diag(𝜎′(z)) W∶,2

where diag(𝜎′(z)) denotes the matrix with diagonal entries 𝜎′(z) and W : , j denotes the jth column of the matrix W . This
allows us to compute the residual (the actual physics-informed neural network):

r𝜃(t, x) = −U diag(𝜎′(z)) W∶,1 + ||U diag(𝜎′(z)) W∶,2|| − 1.
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F I G U R E 2 Illustration of a
neural network with a single hidden
layer (yellow). Complete network
includes the physics-informed neural
network r𝜃 for the one-dimensional
eikonal equation (5) derived from the
spatial and temporal derivatives of u𝜃

We observe that the residual again possesses the structure of a more complicated neural network mapping (t, x) → r(t, x).
The neural network employed in this example is illustrated in Figure 2.

2.2 Discrete time approach

In contrast to the continuous time approach, the discrete time variant does not incorporate physical information through
a set of collocation points, but does so by semi-discretization via Runge–Kutta time-stepping [67]. Specifically, assum-
ing the solution is known at time tn ∈ [0, T), this method assumes the availability of Nn solution data points Xn ∶=
{(tn, xn,k,un,k)}Nn

k=1 together with boundary data at the domain boundaries. To continue the solution to tn+ 1, we employ a
Runge–Kutta method with q stages

un+ci = un − Δt
q∑

j=1
aij [un+cj], i = 1, … , q,

un+1 = un − Δt
q∑

j=1
bj [un+cj], (7)

where un+cj ≈ u(tn + cjΔt, ⋅) for j= 1, … , q. Depending on the coefficients aij, bj, cj, this represents either an explicit or
implicit Runge–Kutta scheme.

While the neural network in the continuous approach approximates the mapping (t, x) →u(t, x), the discrete-time
variant instead approximates x → (un+c1(x), … ,un+cq (x),un+1(x)), that is, the solution u(t, x) at the q+ 1 stage values.
Once sufficiently trained, u(tn+ 1, x)≈un+ 1(x) can be used as the initial data for the next step. Thus, subsequent steps can
proceed analogously.

To be more precise, we establish the link between our data set {(tn, xn,k,un,k)}Nn
k=1, the PDE solution at time tn+ 1 and

the unknown stages un+ci , i= 1, … , q of the Runge–Kutta scheme (7), which should hold for all x ∈ , and in particular
for all data samples (xn, k, un, k). This results after a rearrangement of the terms in

ri(xn,k,un,k) ∶= un+ci(xn,k) − un,k + Δt
q∑

j=1
aij [un+cj](xn,k) ≈ 0, i = 1, … , q,

rq+1(xn,k,un,k) ∶= un+1(xn,k) − un,k + Δt
q∑

j=1
bj [un+cj](xn,k) ≈ 0.

These identities are then used to learn the unknown mapping x → (un+c1(x), … ,un+cq(x),un+1(x)) by minimizing the
loss functional, specified here with homogeneous Dirichlet boundary data

𝜙(Xn) ∶=
Nn∑

k=1

q+1∑
j=1

|rj(xn,k,un,k)|2 + q∑
i=1

(|un+ci(−1)|2 + |un+ci(+1)|2) + |un+1(−1)|2 + |un+1(−1)|2
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The numerical experiments presented in [156] employ a 500-stage Runge–Kutta scheme that advances from initial to final
time in a single time step. The option of using Runge–Kutta methods of extremely high-order rather than small time steps
is presented as an attractive feature of this approach, as the task of stage computation for stiff problems requiring implicit
integration schemes are passed on to the neural network optimization. Together with the simplicity of the algorithm and
the possibility of choosing large time steps of high order, the numerical results in [156] suggest that the method is capable
of handling a variety of nonlinearities and boundary conditions.

2.3 Parameter identification setting

The PINN approach is easily modified to also determine unknown parameters in a general nonlinear partial differential
equation. As an example, consider the PDE

𝜕tu(t, x) + 𝜆[u](t, x) = 0, (t, x) ∈ (0,T] ×, (8)

with  𝜆 a nonlinear partial differential operator depending on a parameter 𝜆 ∈ Rm. Here, we consider only the
continuous time framework introduced in Section 2.1, and refer to [157] for the discrete time variant.

The parameter identification setting as introduced in [157] assumes a set of data Xd ∶= {td
i , xd

i ,ud
i }

Nd
i=1, where ud

i ≈
u(td

i , xd
i ) are (possibly noisy) observations of the solution of problem (8) in order to identify the unknown parameter 𝜆.

This training data is then used twofold in a new loss function: in a mean squared misfit term and also in a mean squared
residual term:

𝜙(Xd) =
1

Nd

Nd∑
i=1

|u𝜃(td
i , xd

i ) − ud
i |2 + 1

Nd

Nd∑
i=1

|r𝜃(td
i , xd

i )|2.
Here, we consider a slightly modified procedure: In addition to the initial values, boundary and collocation data X intro-
duced in Section 2.1, we treat the (possibly noisy) observations Xd of the solution of problem (8) in the same way as
Dirichlet boundary conditions, which can be enforced via an additional loss function term

𝜙d(Xd) ∶=
1

Nd

Nd∑
i=1

|||u𝜃

(
td
i , xd

i
)
− ud

i
|||2,

added to the loss functional (3).
The unknown parameter 𝜆 can be learned through training in the same way as the unknown weight matrices W𝓁 and

bias vectors b𝓁 by automatic differentiation of the loss function 𝜙 with respect to 𝜆. Indeed, the modifications necessary
for including the dependence of the PDE on an unknown parameter require merely a few lines of code, as can be seen in
the accompanying Jupyter notebook PINN_Solver.ipynb.

In our example we consider the parametric eikonal equation

−𝜕tu(t, x) + |∇u|(t, x) = 𝜆−1 (9)

with homogeneous final time and boundary conditions and unknown parameter 𝜆 > 0. Its explicit solution is given by
u∗(t, x) = 𝜆−1 min{1 − t, 1 − |x|}. The numerical results for 𝜆∗ = 3 after 10 000 training epochs with the Adam optimizer,
a piecewise constant learning rate (6) for a neural network consisting of one hidden layer with 20 neurons and leaky ReLU
activation function are shown in Figure 3.

2.4 Summary and extensions

Physics-informed neural networks can be used to solve nonlinear partial differential equations. While the
continuous-time approach approximates the PDE solution on a time-space cylinder, the discrete time approach exploits
the parabolic structure of the problem to semi-discretize the problem in time in order to evaluate a Runge–Kutta method.
A major advantage of this approach is that it is data-efficient in the sense that it does not require a large number of training
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F I G U R E 3 Left: One approximate solution u𝜃 of the parametric eikonal equation (9). Right: Ten evolutions of the estimated
parameters 𝜆nepochs for nepochs = 1, … , 10 000 (gray) with Nd = 500 noisy measurements ud

i = u(td
i , xd

i ) + 𝜀𝜂 with 𝜂 ∼ N(0, 1) for different noise
levels ε= 0.0, 0.01, 0.05, 0.1 (from upper left to lower right) together with its mean (solid blue) and one standard deviation around the mean
(shaded area). The different paths are a result of the random initialization of the parameters in the neural network as well as randomly drawn
data X and Xd

samples, which may be difficult to obtain in physical experiments. Indeed, besides the information on the initial time and
spatial boundary, no further knowledge of solution values is required.

In contrast to the method described in Section 4, the PINN approach is based on a single neural network to char-
acterize the solution on the entire time-space cylinder [0,T] ×. We note that the focus of the approach does not lie
in the solution of high-dimensional problems but rather in challenging physics features including shocks, convection
dominance, and so on. Another advantage of this approach is that the value of the loss function can be interpreted as a
measure of accuracy of the approximation, and thus can be used as a stopping criterion during training. We further recall
that all derivatives required in the derivation of PINNs (2) can be computed by the chain rule and evaluated by means of
automatic differentiation [4].

