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1 Introduction

The current scientific computation paradigm consists of
mathematical models—often partial differential equa-
tions (PDEs)—describing certain physical phenomena
under study whose solutions are approximated by
numerical schemes carried out by computers. Among
these four components, represented by boxes in Fig. 1,
great progress has resulted in the area of computer
implementation due both to the rapid advance in com-
puter speed and storage capacity as well as improve-
ments in software aspects such as floating point
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standardization and programming methodology.
Similarly, advances in numerical methods such as basic
linear algebra libraries, discretization schemes and adap-
tivity make it possible to solve many nontrivial PDEs
quickly and to as great an accuracy as desired.

An aspect of this general approach which deserves
more attention is the fact that the data required by the
model—various parameters such as the spatial distribu-
tion of material properties as well as source or boundary
terms—are invariably assumed as known. In practice,
however, such data is obtained from measurements or
based on various assumptions, all subject to uncertainty.
Indeed, it is quite possible for the effect of such uncer-
tainty in the data to outweigh that of rounding or dis-
cretization errors. One usually distinguishes two types of
uncertainty: the first, aleatoric uncertainty, which refers
to an intrinsic variablity of certain quantities, such as the
wind stress on a structure. In contrast, epistemic uncer-
tainty refers to a lack of knowledge about certain aspects
of a system which, in contrast to aleatoric uncertainty,
can be reduced through additional information.

The idea of uncertainty quantification (UQ), i.e. quan-
tifying the effects of uncertainty on the result of a
computation, has received much interest of late. The
objective is usually that of propagating quantitative
information on the data through a computation to the
solution. It should be obvious that technological or polit-
ical decisions based on simulation results can benefit
greatly when uncertainty in these results is quantified in
a meaningful way.

Among the different techniques of UQ, the most
common is certainly to ignore the issue and to deal
with the variability of data by using averaged quan-
tities. Other non-stochastic techniques of UQ include
worst-case analysis and fuzzy set theory. In stochastic
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Fig. 1 Uncertainty in the typical computational science frame-
work. The given quantities in the physical phenomenon to be
modelled enter into the mathematical model as measured param-
eters subject to uncertainty. The question marks signify that it is
unclear how this uncertainty can be accounted for in the numerical
approximation and what computational challenges this poses in
the computer implementation. The final goal, then, is incorporat-
ing the uncertainty quantified in the computation into predictive
statements on the phenomenon being modelled

approaches to UQ, the uncertain quantities are modelled
as random variables, so that PDEs become stochastic
PDEs (SPDEs). The most straightforward way of doing
this is the Monte Carlo Method [24], in which many
realizations of the random variables are generated, each
leading to a deterministic problem, which is then solved
using whatever methods are appropriate for the deter-
ministic problem. The resulting ensemble of solutions
can then be post-processed to obtain statistical informa-
tion on the variability of the solution. A more ambitious
approach is to solve the SPDE, the solution of which is a
stochastic process, and to derive quantitative statements
on the effect of data uncertainty from the distribution
of this process.

Much of the literature on stochastic differential equa-
tions, particularly stochastic ordinary differential equa-
tions, allows for processes with zero correlation length,
known as white noise [18]. A rigorous theory of SPDEs
based on white noise analysis requires defining the prod-
uct of stochastic processes as so-called Wick products
[19], which in turn leads to solutions which in general
do not agree with the Monte Carlo approximation in
the limit of an infinite number of realizations. For this
reason, and also because it occurs in many engineer-
ing contexts, it is of interest to consider instead the case
where the processes involved display significant correla-
tions, which is sometimes referred to as coloured noise,
and we shall do so in this paper.

Recently, a systematic approach for formulating and
discretizing PDEs with random data known as the Sto-
chastic Finite Element Method (SFEM) has become pop-
ular in the engineering community [15] and subsequently

analysed by numerical analysts (see [5] and the
references therein). The results of a SFEM approxima-
tion allow one to compute a large variety of statistical
information via post processing, such as moments of
the solution as well as the probability of certain events
related to the PDE. The method is, however, computa-
tionally expensive, and it is the objective of this paper to
present computational approaches for solving the main
tasks arising in the implementation of certain SFEM
formulations.

The remainder of this paper is organized as follows.
Section 2 introduces a model elliptic boundary value
problem with random data as well as necessary stochas-
tic terminology. In Sect. 3 the basic discretization steps of
the SFEM is given with an emphasis on the structure of
the resulting Galerkin equations. Section 4 identifies the
two main computation tasks involved in implementing
the SFEM and presents some computational schemes
which exploit structure and analytical properties of the
problem. Section 5 contains some numerical examples
followed by some conclusions in Sect. 6.