A similar physics-constrained approach based on convolutional encoder-decoder neural networks for solving PDEs
with random data is developed in [183]. Parametrized and locally adaptive activation functions to improve the learning
rate in connection with PINNs are explored in [89] and [90], resp. Rigorous estimates on the generalization error of PINNs
in the context of inverse problems and data assimilation are given in [126]. XPINNS (eXtended PINNS) are introduced in
[88] as a generalization of PINNS involving multiple neural networks allowing for parallelization in space and time via
domain decomposition, see also [70] for a recent review on machine learning approaches in domain decomposition. The
converse task of learning a nonlinear differential equation from given observations using neural networks is addressed
in [151].

In addition, PINNs have been applied successfully in a wide range of applications, including fluid dynamics
[113,115,117,160,177], continuum mechanics and elastodynamics [66,132,162], inverse problems [91,121], fractional
advection–diffusion equations [135], stochastic advection–diffusion–reaction equations [34], stochastic differential
equations [179] and power systems [127]. Finally, we mention that Gaussian processes as an alternative to neural net-
works for approximating complex multivariate functions have also been studied extensively for solving PDEs and inverse
problems [136,155,158,164]. While PINNs have been found to work essentially out of the box in many of these references,
as was the case for the examples in Section 2.1.1, they may require problem-specific adaptations, particularly when accu-
racy of efficiency is a consideration. An example is a clustering of the interior collocation points to improve the resolution
near a shock when solving the Euler equations in [117].
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3 LINEAR PDES IN HIGH DIMENSIONS: THE FEYNMAN–KAC FORMULA

The appeal of the PINN approach of the previous section lies in its simplicity as well as its versatility in applying to a
large range of PDE problems. The neural network-based approaches presented in this and the next section are aimed at
solving PDE problems posed on high-dimensional domains, one of the unsolved problems of numerical analysis. These
problems stem from important applications such as derivative valuation in financial portfolios, the Schrödinger equation
in the quantum many-body problem or the Hamilton–Jacobi–Bellman equation in optimal control problems. The meth-
ods described below are based on the connection between PDEs and stochastic processes, established already in the
pioneering work of Bachelier, Einstein, Smoluchowski and Langevin on financial markets, heat diffusion and the kinetic
theory of gases (see [54,169] for fascinating accounts) and made explicit in the Feynman–Kac formula [93].

In this section and the next, we consider the solution by neural network methods of a class of partial differential
equations which arise as the backward Kolmogorov equation of stochastic processes known as Itô diffusions as proposed
in [6]. We begin with linear parabolic second-order partial differential equations in nondivergence form

𝜕tu(t, x) + 1
2
𝜎𝜎T(t, x) ∶ ∇2u(t, x) + 𝜇(t, x) ⋅ ∇u(t, x) = 0, (t, x) ∈ [0,T) × R

d,

u(T, x) = g(x), x ∈ R
d, (10)

and subsequently move to more general PDEs. We consider the pure Cauchy problem, allowing the state variable x to vary
throughout Rd. Here, d ∈ N is the spatial dimension,∇u(t, x) and∇2u(t, x) denote the gradient and Hessian of the function
u, respectively, the colon symbol denotes the Frobenius inner product of d× d matrices, that is, A ∶ B =

∑d
i,j=1 aij bij, and

the dot symbol the Euclidean inner product on Rd. Let the coefficient functions 𝜇 ∶ [0,T] × Rd → Rd (drift) and 𝜎 ∶
[0,T] × Rd → Rd×d (diffusion) be globally Lipschitz continuous. Due to the stochastic process connection, (10) is posed as
a final time problem with prescribed data at time t =T given by the function g ∶ Rd → R. The simple change of variables
t →T − t yields the more familiar initial value form

𝜕tu(t, x) − 1
2
𝜎𝜎T(t, x) ∶ ∇2u(t, x) − 𝜇(t, x) ⋅ ∇u(t, x) = 0, (t, x) ∈ (0,T] × R

d,

u(0, x) = g(x), x ∈ R
d. (11)

Equations in nondivergence form like the backward Kolmogorov equation (10) with leading term 𝜎𝜎T(t, x) ∶ ∇2u(t, x)
typically arise in the context of stochastic differential equations due to the Itô formula, see [52,87,165]. Such problems
play a central role in mathematical finance, for example, in the valuation of complex financial products as well as in
stochastic optimal control problems and the solution of second-order Hamilton–Jacobi–Bellman equations [145,172],
where the nondivergence form of the differential operator is again due to the stochastic influence. Equations of nondi-
vergence type (10) also arise in the numerical solution of highly nonlinear second-order PDEs that have been linearized,
for example, when applying Newton’s method. Typical examples include the Monge-Ampère equation [11,26,51]. Clas-
sical and strong solutions of problems in nondivergence form are analyzed in [55, Ch. 6, 9]. In contrast to nondivergence
PDEs, many problems in applied mathematics arise in divergence form consisting of an operator with leading term
∇ ⋅ [Ã(t, x)∇u(t, x)]. Given sufficient smoothness, each operator in divergence form can be brought into nondivergence
form by setting A(t, x) = Ã(t, x) and subtracting the row-wise divergence ∇ ⋅ Ã(t, x) from the first-order term. Even if Ã
is smooth, however, this may result in strongly dominating convection in the resulting equation, introducing further
challenges.

Following [6], the method reviewed here can be used to construct approximate solutions of a Kolmogorov PDE (10)
or (11) at a fixed time on some bounded domain of interest  ⊂ Rd. Similar to the technique reviewed in Section 2,
a neural network is employed to approximate this solution. The authors of [6] applied their method to a number of
examples including the heat equation, the Black-Scholes option pricing equation and others with particular emphasis
on the accurate and fast solution in high dimensions. Classical numerical approximation schemes for Kolmogorov partial
differential equations are numerous, and include finite difference approximations [25,97,98], finite element methods
[21,27,55,130], numerical schemes based on Monte-Carlo methods [56,59,60,64], as well as approximations based on
a discretization of the underlying stochastic differential equations (SDEs) [76,96]. Establishing a link of the proposed
method to the classical approaches, which might be highly accurate and efficient in up to three dimensions, it shares
also similarity to Monte-Carlo methods since it relies on the connection between PDEs and SDEs in the form of the
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Feynman–Kac theorem and uses a discrete approximation of the SDE associated with equation (10). The reviewed method
shares many ideas published in a number of papers, in particular there is a strong connection to [43,69] where the Deep
BSDE solver, to be presented in detail in Section 4, is introduced.

In [92] it is proven that deep neural networks are able to overcome the curse of dimensionality for linear backward
Kolmogorov PDEs with constant diffusion and nonlinear drift coefficients. In particular, it is shown that the number of
parameters in the neural network grows at most polynomially in both the dimension of the PDE (d+ 1) and the reciprocal
of the desired approximation accuracy. We note, however, that training a neural network in general is known to be an
NP-hard problem, [170, Sec. 20.5].

3.1 The Feynman–Kac formula

The method reviewed here [6] is based on the Feynman–Kac formula for Kolmogorov PDEs which connects the solution
of the PDE (10) and the expectation of a stochastic process. In order to understand the method fully, we recall the link
between PDEs and SDEs formally in this section; for a thorough treatment we refer to [133,165].

In a nutshell, the Feynman–Kac theorem states that for every (t, x) ∈ [0,T] × Rd the solution u(t, x) of the Kolmogorov
backward equation (10) can be expressed as the conditional expectation of a stochastic process {Xs}s∈ [t, T ] starting at Xt = x,
that is,

u(t, x) = E[g(XT)|Xt = x]. (12)

Here, g ∶ Rd → R is the final time prescribed in (10) and E[⋅|Xt = x] denotes expectation conditioned on Xt = x. One
immediate consequence is that, for all x ∈ Rd, we have

u(T, x) = E[g(XT)|XT = x] = g(x). (13)

Another implication that can be obtained by the law of iterated conditional expectation is that for all s∈ [t, T]

u(t, x) = E[u(s,Xs)|Xt = x]. (14)

We assume that we are given a filtered probability space (Ω, ,P;F) equipped with the filtration F = {t}t∈[0,T]
induced by a d-dimensional Brownian motion {W t}t ∈ [0, T ]. The stochastic process {Xs}s∈ [t, T ] can be characterized as the
solution of the stochastic differential equation (SDE)

Xs = x + ∫
s

t
𝜇(𝜏,X𝜏) d𝜏 + ∫

s

t
𝜎(𝜏,X𝜏) dW𝜏 . (15)

Assuming Lipschitz conditions on the coefficients 𝜇 and 𝜎, a pathwise unique strong solution2 to (15) always exists,
where 𝜇 and 𝜎 are the coefficients in (10). Note that the second integral in (15) is an Itô integral, that is, a particular type
of stochastic integral. We refer to [148,165] for details concerning stochastic analysis and SDEs in general.