2 Elliptic boundary value problems with random data

In this section we give a brief overview of the SFEM
by starting from the following (deterministic) elliptic
boundary value problem: given a domain D ⊂ Rd, we
seek a function u which satisfies

−∇·
(
κ(x )∇u(x )

)
= f (x ), x ∈ D, (1a)

u(x ) = g(x ), x ∈ ∂D, (1b)

where the coefficient function κ is uniformly positive
definite and bounded and both it as well as the source
term f and boundary data g, are sufficiently smooth func-
tions defined on D and its boundary ∂D, respectively.
The data of problem (1) consists of the functions κ , f
and g and we shall model possible uncertainty in these
by allowing them to be random fields rather than deter-
ministic functions.1

2.1 Random fields

Given a complete probability space (Ω , A, P) with sam-
ple space Ω , σ -algebra A on Ω and probability measure
P on A, a real-valued random field κ defined on a set D
is a mapping κ : D × Ω → R such that, for each x ∈ D,
κ(x , ·) is a random variable with respect to (Ω , A, P). In
other words, rather than a given real number κ(x ), the

1 It is also possible to treat uncertainty in the domain D, see [3,16].
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random field κ at the point x ∈ D is a random variable,
and one obtains a real number κ(x , ω) for each realiza-
tion ω ∈ Ω . An alternative point of view regards κ(·, ω)

as a sample drawn from an appropriate function space
such that each realization ω yields a function on D. Thus,
a random field (sometimes also called a random func-
tion) is a stochastic process with the spatial coordinate
x as its index variable. The theory of random fields is
treated in [1,2,7,41].

We further introduce some stochastic terminology:
we shall denote the mean of a random variable X : Ω →
R by

〈X〉 :=
∫

Ω

X(ω) dP(ω)

and we denote the mean of the random field κ at the
point x ∈ D by κ(x ) := 〈κ(x , ·)〉. The covariance of κ at
x , y ∈ D is denoted by

Covκ(x , y) := 〈(κ(x , ·) − κ(x ))(κ(y , ·) − κ(y))〉 ,

the variance of κ at x ∈ D by Varκ(x ) := Covκ(x , x )

and the standard deviation of κ at x by σκ(x ) :=√
Varκ(x ). The space of all random variables with finite

variance is denoted L2
P(Ω) with inner product (X, Y) :=

Cov(X, Y). Recall that all covariance functions (x , y) *→
Covκ(x , y) are positive semidefinite functions [26].

Often problem parameters are modelled as Gaussian
random fields, i.e. random fields whose finite-
dimensional distributions are all jointly Gaussian. Such
random fields are convenient in that, e.g. they are com-
pletely specified by their first and second order statistics
κ and Covκ and for Gaussian random variables inde-
pendence is equivalent with uncorrelateness. Further-
more, Gaussian random fields occur naturally as a result
of the central limit theorem and, whenever only sec-
ond order statistical information is available, Gaussian
random fields are the model of maximal entropy [30].
However, Gaussian random fields are not appropriate
models for physical quantities which are positive and
bounded, as is the case, e.g. when κ models a diffusion
coefficient in (1).

Another common assumption on random fields is
that they are homogeneous, i.e. that their finite dimen-
sional distributions are invariant under translation; in
particular, this implies κ ≡ const and Covκ(x , y) =
c(x − y), where the covariance function c can be repre-
sented by a Fourier transform via Bochner’s Theorem.
In addition, random fields are often assumed to be iso-
tropic, i.e. invariant under orthogonal transformations,
which restrict the covariance function further to satisfy
c(x − y) = c(r), r := ‖x − y‖. Finally, assumptions on c
are often made which guarantee that the realizations of

the associated random field are continuous or differen-
tiable in a mean-square or almost sure sense.
Figure 2 shows some covariance functions commonly
used in modelling random fields. Each covariance func-
tion contains the parameters σ , the standard deviation
and a, which is proportional to the correlation length2

defined as 1/c(0)
∫ ∞

0 c(r) dr. This quantity gives a length
scale for the distance over which the random field exhib-
its significant correlations. See [42] for a discussion of
exponential versus Bessel correlation models.

2.2 Karhunen–Loève expansion

The SFEM is based on separate treatment of the deter-
ministic and stochastic independent variables, in this
case x and ω. To this end, the random fields model-
ling the data are expanded in a sum of products of func-
tions of x and ω only, respectively. While there are other
possibilities (some are mentioned in [28]), the most com-
mon approach for achieving this is the Karhunen–Loève
expansion (KL) [20,25].