Given a strong solution of (15) {Xs}s∈ [t, T ] and a real-valued function v ∈ C1,2([0,T) × Rd;R) ∩ C0([0,T] × Rd;R) apply-
ing Itô’s formula [87,165], a generalization of the chain rule for (in generally nondifferentiable) stochastic processes, gives
that for any s∈ [t, T]

v(s,Xs) = v(t, x) + ∫
s

t
𝜕tv(𝜏,X𝜏) d𝜏 + ∫

s

t
∇v(𝜏,X𝜏) ⋅ dX𝜏 +

1
2 ∫

s

t
∇2v(𝜏,X𝜏) ∶ 𝜎𝜎T(𝜏,X𝜏) d𝜏, (16)

which, upon substituting dX𝜏 by its definition (15), becomes

= v(t, x) + ∫
s

t

(
𝜕tv +

1
2
∇2v ∶ 𝜎𝜎T + ∇v ⋅ 𝜇

)
(𝜏,X𝜏) d𝜏 + ∫

s

t
∇v ⋅ 𝜎(𝜏,X𝜏) dW𝜏 . (17)

2Pathwise uniqueness means that if {Xs}s∈ [t, T] and {Y s}s∈ [t, T] are both solutions of (15), then P(Xs = Ys∀s ∈ [t,T]) = 1.
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Since this is valid for any s∈ [t, T), it holds in particular for s= t + h with h> 0, which gives

v(t + h,Xt+h) = v(t, x) + ∫
t+h

t

(
𝜕tv +

1
2
∇2v ∶ 𝜎𝜎T + ∇v ⋅ 𝜇

)
(𝜏,X𝜏) d𝜏 + ∫

t+h

t
∇v ⋅ 𝜎(𝜏,X𝜏) dW𝜏 .

Setting v=u given by the expression (14) for s= t + h, we obtain

0 = E

[
∫

t+h

t

(
𝜕tu + 1

2
∇2u ∶ 𝜎𝜎T + ∇u ⋅ 𝜇

)
(𝜏,X𝜏) d𝜏 + ∫

t+h

t
∇u ⋅ 𝜎(𝜏,X𝜏) dW𝜏

|||Xt = x

]

= E

[
∫

t+h

t

(
𝜕tu + 1

2
∇2u ∶ 𝜎𝜎T + ∇u ⋅ 𝜇

)
(𝜏,X𝜏) d𝜏|||Xt = x

]
,

where we have used the fact that the stochastic integral is a continuous local martingale and therefore its conditional
expectation vanishes. Dividing by h> 0 and taking the limit as h goes to zero yields, by the mean-value theorem,

𝜕tu(t, x) + 1
2
𝜎𝜎T(t, x) ∶ ∇2u(t, x) + 𝜇(t, x) ⋅ ∇u(t, x) = 0 ∀(t, x) ∈ [0,T) × R

d,

confirming that the function given by the Feynman–Kac formula (14) solves PDE (10).

3.2 Methodology

A number of numerical methods for high-dimensional PDEs have used the Feynman–Kac connection relating PDEs and
SDEs in combination with the slow but dimension-independent convergence of Monte Carlo integration [12,13,24,32],
and many more are listed in [5]. The method from [6] reviewed here adds a neural network representation of the PDE
solution which is trained in the course of Monte Carlo sampling. It yields an approximation of the solution u = u(t, ⋅) ∶
 → R of the final time problem (10) restricted to a bounded domain of interest  ⊂ Rd at a selected time t ∈ [0, T]. In
the following we discuss the methodology in detail for specifically t = 0.

3.2.1 Generation of training data

Similar to the PINN method discussed in Section 2, the method to solve backward Kolmogorov equations does not require
any approximate or exact solution values. Instead, it relies on the generation of a large amount of training data based on
the stochastic process connected to the PDE (10).

To be more precise, we consider training data {(xi, yi)}ndata
i=1 . Here, the input or independent variable x is sampled ran-

domly from X ∼ U(), which ensures that it covers the domain of interest  sufficiently well if sampled many times. The
random output (target variable) y is defined as a function of x by Y := g(XT), where XT is the final value of the stochastic
process {Xt}t ∈ [0, T ] starting at X0 = x and evolving according to the SDE

Xt = x + ∫
t

0
𝜇(s,Xs) ds + ∫

t

0
𝜎(s,Xs) dWs, 0 ≤ t ≤ T. (18)

We distinguish two cases:
In cases where the distribution of XT is explicitly known, we can draw sample pairs (x, y) directly. For example, in the

case of a scaled Brownian motion whose dynamics is characterized by 𝜇(t, x) ≡ 0 and 𝜎(t, x) ≡ 𝜎, the solution of (18) is
given by

Xt = x + 𝜎 Wt,
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F I G U R E 4 Illustration of the data generation process described in Section 3.2. The left panel shows sample paths originating from
three different starting values xi sampled from  for 𝜎 ≡ √

2Id×d. The right panel shows the exact solution surface u(0, x) along with a
number of data pairs {(xi, yi)} = {(xi, g(xi

T))} seen to exhibit a large variation around the solution

where W t is a path of a standard d-dimensional Brownian motion. Since Wt ∼ N(0, t Id×d), we may simply draw X ∼
U() and set Y ∶= g(X + 𝜎

√
T 𝜉), where 𝜉 ∼ N(0, Id×d) is a random variable with a d-variate standard normal dis-

tribution. Processes for which an explicit distribution is known include Gaussian processes (e.g., Brownian motion,
Ornstein–Uhlenbeck processes), geometric Brownian motion and Cox–Ingersoll–Ross processes.

When an explicit distribution of Xt at t =T is not available, we may approximate the continuous-time process
{Xt}t ∈ [0, T ] by generating approximate sample paths using numerical SDE solvers such as the Euler–Maruyama scheme

X̃n+1 ∶= X̃n + 𝜇(tn, X̃n) (tn+1 − tn) + 𝜎(tn, X̃n) (Wtn+1 − Wtn), X̃0 ∶= x, (19)

where X̃n ≈ Xtn is a discrete-time stochastic process approximating Xt at points 0= t0 < t1 < … < tN =T and x is a real-
ization of X ∼ U(). Note that the increment of a Brownian motion (Wtn+1 − Wtn) ∼ N(0, (tn+1 − tn)Id×d) is normally
distributed. Finally, we set Y ∶= g(X̃N). Strong convergence results for the Euler–Maruyama scheme [96,119] ensure that
X̃n → Xtn as N →∞ and supn|tn − tn−1| → 0.

Generating training data via sample paths in this way yields an arbitrary number of easily obtained data pairs (xi, yi)
with xi sampled uniformly over  and yi resulting from the final data g evaluated at the final state XT of a trajectory
{Xs}s∈ [0, T ] starting at X0 = xi. One has to bear in mind, however, that these individual measurements may vary strongly,
in particular for large end times T and diffusion coefficients 𝜎. The training of the neural network u𝜃 ∶  → R in this way
amounts to least squares fitting of u𝜃 to a point cloud formed by the data pairs {(xi, yi)}ndata

i=1 . This is illustrated in Figure 4.
The left panel shows sample paths originating from three different starting values xi sampled from  = [0, 1]2 for 𝜎 ≡√

2Id×d. Although all processes start within , they evolve in Rd according to the SDE (18) and ultimately leave the
domain. As a consequence, this method of learning the mapping u𝜃(0, x), x ∈ , does not require the formulation of
artificial truncation boundary conditions along 𝜕 as is the case for conventional discretization methods for PDEs on
unbounded domains. The right panel shows the exact solution surface u(0, x) along with a number of data pairs {(xi, yi)} ⊂

R2 × R seen to exhibit a large variation around the solution. Despite the presence of substantial noise in the solution
samples, there is no danger of overfitting for this method as long as sufficiently many data pairs generated and the training
is not restricted to a fixed small number of samples. This poses no restriction as the generation of new trajectories and
hence solution samples are very inexpensive and allows for an essentially unlimited supply. This is particularly true when
the distribution of XT is explicitly known and therefore no numerical path integration is necessary as in the examples
given below.