Any random field κ : D × Ω → R with a continuous
covariance function possesses the representation

κ(x , ω) = κ(x ) +
∞∑

j=1

√
λjκj(x )ξj(ω), (2)

where the series converges in L∞(D) ⊗ L2
P(Ω) (see, e.g.

[39] for a definition of the tensor product of Hilbert
spaces). Here {ξj}∞j=1 is a sequence of mutually uncor-
related random variables in L2

P(Ω) with zero mean and
unit variance determined by

ξj(ω) = 1
√

λj

∫

D

(κ(x , ω) − κ(x )) κj(x ) dx .

The numbers λj and functions κj : D → R are the
eigenpairs of the compact, nonnegative-definite and
self-adjoint covariance integral operator C: L2(D) →
L2(D), defined by

u *→ Cu =
∫

D

Covκ(x , ·)u(x ) dx ∈ L2(D).

The eigenfunctions are orthogonal in L2(D) and the
eigenvalues satisfy

∞∑

j=1

λj =
∫

D

Varκ(x ) dx . (3)

2 The correlation of κ at x and y is defined as Covκ (x , y)/
σκ (x )σκ (y), which for homogeneous isotropic fields becomes
c(r)/c(0).
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Fig. 2 Some common covariance functions of homogeneous, iso-
tropic random fields: exponential correlation c(r) = σ 2e−r/a (left),
Bessel correlation c(r) = σ 2 r

a K1(
r
a ) (middle) and the smooth cor-

relation c(r) = σ 2e−r2/a2
(right). In each case the parameter a > 0

has the values a = 0.1 (lower curve), a = 1 (middle curve) and
a = 2 (upper curve). K1 is the second-kind Bessel function of
order one

The eigenvalues of C form a descending sequence of
nonnegative numbers converging to zero, and hence par-
tial sums of (3) capture more and more of the total
variance of the random field κ and truncating the KL
expansion (2) yields an approximation of κ .

2.3 Stochastic boundary value problem

By allowing data of the boundary value problem (1),
e.g. the source term f and coefficient function κ , to be
random fields, we obtain a stochastic boundary value
problem (SBVP), the solution of which must then also
be a random field. We thus seek u : D × Ω → R such
that, P-almost surely (P-a.s.), there holds

−∇·
(
κ(x , ω)∇u(x , ω)

)
= f (x , ω), x ∈ D, (4a)

u(x , ω) = 0, x ∈ ∂D, (4b)

where we have prescribed homogeneous (deterministic)
boundary values for simplicity. To obtain a well-posed
problem (cf. [4,5,29]) we further assume that κ ∈ C1(D),
as a function of x , and that it is P-a.s. uniformly bounded
above away from zero below. Finally, if B(D) denotes
the σ -algebra generated by the open subsets of D and
likewise for B(R), then we choose A to be the smallest
σ -algebra on Ω such that f and κ are continuous with
respect to B(D) × A and B(R).

For finite element discretization of (4) we recast it
in a variational formulation. We begin with the deter-
ministic version (1) and select a suitable function space
X, in our example the Sobolev space H1

0(D). The usual
integration by parts procedure leads to the problem of
finding u ∈ X such that

a(u, v) = ((v) ∀v ∈ X,

with the bounded and coercive bilinear form a : X ×
X → R the bounded linear form ( : X → R given by

a(u, v) =
∫

D

κ∇u · ∇v dx , ((v) =
∫

D

fv dx u, v ∈ X.

For the variational characterization of the SBVP (4),
we choose the tensor product space X ⊗ L2

P(Ω) as the
function space of random fields on D and now seek
u ∈ X ⊗ L2

P(Ω) such that

〈a(u, v)〉 = 〈((v)〉 ∀v ∈ X ⊗ L2
P(Ω). (5)

The reader is again referred to [4,5,29] for discussions
of well-posedness of this stochastic variational problem.

3 The stochastic finite element method

The SFEM in its current form was first introduced in the
monograph by Ghanem and Spanos [15]. Although both
the term and the idea of incorporating randomness in
a finite element formulation have a longer history (see
[27,35] for overviews of earlier work, particularly in the
area of stochastic mechanics) this probably constitutes
the first systematic Galerkin approximation in deter-
ministic and random variables. Convergence analyses of
SFEM formulations can be found in [4,5,29,36]. Excel-
lent surveys can be found in [21,22]. See also [37], which
emphasises SFEM for reliability analysis. See [38,40]
for an analysis of SFEM discretizations based on white
noise analysis.

3.1 Discretization steps

The SFEM discretization treats the deterministic and
stochastic variables separately. For the determinitstic
part, let
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Xh = span{φ1, φ2, . . . , φNx } ⊂ X (6)

be any suitable finite dimensional subspace of the
deterministic variational space. In particular, this finite
element discretization of the associated deterministic
problem can be chosen completely independently of the
stochastic discretization.

For the stochastic discretization, the first step is to
determine a finite number M of independent random
variables {ξm}M

m=1 which together sufficiently capture
the stochastic variability of the problem. This step, which
should be regarded as part of the modelling, could, e.g.
be achieved by expanding the random fields in (4) in
their Karhunen–Loève series and truncating these after
a sufficiently large number of terms. As a consequence,
the stochastic variation of the random fields is now
only through its dependence on the random variables
ξ1, . . . , ξM, i.e.

κ(x , ω) = κ(x , ξ1(ω), . . . , ξM(ω)) =: κ(x , ξ(ω))

and analogously for the random field f . Let Γm := ξm(Ω)

denote the range of ξm and assume each ξm has a proba-
bility density ρm:Γm→[0, ∞). Since the ξm was assumed
independent, their joint probability density is given by

ρ(ξ) = ρ1(ξ1), . . . , ρM(ξM), ξ ∈ Γ := Γ1 × · · · × ΓM.

We can now reformulate the stochastic variational prob-
lem (4) in terms of the random vector ξ , i.e. we replace
L2

P(Ω) by L2
ρ(Γ ) and obtain the problem of finding

u ∈ H1
0(D) ⊗ L2

ρ(Γ ) such that

〈a(u, v)〉 = 〈((v)〉 ∀v ∈ H1
0(D) ⊗ L2

ρ(Γ ), (7)

where now

〈a(u, v)〉 =
∫

Γ

ρ(ξ)

∫

D

κ(x , ξ)∇u(x , ξ) · ∇v(x , ξ) dx dξ ,

and

〈((v)〉 =
∫

Γ

ρ(ξ)

∫

D

f (x , ξ)v(x , ξ) dx dξ .

The variational problem (7) is thus an approximation
of the SBVP (4) by a deterministic variational problem
with a finite number of parameters.

We next introduce a finite dimensional subspace

Wh = span
{
ψ1(ξ), ψ2(ξ), . . . , ψNξ (ξ)

}
⊂ W := L2

ρ(Γ )

(8)

of the stochastic parameter space and approximate the
tensor product space X ⊗ W by the tensor product

Xh ⊗ Wh =
{
v ∈ L2(D × Γ ) :

v ∈ span{φ(x )ψ(ξ) : φ ∈ Xh, ψ ∈ Wh}
}
.

The trial and test functions uh ∈ Xh ⊗ Wh are thus of
the form

uh(x , ξ) =
∑

i,j

ui,jφi(x )ψj(ξ)

with a set of Nx · Nξ coefficients ui,j. The construction
of Wh can be based on the tensor product structure of
W = L2

ρ1
(Γ1) ⊗ · · · ⊗ L2

ρM
(ΓM), discretizing the spaces

L2
ρm

(Γm) of univariate functions by finite dimensional
subspaces Wh

m and forming

Wh = span
{
ψα(ξ)=

M∏

m=1

ψαm(ξm) : ψαm ∈Wh
m ⊂Lρm(Γm)

}
,

α ∈ NM
0 .

Several constructions for Wh have been proposed in the
literature. One such approach (cf. [4,5,8,9,12]) employs
piecewise polynomials on a partition of each domain
Γm into subintervals (this assumes the Γm are bounded,
as is the case, e.g. when the ξm are uniformly distrib-
uted). The more widely used construction (cf. [4,15,29,
45]), however, employs global polynomials in each vari-
able ξm. When all random variables ξm are independent
and identically distributed Gaussian, a basis of tensor
product Hermite polynomials is used and the resulting
space is sometimes called the polynomial chaos expan-
sion, a terminology originally introduced by Norbert
Wiener [43] in the context of turbulence modelling.
A similar construction, referred to as generalized poly-
nomial chaos, employs expansions in orthogonal poly-
nomials associated with other classical probability
distributions [45]. Since tensor product polynomial
spaces increase rapidly in dimension, reduced tensor
product spaces bounding the total polynomial degree or
sparse grid approaches have also been proposed [22,36].

3.2 Structure of Galerkin equations

Efficient solution algorithms can be obtained by exploit-
ing the structure of the linear system of equations result-
ing from the Galerkin discretization, and hence we
discuss this structure here.