3.2.2 Neural network approximation

Similar to the PINN approach discussed in Section 2, the unknown solution of the PDE (10) at a fixed time, here t = 0,
is approximated by a (single) neural network. We denote this approximation by u𝜃 ∶  → R, where 𝜃 collects again all
unknown parameters of the network.



14 of 29 BLECHSCHMIDT and ERNST

The training of the model amounts to a simple regression task. Given a batch of training data {(xi, yi)}nbatch
i=1 , the objective

is to minimize the mean squared error

1
nbatch

nbatch∑
i=1

|yi − u𝜃(xi)|2,
which corresponds from the perspective of the underlying stochastic process to the minimization of

E[|g(XT) − u𝜃(x)|2]
where XT is the solution of the SDE (15) starting in X0 = x. This may be viewed as a discrete approximation of a continuous
problem, for which it is shown in [6, Prop. 2.7] that, under suitable assumptions, there exists a unique continuous function
u∗ ∶  → R such that

E
[|g(XT) − u∗(x)|2] = inf

v∈C(;R)
E
[|g(XT) − v(x)|2] . (20)

Furthermore, it holds for every x ∈  that u*(x)=u(0, x).
The network proposed in [6], which is also employed in our numerical tests in Section 3.2.3, has the structure

Input ⇝ BN ⇝ (Dense ⇝ BN ⇝ TanH) ⇝ (Dense ⇝ BN ⇝ TanH) ⇝ Dense ⇝ BN ⇝ Output

where the notation is as follows:

• BN indicates a batch normalization step [86], which is a technique of normalizing each training mini-batch within the
network architecture to make the model less sensitive in terms of proper weight initialization and allows for larger step
sizes and faster training. This is effected by additional parameters that scale and shift the neurons that enter the BN
layer componentwise. These parameters are learned in the same way as all unknown parameters in the neural network,
for example, by a mini-batch gradient descent type algorithm.

• Dense indicates a fully connected layer without bias term, that is, a matrix-vector product with a learnable weight
matrix. Due to the subsequent shifting during theBN layer, a bias term can be omitted since its effect would be canceled.

• TanH indicates the application of the componentwise hyperbolic tangent activation function.

The network is trained with the Adam optimizer [95], a variant of the stochastic gradient descent method based
on an adaptive estimation of first-order and second-order moments to improve the speed of convergence. An explana-
tory walkthrough of the implementation of the complete algorithm is given in the accompanying Jupyter notebook
Feynman_Kac_Solver.ipynb.

3.2.3 Example: Heat equation

In this section, we want to solve the heat equation in d dimensions by means of the solver proposed in [6] and consider
the initial value problem

𝜕tu(t, x) = Δu(t, x) (t, x) ∈ (0,T] × R
d

u(0, x) = ||x||2 x ∈ R
d, (21)

where Δu =
∑d

i=1 𝜕
2u∕𝜕x2

i denotes the Laplacian of u. One can easily verify that the solution is given by

u(t, x) = ||x||2 + 2 t d.

We tested two different step size strategies: a decaying piecewise constant learning rate with step sizes 𝛿(n) =
10−3 1{n≤250 000} + 10−4 1{250 000<n≤500 000} + 10−5 1{500 000<n} as was employed in [6] and an exponentially decaying rate with
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F I G U R E 5 Evolution of relative (left) and absolute (right) errors for a decaying piecewise constant learning rate (solid) and an
exponentially decaying rate (dashed) for the 100-dimensional heat equation (21), estimated by means of the Monte-Carlo method in order to
approximate the integrals in dimension 100 with one million samples. Center: Two-dimensional slice through the approximate solution
(x1, x2) → u𝜃(x1, x2, 0.5, … , 0.5)

step sizes 𝛿(n) = 0.1 × 10−n∕100 000. The remainder of the parameters are chosen as in [6]. We fixed the number of neurons
in the two hidden layers to 200 independent of the dimension. Figure 5 shows the evolution of the absolute and relative
approximation errors3 on  for the 100-dimensional heat equation.

In our numerical experiments with the heat equation (21) we observed that the quality of the final approximation
depends heavily on the chosen learning rate, that is, the step sizes used in the gradient method. A comparison between the
evolutions of the relative and absolute errors for the two aforementioned learning rate strategies is displayed in Figure 5,
together with a two-dimensional slice through the 100-dimensional solution. Together with Table 2, this indicates that
it seems to be better to stay conservative and take smaller steps from the beginning on. Shown are errors for the two
step size scenarios at nepochs = 100 000 and nepochs = 750 000. Although the errors decrease faster in the beginning for the
exponentially decaying step sizes that start with larger steps, the errors seems to saturate at a higher level. This might be
due to the algorithm settling into some local minimum. For the decaying piecewise constant learning rate, Figure 5 shows
two distinct phases of error decay: While the first phase until approximately epoch number 250 000 is characterized by
an accelerating decay of the errors probably due to mainly shifting the solution slowly towards the image range (200 to
300) of the solution, the second phase decays at a much slower rate which might correspond to the reduction rate of the
Monte Carlo error. The exponentially decaying learning rate decays much faster in the beginning but settles at a higher
absolute and relative error.

We also observe that it seems to be difficult to improve the achievable relative and absolute errors, see Table 3. In this
example no SDE time-stepping is necessary, as the end of the sample paths XT can be drawn directly. In particular, this
incurs no discretization error.

A general recommendation on how to select the neural network architecture and parameter selection could be part
of further research. This however, is a problem prevalent in many fields of scientific machine learning, see [144] for a
discussion on selecting deep ReLU network architectures. Nevertheless, one has to bear in mind that problems in such a
high spatial dimension have been considered absolutely infeasible for a long time in terms of numerical approximations.
In particular, for problems in financial mathematics where derivatives, for example, options, often depend on a basket
of more than 100 underlying risky assets (which determine the spatial dimension of the pricing PDE), the importance of
having a feasible algorithm cannot be denied. Note that the accompanying code includes as a second example an option
pricing problem.

3.3 Linear parabolic PDEs in general form

The Feynman–Kac formula may be extended to the full class of linear parabolic equations, see [94, Ch. 5 Theorem 7.6].
Specifically, adding a zeroth order term with nonnegative potential r ∶ [0,T] × Rd → [0,∞) as well as a source term f ∶

3All errors shown in the plots are approximated by Monte-Carlo estimation with one million samples.
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T A B L E 2 Absolute and relative approximation errors for the d-dimensional heat equation (21)

Experiment Dim L1
rel
() L2

rel
() L∞

rel
() L1

abs
() L2

abs
() L∞

abs
() Time

Exp. decay nepoch = 250 000 10 1.53× 10−3 1.97× 10−3 3.09× 10−2 3.60× 10−2 4.65× 10−2 8.58× 10−1 896.45

50 2.14× 10−3 2.70× 10−3 2.61× 10−2 2.49× 10−1 3.14× 10−1 3.34× 100 940.53

100 1.97× 10−3 2.47× 10−3 1.35× 10−2 4.59× 10−1 5.76× 10−1 3.35× 100 1038.80

Exp. decay nepoch = 750 000 10 1.49× 10−3 1.91× 10−3 3.07× 10−2 3.49× 10−2 4.51× 10−2 8.52× 10−1 2692.69

50 2.12× 10−3 2.67× 10−3 2.61× 10−2 2.47× 10−1 3.12× 10−1 3.34× 100 2830.50

100 1.96× 10−3 2.45× 10−3 1.32× 10−2 4.56× 10−1 5.73× 10−1 3.28× 100 3129.64

Piecewise decay nepoch = 250 000 10 2.40× 10−3 3.01× 10−3 1.30× 10−2 5.60× 10−2 7.02× 10−2 3.45× 10−1 1122.72