A basis of the discrete trial and test space Xh ⊗
Wh is given by all functions φi(x )ψj(ξ) where φi and
ψj belong to the given bases of Xh and Wh, respec-
tively. Expanding the discrete solution approximation
uh(x , ξ) = ∑

i,j ui,jφi(x )ψj(ξ) in this basis, inserting uh
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into the variational Eq. (7) along with a test function
v(x , ξ) = φk(x )ψ((ξ) results in the equation

∑

i,j

(
∫

Γ

ρ(ξ)ψj(ξ)ψ((ξ)[K (ξ)]i,k dξ

)

ui,j

=
∫

Γ

ρ(ξ)ψ((ξ)[f (ξ)]k dξ ∀k, (, (9)

where we have introduced the matrix K (ξ) and vector
f (ξ) defined as

[K (ξ)]i,k :=
∫

D

κ(x , ξ)∇φi(x ) · ∇φk(x ) dx ,

i, k = 1, 2, . . . , Nx, (10)

[ f (ξ)]k :=
∫

D

f (x , ξ)φk(x) dx ,

k = 1, 2, . . . , Nx. (11)

Equation (9) may be viewed as a semidiscrete equation,
where we have left the stochastic variables continuous.
The matrix K (ξ) and vector f (ξ), which have the form
of the usual finite element stiffness matrix and load vec-
tor, are seen to still depend on the random vector ξ , i.e.
are a random matrix and vector, respectively.

Next, we introduce the Nx × Nx matrices

A(,j :=
〈
ψj(ξ)ψ((ξ)K(ξ)

〉
, (, j = 1, . . . , Nξ

along with the Nx-dimensional vectors

f( = 〈ψ((ξ)f (ξ)〉 , ( = 1, . . . , Nξ ,

and, defining the global Galerkin matrix A and vector f
by

A =





A1,1 . . . A1,Nξ

...
...

ANξ ,1 . . . ANξ ,Nξ



 , f =




f1
...

fNξ



 , (12)

we obtain the global Galerkin system

Au = f (13)

with the block vector u of unknowns

u =




u1
...

uNξ



 , uj =




u1,j

...
uNx,j



 , j = 1, . . . , Nξ .

More can be said about the basic structure of the
Galerkin system by taking account the precise depen-
dence of the random fields κ and f —and hence the K
and f —on the random vector ξ . We discuss three cases
of increasing generality.

3.2.1 Random fields linear in ξ

The simplest structure results when the random fields κ

and f admit expansions with terms linear in the random
variables {ξm}M

m=1. Such is the case, e.g. when the ran-
dom fields are approximated by a truncated Karhunen–
Loève expansion. For Gaussian random fields these
random variables are also Gaussian and, being uncor-
related, independent. For nonGaussien fields the inde-
pendence of the random variables in the KL-expansion
is often added as an extra modelling assumption. Thus,
if κ and f are of the form

κ(x , ξ) = κ0(x ) +
M∑

m=1

κm(x )ξm,

f (x , ξ) = f0(x ) +
M∑

m=1

fm(x )ξm,

(14)

the associated matrix K (ξ) and vector f (ξ) are given by

K (ξ) = K0 +
M∑

m=1

Kmξm, f (ξ) = f0 +
M∑

m=1

fmξm,

in terms of matrices Km and vectors fm, m = 0, 1, . . . , M
given by

[Km]i,k = (κm∇φk, ∇φi)L2(D), [fm]k = (fm, φk)L2(D),

i, k = 1, 2, . . . , Nx.

As a result, the global Galerkin matrix A and load vec-
tor f from (12) take on the form of sums of Kronecker
(tensor) products

A = G0 ⊗ K0 +
M∑

m=1

Gm ⊗ Km,

(15)

f = g0 ⊗ f0 +
M∑

m=1

gm ⊗ fm,

with matrices Gm and vectors gm given in terms of the
stochastic basis from (8) and random variables {ξm}M

m=1 as

[G0](,k=〈ψkψ(〉 , [g0](=〈ψ(〉 , k, (=1, 2, . . . , Nξ ,

[Gm](,k=〈ξmψkψ(〉 , [gm](=〈ξmψ(〉 , k, (=1, 2, . . . , Nξ ,

m=1, 2, . . . , M.

Figure 3 shows examples of the sparsity pattern of the
global Galerkin matrix A when the polynomial chaos
in Gaussian random variables is used as the stochastic
basis. Each square in the matrix corresponds to a posi-
tion at which one of the matrices Gm, m = 0, 1, . . . , M
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Fig. 3 Sparsity pattern of the sum of the matrices {Gm}M
m=0 for M = 4 random variables and a stochastic space consisting of global

polynomials of total degree p = 1 (left), p = 2 (middle) and p = 3 (right)

has a nonzero, hence there will be a nonzero Nx × Nx
block at this position in the global matrix A.

In [4] it is shown that, when global polynomials are
used for the stochastic variables, then by choosing suit-
able orthogonal polynomials as basis function the
Kronecker factors Gm in (15) all assume diagonal form,
resulting in a block diagonal Galerkin matrix A. This
reduces the linear algebra problem to that of solving a
sequence of uncoupled linear systems of size Nx × Nx.
(See also [5,13].)

3.2.2 Expansion in nonindependent random variables

If there is no justification in assuming that the uncorre-
lated random variables ηm in an expansion of the form

κ(x , ω) = κ0(x ) +
M∑

m=1

κm(x )ηm(ω),

are independent, then a popular remedy is to perform
a KL expansion of each such linearly occurring random
variable in a new set of independent Gaussian random
variables, say ξ(ω) = [ξ1(ω), . . . , ξM(ω)]0, so that

ηm(ω) =
∑

r
η(r)

m ψr(ξ), r = 1, 2, . . . , Nξ . (16)

Such an expansion leads to a Galerkin matrix of the
form

A = G0 ⊗ K0 +
∑

m

∑

r
η(r)

m Hr ⊗ Km, (17)

with “stiffness” matrices Km as in Sect. 3.2.1 and
stochastic matrix factors Hr ∈ RNξ ×Nξ given by the
triple products

[Hr](,j =
〈
ψrψ(ψj

〉
, r, (, j = 1, 2, . . . , Nξ .

In comparison with Sect. 3.2.1, these matrices are less
sparse than their counterparts Gm and no change of
basis has yet been found in which these matrices sim-
plify. Figure 4 shows some Matlab spy-plots of the spar-
sity pattern of the sum of all matrices Hm in the case
where {ψj} is the polynomial chaos basis of bounded
total degree.

3.2.3 Expansion in stochastic basis

Finally, an SFEM discretization can do without a KL
or KL-like expansion entirely and expand any random
fields in whatever basis has been chosen for the stochas-
tic subspace Wh:

κ(x , ξ) = κ0(x ) +
∑

r
κr(x )ψr(ξ).

This approach, along with suggestions for computing the
coefficient functions κr(x ) are described in [22, Chap-
ter 4].

4 Computational aspects

The typical situation in which the SFEM can be applied
is when the stochastic PDE involves random fields with
correlation length sufficiently large that their KL expan-
sion yields a good approximation when truncated after
a small number M of (say, at most 20) terms. As a result,
the SFEM discretization would involve M independent
random variables and the stochastic dimension Nξ of
the problem then results from the manner in which the
M-fold tensor product space Lρ(Γ ) (see Sect. 3.1) is
discretized.



M. Eiermann et al.

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

nz = 350
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 1070

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

nz = 1990
0 10 20 30 40 50 60 70

0

10

20

30

40

50

60

70

nz = 3090

Fig. 4 Sparsity patterns of the sum of the matrices Hr for M = 4
random variables and basis functions of total degree p = 4. The
index r enumerates all polynomials in M = 4 variables up to total

degree (from upper left to lower right) 1, 2, 3 and 4, respectively,
corresponding to expansions (16) of different orders

In this section we consider the two main compuation-
al tasks involved in the implementation of the SFEM
for the model problem (4) and (5), namely the approx-
imate KL expansion, a large eigenvalue problem, and
the solution of the Galerkin equations (13).

4.1 The covariance eigenvalue problem

The numerical approximation of the KL expansion (2) of
a random field with known covariance function requires
an approximation of the eigenpairs of the covariance
operator C : L2(D) → L2(D) defined by

u *→ Cu, (Cu)(x ) =
∫

D

u(y)c(x , y) dy , (18)

whose kernel function c(x , y) is the covariance of the
given random field. We shall consider covariance kernels
of the form c(x , y) = c(‖x − y‖) with the real-valued
function of a scalar argument c one of the examples
shown in Fig. 2. The associated integral operator C is
self-adjoint, nonnegative definite and compact, hence
the eigenvalues are countable, real, nonnegative and
have zero as the only possible point of accumulation.
The decay rate of the eigenvalues to zero depends on
the smoothness of the kernel function, i.e. an analytic
kernel results in exponential decay, whereas finite Sobo-
lev regularity results in an algebraic decay. Moreover,
the decay rate increases with the correlation length. See
[14] and the references therein for detailed statements
on eigenvalue decay of covariance operators.
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We consider a Galerkin discretization of the operator
C resulting from a finite-dimensional subspace