50 1.59× 10−3 2.00× 10−3 1.10× 10−2 1.85× 10−1 2.33× 10−1 1.25× 100 1153.85

100 1.44× 10−3 1.81× 10−3 9.66× 10−3 3.36× 10−1 4.21× 10−1 2.26× 100 1203.94

Piecewise decay nepoch = 750 000 10 5.90× 10−4 7.43× 10−4 4.29× 10−3 1.37× 10−2 1.73× 10−2 9.19× 10−2 3405.13

50 7.76× 10−4 9.87× 10−4 7.15× 10−3 9.04× 10−2 1.15× 10−1 8.66× 10−1 3493.81

100 8.20× 10−4 1.04× 10−3 6.24× 10−3 1.91× 10−1 2.42× 10−1 1.47× 100 3659.94

T A B L E 3 Absolute and relative errors of the 100-dimensional heat equation with decaying piecewise constant learning rate for
three different neural network architectures after 750 000 training epochs

Experiment L1
rel
() L2

rel
() L∞

rel
() L1

abs
() L2

abs
() L∞

abs
() Time

nlayers = 2, nneuron = 200 8.20× 10−4 1.04× 10−3 6.24× 10−3 1.91× 10−1 2.42× 10−1 1.47× 100 3659.94

nlayers = 3, nneuron = 300 7.75× 10−4 9.79× 10−4 6.64× 10−3 1.81× 10−1 2.28× 10−1 1.51× 100 4704.55

nlayers = 4, nneuron = 400 7.24× 10−4 9.15× 10−4 5.43× 10−3 1.69× 10−1 2.13× 10−1 1.30× 100 8483.34

[0,T] × Rd → R, the final time problem (10) becomes

𝜕tu(t, x) + 1
2
𝜎𝜎T(t, x) ∶ ∇2u(t, x) + 𝜇(t, x) ⋅ ∇u(t, x) − r(t, x) u(t, x) + f (t, x) = 0, (t, x) ∈ [0,T) × R

d,

u(T, x) = g(x), x ∈ R
d. (22)

A sufficiently smooth solution of (22) admits the Feynman–Kac representation

u(t, x) = E

[
∫

T

t
e− ∫ 𝜏

t r(𝜈,X𝜈 ) d𝜈 f (𝜏,X𝜏) d𝜏 + e− ∫ T
t r(𝜈,X𝜈 ) d𝜈 g(XT)|Xt = x

]
∀(t, x) ∈ [0,T] × R

d, (23)

which simplifies to (12) for f ≡ 0 and r ≡ 0.
Algorithmically, this can be considered within the same framework as discussed in Section 3.2. In particular, it does

not change the generation of samples of the stochastic process {Xs}s∈ [0, T ]. In the case of a discrete approximation {X̃n}N
n=0

generated by the Euler–Maruyama scheme (19), a simple approximation of the corresponding output variable Y can be
given by

Y =
N−1∑
n=0

R̃n f (tn, X̃n) (tn+1 − tn) + R̃N g(X̃N) (24)

with

R̃n ∶= exp

(
−

n−1∑
j=0

r(tj, X̃j) (tj+1 − tj)

)
= R̃n−1 exp

(
− r(tn−1, X̃n−1) (tn − tn−1)

)
, R̃0 ∶= 1.
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Here, R̃n is a discrete approximation of the term exp
(
− ∫ tn

0 r(𝜈,X𝜈) d𝜈
)
. In the case of a space-independent or even con-

stant potential function r(t, x), this can be simplified, for example, R̃n = e−r tn in the case of a constant potential r(t, x)= r.
The discrete approximation (24) can then be used to generate training samples {(xi, yi)}ndata

i=1 and train a neural network
u𝜃 ∶  → R which approximates the solution of the PDE (22) in the domain of interest  at time t = 0.

An alternative formulation of (23) can be obtained by means of the concept of killed stochastic processes, see [133,
Sec. 8.2] or [173, Ch. 15]. Such a process (X̂t)t∈[0,T] behaves exactly like the process {Xt}t ∈ [0, T ], but becomes undefined or
“killed” at a certain random (killing) time 𝜁 , after which the process X̂t is assigned a so-called “coffin state”. Here, 𝜁 is an
exponentially distributed random time with “killing rate” r(t, x). Thus, it can be shown, see [133, Sec. 8.2], that the solution
of the parabolic PDE (22) admits the representation

u(t, x) = E

[
∫

T

t
f (𝜏, X̂𝜏) d𝜏 + g(X̂T)|X̂t = x

]
∀(t, x) ∈ [0,T] × R

d. (25)

Finally, we mention that boundary conditions can be incorporated into the PDE-SDE framework by considering certain
kinds of stochastic processes. For example, in the case of a linear parabolic PDE as in (22) but posed on a bounded spatial
domain  in place of Rd, the appropriate concept is that of stopped processes, which evolve according to the SDE (18) in 
and are stopped as soon as they hit the parabolic boundary (0,T) × 𝜕 ∪ {T} ×  where  denotes the closure of . For
further details, see [24,41,124,139,178] and the references therein.

3.4 Summary and extensions

The approach discussed in this section can be used to solve backward Kolmogorov equations in high-dimensions. It
is based on the Feynman–Kac connection between SDEs and PDEs and can be implemented efficiently using Ten-
sorFlow and other scientific machine learning software environments without deeper knowledge since it reduces, in
essence, to a regression problem where the data is sampled either directly or via SDE time-stepping methods such as the
Euler–Maruyama scheme.

In [17], a similar technique is proposed for the solution of parametric linear Kolmogorov PDEs. Again, this methodol-
ogy generates training data by sampling; the employed neural networks, however, are based on a multilevel architecture
with residual connections.

4 SEMILINEAR PDES IN HIGH DIMENSIONS

In this section we extend the methodology of Section 3 to solving semilinear PDEs obtained by allowing the lower-order
terms in (10) and (22) to depend nonlinearly on the solution and its gradient. This results in the final value problem

𝜕tu(t, x) + 1
2
𝜎𝜎T(t, x) ∶ ∇2u(t, x) + 𝜇(t, x) ⋅ ∇u(t, x) + f (t, x,u(t, x), 𝜎T(t, x)∇u(t, x)) = 0, (t, x) ∈ [0,T) × R

d,

u(T, x) = g(x), x ∈ R
d, (26)

with drift 𝜇, diffusion 𝜎 and final data g as before. The function f ∶ [0,T] × Rd × R × Rd → R containing lower order
terms can depend in a general way on the independent variables t, x as well as on the solution u(t, x) and its transformed
gradient (𝜎T∇)u(t, x). The nondivergence form of the leading-order term as well as the specific dependence on 𝜎T∇u
again result from the connection between PDEs and stochastic processes. As we will see in Section 4.1, the presence of
these dependencies requires extending the numerical solution method to include additional approximating stochastic
processes for ∇u.

Problems of the form (26) arise in physics in the form of, for example, the Allen–Cahn, Burgers or reaction–diffusion
equations; in finance, for example, for pricing derivatives with default risk [28,36,48]; and stochastic control problems,
see [145]. The method discussed below is an extension to that presented in Section 3 in that it is also based on the
PDE-SDE connection, but in this case it is the correspondence of nonlinear PDEs with backward stochastic differen-
tial equations (BSDEs) [94,165]. In the linear case discussed in Section 3 the approximation of the solution u at time
t = 0 is based on a neural network approximation of the mapping u(0, ⋅) ∶  → R, the Feynman–Kac representation
u(0, x) = E[g(XT)|X0 = x] for x ∈  and generating a large number of sample paths of the stochastic process {Xt}t ∈ [0, T ]
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determined by (15) to approximate the conditional expectation and train the model. Using the theory of BSDEs, it is
possible to treat nonlinearities of the type contained in (26).