Yh = span{η1, η2, . . . , ηN} ⊂ L2(D). (19)

Although one could use the space Xh given in (6), the
eigenvalue problem typically has other discretization
requirements than the spatial part of the SPDE, so that a
separate discretization is warranted. The Galerkin con-
dition

(Cu, v) = λ(u, v) ∀v ∈ Yh, (·, ·) = (·, ·)L2(D),

is then equivalent to the generalized matrix eigenvalue
problem

Cu = λMu (20)

with the symmetric and positive semidefinite matrix C
and the symmetric positive definite mass matrixM given
by

[C ]i,j = (Cηj, ηi), [M ]i,j = (ηj, ηi), i, j = 1, 2, . . . , N.

Since the number M of approximate eigenpairs required
for the truncated KL expansion is typically much smaller
than the dimension N, Krylov subspace methods for
eigenvalue problems [32,34] seem promising. Krylov
subspace methods require matrix vector products with
C and linear system solves with M . For finite element
approximations M can often be made (approximately)
diagonal, making these system solves inexpensive. The
matrix C , however, is in general dense, and the genera-
tion, storage and matrix-vector multiplication with this
matrix cannot be performed inexpensively in the usual
manner. In our work we have used the so-called hier-
archical matrix technique (see [6] and the references
therein) for these tasks, which, for integral operators
with sufficiently smooth kernels, is able to perform them
in O(N log N) operations.

While several authors have proposed using Krylov-
subspace algorithms based on the implicitly restarted
Arnoldi process (cf. [23]) for the covariance eigenvalue
problems, we have found the Lanczos-based thick-
restart method (TRL) [44] to be more efficient in this
context. Both approaches compute Ritz approximations
of eigenpairs with respect to Krylov subspaces of fixed
dimension, usually somewhat larger than the number M
of desired eigenpairs, which are successively improved
by generating a new Krylov space with a cleverly chosen
initial vector. The TRL method takes advantage of the
symmetry of the problem, resulting in shorter update
and restart formulas as well as a posteriori error bounds
for the eigenpairs.

4.2 Solving the Galerkin system

The complete SFEM Galerkin Eq. (13) has an Nξ × Nξ

block coefficient matrix consisting of blocks of size
Nx × Nx. If the deterministic part of the problem itself
already contains many degrees of freedom (Nx large),
then—even for a moderate value of the stochastic
dimension Nξ —the expense of solving the system can
be extremely high unless certain structural properties
are taken advantage of.

The problem simplifies considerably if the coefficient
function in the differential operator of (4) is determin-
istic and only source and/or boundary data are random.
This case is sometimes called that of a stochastic right
hand side [9]. In this case the coefficient matrix A in
(15) or (17) contains only the factors with index zero,
and, if the stochastic basis functions are chosen ortho-
normal, there results a block diagonal matrix with con-
stant blocks. In [12] a stochastic right hand side problem
is treated for an acoustic scattering application with ran-
dom boundary data. It is shown there how a source field
expanded in a KL series with M+1 terms permits reduc-
ing the global Galerkin problem to a linear system of size
Nx ×Nx with M+1 right hand sides, and how block Kry-
lov solvers may be applied to solve this multiple right
hand side system efficiently. An alternative approach for
the stochastic right hand side problem is given in [36].

For the stochastic left hand side problem, i.e. when
the differential operator has random coefficient func-
tions, one may attack the problem by solving the full
coupled block system. The results of iterative solution
approaches such as the conjugate gradient method and
preconditioning based on hierarchical basis decomposi-
tions for coefficient matrices of the type in Sect. 3.2.1
are given in [17] and [33]. For the stochastically linear
case described in Sect. 3.2.1, using double-orthogonal
polynomials reduces the system to block diagonal form,
resulting in Nξ uncoupled linear systems of size Nx ×Nx,
i.e. one deterministic problem for each stochastic degree
of freedom. This brings the effort for solving the Galer-
kin system close to the Monte Carlo method. Detailed
comparison of the SFEM using double orthogonal poly-
nomials with Monte Carlo finite element calculations
are given in [5].