The specific method presented here was proposed in [43,69] and is based on earlier work [68]. Again, the focus lies on
solving high-dimensional problems and overcoming one source of the curse of dimensionality [10]: a high-dimensional
state space (large d). In recent years, a number of approaches have been proposed for mitigating or overcoming the curse
of dimensionality in solving high-dimensional PDEs. In the meantime, a number of theoretical results indicate this may
indeed be possible; an (incomplete) list is given in Section 5. In [85] it is proven that deep ReLU networks, that is, neural
networks with multiple hidden layers and the rectified linear unit activation function, are in theory able to overcome the
curse of dimensionality for certain kinds of the semilinear parabolic equations with nonlinearities which do not involve
the gradient. This is similar to the linear case [92]. In particular, it can be shown that the number of parameters in the
neural network grows at most polynomially in both the dimension of the PDE (d+ 1) and the reciprocal of the desired
approximation accuracy. Note however, that training a neural network in general is a NP-hard problem, [170, Sec. 20.5].
The proof relies on full history recursive multilevel Picard approximations, see also [8,47].

The approach discussed below can be used to construct an approximate solution of the semilinear problem (26)
at a fixed point in time over a bounded domain of interest  ⊂ Rd by sampling the initial point x uniformly on  as
in Section 3.2. For simplicity, however, we consider the problem of determining the solution at a specific point in space
and time, that is, to determine u(0, x) for fixed x ∈ Rd.

4.1 Theoretical background

As in Section 3, we consider a time-evolution {Xt}t ∈ [0, T ] in state space Rd driven by the forward SDE

Xt = x + ∫
t

0
𝜇(s,Xs) ds + ∫

t

0
𝜎(s,Xs) dWs (27)

starting at x ∈ Rd, with underlying probability space (Ω, ,P;F)with filtration F = {t}t∈[0,T] induced by a d-dimensional
Brownian motion {W t}t ∈ [0, T ]. In Section 3.1 we concluded from Itô’s formula in (16)–(17) that, given a sufficiently smooth
function v ∶ [0,T] × Rd → R, the dynamics of the value process Y t:= v(t, Xt) is governed by the SDE (now written in
differential notation)

dYt =
(
𝜕tv +

1
2
𝜎𝜎T ∶ ∇2v + ∇v ⋅ 𝜇

)
(t,Xt) dt +

(
𝜎T∇v

)
(t,Xt) ⋅ dWt. (28)

As in Section 3.1 we now assume a sufficiently smooth solution u of (26) to exist, set v= u in (28), and introduce a
third stochastic process Zt ∶=

(
𝜎T∇u

)
(t,Xt) to obtain

dYt = −f (t,Xt,Yt,Zt) dt + Zt ⋅ dWt, YT = g(XT).

This SDE with final condition Y T = g(XT) inherited from (26) is known as the BSDE associated with (26) and reads, in
integral notation, as

Yt = g(XT) + ∫
T

t
f (s,Xs,Ys,Zs) ds − ∫

T

t
Zs ⋅ dWs. (29)

Under suitable regularity assumptions on the functions 𝜇, 𝜎, f and g, the SDEs (27) and (29) possess a unique solution
(Xt, Y t, Zt) and the link to the nonlinear PDE is given by a generalization of the Feynman–Kac formula which states that
for all t ∈ [0, T] there holds P-a.s. that

Yt = u(t,Xt) and Zt =
(
𝜎T ∇u)(t,Xt). (30)

In view of the analogy to (12) and (23), the identities (30) are sometimes referred to as the nonlinear Feynman–Kac repre-
sentation [145, Sec. 6.3]. The system consisting of (27) and (29) is called a forward-backward stochastic differential equation
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(FBSDE) [137,138,140]. We note that the forward SDE (27) does not depend on Y t and Zt, and can thus be solved inde-
pendently. As a result, the desired solution value u(0, x) can now be found by solving the FBSDE and evaluating Y 0 in
(30). We refer to [182, Ch. 7] for a general account on the solvability of FBSDEs.

The difference to the procedure described in Section 3.3 is that the solution of the value process {Y s}s∈ [0, T ] is now
more involved due to the nonlinear term f and its dependence on u(t, x) and (𝜎T∇)u(t, x).

4.2 Deep BSDE solver

The algorithm termed deep BSDE solver in [69] constructs an approximation to a solution value u(0, x) of the PDE (26)
by way of solving the associated FBSDE (27), (29), yielding u(0, x)=Y 0 as summarized in Section 4.1. We now proceed to
show how this is achieved using neural networks.

Starting with a discretization of the time domain [0, T] into N equidistant intervals with steps 0= t0 < t1 < · · ·< tN =T
and step size Δt = T∕N, we generate approximate sample paths of the continuous time process {Xt}t ∈ [0, T ] using the
Euler–Maruyama scheme for the forward SDE (27) which yields the discrete time process

X̃n+1 = X̃n + 𝜇(tn, X̃n) (tn+1 − tn) + 𝜎(tn, X̃n) (Wtn+1 − Wtn ) with X̃0 = x. (31)

In the same way, we construct sample paths for the backward SDE (29) as

Ỹn+1 = Ỹn − f (tn, X̃n, Ỹn, Z̃n) (tn+1 − tn) + Z̃n ⋅ (Wtn+1 − Wtn) with ỸN = g(X̃N). (32)

Note that the increments of the Brownian motion (Wtn+1 − Wtn) ∼ N(0, (tn+1 − tn)Id×d) are the same in (31) and (32).
The algorithm can be summarized by the following steps:

1. Simulate paths of the discrete state space process {X̃n}N
n=0 and the corresponding increments of the Brownian motion

{Wtn+1 − Wtn}
N−1
n=0 according to the time-stepping scheme (31).

2. Simulate paths of the discrete value process {Ỹn}N
n=0 according to the time-stepping scheme (32). Closer inspection

reveals that (32) contains unknown quantities necessary to carry out the time-stepping: Ỹ0, which is an approximation
of u(0, x) as well as Z̃n for n= 0, … , N − 1, which are approximations of (𝜎T∇u)(tn, X̃n). These quantities are obtained
by training a neural network.

The quantities Ỹ0 ≈ u(0, x) and Z̃0 ≈ (𝜎T∇u)(0, x) are treated as individual parameters—both needed only in the
point (0, x)—and are learned in the course of training. The remaining quantities Z̃n,n = 1, … ,N − 1 are approximated
by neural networks which realize the mapping x → (𝜎T∇u)(tn, x) for n= 1, … , N − 1. All neural network parameters
to be learned are collected in

𝜃 =
(
𝜃u0 , 𝜃∇u0 , 𝜃∇u1 , … , 𝜃∇uN−1

)
,

where 𝜃u0 ∈ R, 𝜃∇u0 ∈ Rd and 𝜃∇un ∈ R𝜌n and 𝜌n is the number of unknown parameters in the neural network realizing
the mapping x → (𝜎T∇u)(tn, x) for n= 1, … , N − 1.

3. Since ỸN should approximate u(T, X̃N) = g(X̃N) according to (32) the network is trained to minimize the mean squared
error (MSE) between ỸN and g(X̃N). For a batch of m simulated pairs (X̃N , ỸN), this results in the loss function

𝜙𝜃(X̃N , ỸN) ∶=
1
m

m∑
i=1

[
Ỹ i

N − g(X̃ i
N)
]2
,

where Y i
N is the output of the neural network. Automatic differentiation of 𝜙𝜃 with respect to the unknowns 𝜃 is then

employed to obtain the gradient ∇𝜃𝜙𝜃 , which is then used by an optimization routine, for example, some variant of
the stochastic gradient descent method. Note that the same considerations with regard to overfitting as noted at the
end of Section 3.2.1 in connection with the Feynman–Kac solver apply here.

The complete network structure is illustrated in Figure 6. The architecture of the subnetworks realizing the mapping
x → (𝜎T∇u)(tn, x) used in the numerical experiments described below are taken to be the same as in [69], where they are
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F I G U R E 6 Illustration of the
complete deep BSDE solver model
adapted from [43,69] in the case
𝜎 = Id×d. The two upper rows express
the evolution of the forward process
{X}n= 0 starting at X̃0 = x (green). The
unknown parameters for u𝜃(0, x) and
∇u𝜃(0, x) (blue, left) as well as the
parameters in the neural network
approximating Z̃n, n= 1, … , N − 1
(blue, center) are learned by training.
The intermediate values Ỹn and Z̃n,
n= 1, … , N − 1 (orange) are needed
to establish the link between the
desired PDE solution value
u(0, x) ≈ Ỹ0 with the given final value
ỸN = g

(
X̃N

)
(red).

given by

Input ⇝ BN ⇝ (Dense ⇝ BN ⇝ ReLU) ⇝ (Dense ⇝ BN ⇝ ReLU) ⇝ Dense ⇝ BN ⇝ Output (33)

Here, BN stands for batch normalization, Dense denotes a fully connected layer without bias term and activation, and
ReLU denotes the application of the componentwise rectified linear unit activation function ReLU(x) = max{0, x}. In
terms of the layers in Figure 6 this means the following: first, the inputs X̃n ∈ Rd are scaled and shifted componentwise by
batch normalization, resulting in h1

n ∶= BN1
n(X̃n); second, the outputs from the first layer are processed by the subsequent

block h2
n ∶= ReLU

(
BN2

n(W2
n h1

n)
)

followed by block h3
n ∶= ReLU

(
BN3

n(W3
n h2

n)
)
; finally, the output is multiplied by another

matrix W4
n and batch normalized once more, giving h4

n ∶= BN4
n(W4

n h3
n) ≈ Z̃n.

To implement the model in TensorFlow [1] all that is needed is to provide a routine that realizes the interaction
between the known and unknown quantities and respects the time-stepping scheme (32). In the following, we discuss
two examples. An implementation of the methodology for both examples is given in the accompanying Jupyter notebook
DeepBSDE_Solver.ipynb.

4.3 Example: Linear-quadratic Gaussian control

We consider the linear-quadratic Gaussian control problem as discussed in [43, Sec. 4.3] [69], and [2]. The goal is to control
a stochastic process {Xt}t ∈ [0, T ] governed by the SDE

Xt = x + 2∫
t

0
ms ds +

√
2∫

t

0
dWs

with a control mt ∈ Rd entering as the drift term. The solution of the control problem is characterized by the value func-
tion, that is, the function u ∶ [0,T] × Rd → R that gives the minimal expected sum of accumulated running cost and final
cost over all admissible control processes4 from time t onward starting at x:

u(t, x) = min
{ms}s∈[t,T]

E

[
∫

T

t
||ms||2 ds + g(XT)|Xt = x

]
(34)

4In this setting, an Rd-valued control process {ms}s∈ [t, T] is admissible if its value at time s is based only on the information available up to time s. To be
precise, the process ms has to be progressively measurable with respect to the underlying filtration F; see [145,182] for further details.



BLECHSCHMIDT and ERNST 21 of 29

T A B L E 4 Shown are the mean and standard deviations of u𝜃(0, x) and the relative error |u𝜃(0, x) − u∗|∕u∗,
resp., with u* ≈ 4.5901 (determined via Monte-Carlo sampling), as well as the mean computation time over 5
consecutive runs with randomly initialized parameters 𝜃 after nepochs = 2000 training epochs

Experiment Mean u(0, x) Std.-dev. u(0, x)
Mean
relative error

Std.-dev.
relative error

Mean
time (s)

Simple (L= 0) 4.6000 1.48× 10−3 2.15× 10−3 3.23× 10−4 3.44

Reference (L= 2) 4.5989 9.71× 10−4 1.91× 10−3 2.12× 10−4 83.91

L= 3 4.5991 1.19× 10−3 1.95× 10−3 2.60× 10−4 135.77

L= 5 4.5983 1.72× 10−3 1.77× 10−3 3.75× 10−4 363.14

The function g ∶ Rd → R is the prescribed final data. The Hamilton–Jacobi–Bellman equation associated with the
stochastic control problem is given by the nonlinear PDE

𝜕tu(t, x) + Δu(t, x) + min
m

{
2 m ⋅ ∇u(t, x) + ||m||2} = 0, (t, x) ∈ [0,T) × R

d,

u(T, x) = g(x), x ∈ R
d. (35)

Note that this equation is purely deterministic. As easily verified, the minimum is attained at m=−∇u. Inserting this
optimal control into the HJB equation (35) yields the semilinear PDE

𝜕tu(t, x) + Δu(t, x) − ||∇u(t, x)||2 = 0, (t, x) ∈ [0,T) × R
d,

u(T, x) = g(x), x ∈ R
d. (36)

The formulation (34) reveals that the PDE solution u is the value function of a stochastic control problem, the con-
trol ms is the negative gradient of the solution u which plays the role of a policy function in a reinforcement learning
approach to solve the stochastic control problem [15,63,102,175]. This connection to stochastic control problems provided
the original motivation for the deep BSDE method [43,68].

We solve this equation in dimension d= 100 for drift coefficient 𝜇 ≡ 0, diffusion coefficient 𝜎 ≡ √
2Id×d, reaction

term f (t, x, y, z) = −1∕2 ||z||2 and final time T = 1 with prescribed data g(x) = log
(
1∕2 (1 + ||x||2)) using the algorithm

described in Section 4.2 to approximate the solution value u(0, x) for x = 0 ∈ Rd. We note that the solution to this con-
trol problem can be obtained explicitly via a Cole–Hopf transformation, see for example [33], and is given by the formula
u(t, x) = − log

(
E

[
exp

(
− g

(
x +

√
2WT−t

))] )
. This can be used as a reference solution.

The results for 4 different experimental configurations are presented in Table 4. All experiments employ the Adam
optimizer [95] with constant learning rate 𝛿 = 0.01 as used in [43], the number of training epochs set to nepochs = 2000
and batch size nbatch = 64. The setup in the second row labeled Reference uses the same configuration as employed in [43,
Sec. 4.3], that is, N = 20 discrete time steps, and the network architecture as shown in (33) containing two stacks of layers
of the form

Dense ⇝ BN ⇝ ReLU (37)

with 110 neurons in each layer. The Simple configuration contains no such layer stack (37), and uses only N = 1 time step,
which explains the fast computation. In setting L=3, we increased the number of hidden layer stacks (37) to three, the
number of time steps to N = 30 and the number of neurons in each layer to 200. In setting L=5, we increased the number
of hidden layer stacks (37) to five, the number of time steps to N = 50 and the number of neurons in each layer to 300.

The results in Table 4 suggests that for the solution of the linear-quadratic Gaussian control problem (36) all models
display similar performance. It is surprising that even the Simple model taking less than 4 s total computation time pro-
vides essentially the same approximation quality as the more complex models. This is in line with the findings in [2] that
it appears difficult to further decrease the relative errors using the proposed methodology. On the other hand, a decrease
in relative approximation error when increasing the number of hidden layers was observed in another example given in
[69]. The convergence behavior of this method seems to call for further research.
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T A B L E 5 Shown are the mean and standard deviations of u𝜃(0, x) and the relative error |u𝜃(0, x) − u∗|∕u∗, resp., with
u* ≈ 0.052802 (taken from [43], calculated by a branching-diffusion method), as well as the mean computation time over 5
consecutive runs with randomly initialized parameters 𝜃 after nepochs = 4000 training epochs

Experiment Mean u(0, x) Std.-dev. u(0, x)
Mean
relative error

Std.-dev.
relative error

Mean
time (s)

Simple (L= 0) 0.055816 4.55× 10−5 5.71× 10−2 8.62× 10−4 6.71

Reference (L= 2) 0.052990 1.21× 10−4 3.63× 10−3 2.18× 10−3 157.54

L= 3 0.052900 2.56× 10−4 4.02× 10−3 3.28× 10−3 308.45

L= 5 0.052726 1.18× 10−4 2.27× 10−3 1.40× 10−3 637.18

4.4 Example: Allen–Cahn equation

As a second example, we solve the Allen–Cahn equation with a double-well potential [43, Sec. 4.2] [50,69], that is, the
semilinear reaction–diffusion equation

ut(t, x) + Δu(t, x) + u(t, x) − u3(t, x) = 0

u(T, x) =
(
2 + 2

5
||x||2 )−1.

The results for the approximation of u(0, x) for x = 0 ∈ Rd with d= 100 and T = 1 are displayed in Table 5. The training
was carried out over nepochs = 4000 epochs with the Adam optimizer [95] with a constant step size 𝛿 = 5 × 10−4 for the
same set of network configurations as used in Section 4.3 For this experiment, the difference between the Simple and more
complex models is clearly visible. However, the Simple model yields again a rough approximation of the solution within
only 7 s. Again, the decrease of the relative error is quite small for deeper and wider neural networks with more time steps,
similar to our findings in Section 4.3. We note that the accompanying Jupyter notebook DeepBSDE_Solver.ipynb
contains the Burgers-type PDE from [43, Sec. 4.5] as a third example.

4.5 Summary and extensions

We have described the deep BSDE solver presented and developed in [43,69] for the solution of semilinear PDEs (26).
Note, however, that the solver can also be used to solve BSDEs directly (without taking care of any PDE).

In [5], the deep BSDE solver considered in this section is extended to fully nonlinear PDEs of second-order. Here,
neural networks are employed to approximate the second-order derivatives of u at a finite number of time steps, from
which approximations of the gradients∇u(tn, ⋅) and the function values u(tn, ⋅) can be derived, similar to (32). The method
relies on the connection between fully nonlinear second-order PDEs and second-order BSDEs [35].

The technique described in [7] is closely related and applies operator splitting techniques to derive a learning approach
for the solution of parabolic PDEs in up to 10 000 spatial dimensions. In contrast to the deep BSDE method, however, the
PDE solution at some discrete time snapshots is approximated by neural networks directly.

Another extension of the deep BSDE solver is considered in [31] where the authors employ a number of adaptations to
the proposed methodology in order to improve the convergence properties of the algorithm, for example, by substituting
the activation functions, removing some of the batch normalization layers and using only one instead of N − 2 neural
networks to approximate the scaled gradients of the solution (𝜎T∇u)(tn, x) for n= 1, … , N − 1. Furthermore, residual
connections are added and more elaborative long short-term memory (LSTM) neural networks are employed. Similarly,
the authors in [53] consider the use of asymptotic expansion as prior knowledge in order to improve the accuracy and
speed of convergence of the deep BSDE solver.

In [71], an extension based on a primal-dual solution method for BSDEs using neural networks and a dual formulation
of stochastic control problems is discussed, see also [72]. An approach that uses the associated FBSDE to train a neural
network to learn the solution of a semilinear PDE is discussed in [152].
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5 EXTENSIONS AND RELATED WORK

Beyond the three approaches discussed in detail in Sections 2 to 3, the rapidly developing discipline of scientific machine
learning has brought forth a number of promising approaches for solving PDEs beyond the capabilities of conventional
numerical methods. In this final section, we want to give a brief and necessarily incomplete overview over some recent
developments.

Before we provide more references concerning neural network-based solution approaches for differential equations
we list some results concerning general approximation properties of neural networks. Early work from the 1990s
is now considered foundational, for example, [37,78,79,122,146]. Beginning around 2016, the spectacular successes
of machine learning systems in computer vision, natural language processing and other areas prompted renewed
efforts to establish a mathematically rigorous foundation for, in particular, deep feedforward neural networks
[14,22,49,61,62,75,99,118,123,128,134,142-144,180,181]. We draw particular attention to a number of publications that rig-
orously establish that certain neural network architectures are theoretically able to overcome the curse of dimensionality
for various linear and nonlinear PDEs, cf [8,18,65,81,82,84,85,92].

There are a number of criteria for classifying machine learning-based PDE solvers, among these mesh-free versus fixed
mesh methods, stochastic versus deterministic methods or high-dimensional versus low-dimensional methods. While
most of the investigated models can be considered mesh-free, we also mention some approaches that rely on an underlying
and a priori known fixed mesh structure of the domain of the differential equations, cf [100,101,103,116,120,161,166].

A method termed deep Galerkin method (DGM) is proposed in [171] and is applied to the solution of nonlinear
second-order parabolic equations. It is similar to the PINN approach discussed in Section 2 in that a neural network is
used to approximate the PDE solution and the network is trained by minimizing a residual of the strong solution. The
methods are aimed at high-dimensional problems, however, and a Monte Carlo method rather than automatic differenti-
ation is used to compute second derivatives. A similar approach for solving high-dimensional random PDEs by training a
neural network on the strong or weak residual is given in [129]. In [16] a deep neural network approximation to the solu-
tion of linear PDEs is constructed using the strong residual of the PDE as a loss function, similar to the PINN reviewed
in Section 2.

In [40], an approach for solving a certain kind of high-dimensional first-order Hamilton–Jacobi equations is proposed
based the Hopf formula [77] whose computational expense behaves polynomially in the spatial dimension. In subse-
quent work, first-order Hamilton–Jacobi equations in high dimension are considered in [38,39] based on classes of neural
networks that exactly encode the viscosity solutions of these equations.

Further approaches based on the multilevel decomposition of Picard approximations and on full-history recursive
multilevel Picard approximations [8,45-47,57,83] of type (26) have been successfully applied in high dimensions as well.
Other directions of research that deal with high-dimensional PDEs are branching diffusion processes [73,74].

Another research area for the solution of PDEs is based on multi-scale deep neural networks (DNNs), cf
[30,104,110,176]. In a recent Nature publication multiscale DNNs are employed for diagnosing Alzheimer’s disease [111].
Based on phase shift DNNs [29], considers the efficient solution of high-frequency wave equations.

In [2,80] the authors introduce and compare a number of neural network-based algorithms applied to stochastic
control problems, nonlinear PDEs and BSDEs, incl. the example discussed in Section 4.3.

While the approaches discussed so far employ neural networks to learn mappings between finite-dimensional
Euclidean spaces, the methodologies proposed in [20,105-107,112,131] aim to infer mappings between function spaces,
known as neural operators. These mesh-free and infinite-dimensional operators require no prior knowledge of the
underlying PDE but rely on a set of training data in the form of observations.

A general procedure based on data-driven machine learning to accelerate existing numerical methods for the solution
of partial and ordinary differential equations is presented in [125].

A method to solve variational problems by means of scientific machine learning is proposed in [44], termed the deep
Ritz method by the authors. The method relies on a reformulation of variational problems as an energy minimization
problem. Boundary conditions are enforced weakly by the addition of a penalty term to the energy functional, for example

min
u∈H ∫Ω

(1
2
|∇u(x)| − u(x)

)
dx + 𝛽 ∫𝜕Ω

u(s)2ds (38)

in the case of a Poisson problem with homogeneous boundary conditions, where H is a set of admissible functions and
𝛽 is a penalty parameter used to enforce the boundary conditions. The proposed methodology relies on three key ideas:
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the set of admissible functions H is represented by a (deep) neural network; the integrals in the energy functional (38)
are approximated by Monte-Carlo sampling; and the neural network is trained through a stochastic gradient descent type
algorithm on mini-batches. An extension to this approach is given in [108] termed the deep Nitzsche method.

Finally, we want to draw attention to the software package NeuralPDE.jl [150] written in the programming lan-
guage Julia [19]. It is available at https://github.com/SciML/NeuralPDE.jl and features the solution of PDEs by PINNs,
forward-backward SDEs for parabolic PDEs as well as deep-learning based solvers for optimal stopping time problems
and Kolmogorov backward equations.

6 CONCLUSION

The methods reviewed in this paper illustrate the versatility of machine learning-based algorithms for the solution of PDEs
and represent the currently most promising approaches. While PINNs (Section 2) are, as of the writing of this survey, best
suited for low-dimensional but complex nonlinear PDEs, the methods based on the Feynman–Kac theorem in Section 3
and BSDEs in Section 4 promise to extend current simulation capabilities when employed for high-dimensional linear
and semi-linear parabolic problems in nonvariational form, for which classical approaches are infeasible due to the curse
of dimensionality. As deep learning continues to grow rapidly in terms of methodological, theoretical and algorithmic
advances, we believe that the field of machine learning-based solution methods of PDEs promises to remain an exciting
research field in the years ahead.
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