Using double orthogonal polynomials to decouple the
system is also attractive for implementation on a parallel
computer (see, e.g. [22]), since the uncoupled subprob-
lems are “embarassingly parallel.” Alternatively, one
may take advantage of the fact that these linear systems
are sometimes closely related, particularly when the
stochastic variation is small. Krylov subspace methods
which allow one to exploit this fact are discussed in
Sect. 5.
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Fig. 5 Approximate eigenfunctions of indices 1,2,4 and 6 of the Bessel covariance operator on the domain D = [−1, 1]2

5 Numerical examples

In this section we present examples of calculations for
the covariance eigenproblem and the solution of the
Galerkin equations. All calculations were performed in
Matlab version 7 SP 2 on a 1.6 GHz Apple G5 com-
puter with 1.5 GB RAM. The eigenvalue calculations
employed the mesh generator of the finite element pack-
age Femlab as well as Matlab MEX-files based on a
preliminary version of the Hlib package for performing
hierarchical matrix computations.

5.1 The covariance eigenproblem

We consider the eigenproblem for the covariance oper-
ator (18) with Bessel kernel

Cov(x , y) = r
a

K1

( r
a

)
, r = ‖x − y‖, a > 0, (21)

on the square domain D = [−1, 1]2 with the function
space Yh (19) consisting of piecewise constant functions
with respect to a (nonuniform) triangulation of D. The
eigenvalues are calculated with the TRL algorithm with
fast matrix-vector products computed using the hier-
archical matrix approximation. The mass matrix M is
diagonal for piecewise constant elements, hence the lin-
ear system solve required at every Lanczos step poses
no difficulty. Figure 5 shows the approximations to the
eigenfunctions with indices 1, 2, 4 and 6 obtained for
a = 0.2 and with a mesh consisting of 1, 712 triangles.
Some indication of the performance is given in Table 1,
which shows the results of the eigenvalue calculation
for variations of the correlation length, mesh size and
dimension of the Krylov space. In all cases the parame-
ters used for the hierarchical matrix approximation were
an interpolation degree of 4 for the low rank approxi-
mation of admissible blocks, an admissibility threshold
of one and a minimal block size of 35 for fully calculated
block (see [6] for an explanation of these parameters).

Table 1 Performance of the TRL eigenvalue calculations using
hierarchical matrix approximation for fast matrix-vector products

m 2,668 DOF 7,142 DOF 14,160 DOF 28,326 DOF

a = 20, λne+1/λ1 < 10−3 (ne = 4)
6 18 (3.6) 15 (8.1) 15 (17) 15 (38)
10 3 (1.2) 3 (3.7) 3 (8.5) 3 (19)
12 3 (1.4) 2 (3.6) 2 (8.3) 2 (17)

a = 2, λne+1/λ1 < 10−2 (ne = 8)
10 14 (3.1) 14 (8.3) 16 (22) 16 (45)
16 4 (2.1) 4 (6.5) 4 (15) 4 (33)
20 3 (2.2) 3 (6.9) 3 (16) 3 (36)

a = 0.2, λne+1/λ1 < 10−2 (ne = 87)
110 5 (18) 5 (84) 5 (154) 5 (296)
120 4 (19) 4 (74) 4 (160) 4 (306)
130 3 (19) 3 (83) 3 (157) 3 (302)

The table gives the number of restart cycles of length m that were
necessary to compute the dominant ne eigenvalues of the covari-
ance operator discretized by piecewise constant elements with
various numbers of degrees of freedom (DOF). The numbers in
parentheses denote the elapsed time in seconds for the eigenvalue
calculation

The table shows the number of restart cycles nec-
essary to calculate the dominant ne eigenpairs of the
discretized covariance eigenvalue problem (20) as well
as the elapsed time. The number of eigenvalues ne to
compute was determined by the condition that the mag-
nitude of the eigenvalue with index ne + 1 be at most
1% of that of the largest eigenvalue. In the example of
strongest correlation (a = 20) we lowered the threshold
to 0.1% in order to compute more than a trivial num-
ber of eigenpairs. We observe that the TRL algorithm is
very robust with respect to the resolution of the integral
oparator once the dimension m of the Krylov space is set
sufficiently large, in these experiments a small number
in addition to the number ne of desired eigenpairs. We
further observe that the solution time for the eigenvalue
problem increases linearly with the size of the matrix,
which is somewhat better than the asymptotic complex-
ity of O(N log N) of the hierarchical matrix method.
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5.2 Solving the Galerkin system

In this section we present the results of some numeri-
cal experiments solving the family of Nξ linear systems
resulting from the block-diagonalization of the global
Galerkin system (13) using Krylov solvers designed to
reuse information over a sequence of linear systems.
We consider the following diffusion-type model prob-
lem from [45] posed on the square domain D = [−1, 1]2:

− ∇·
(
κ(x , ω)∇u(x , ω)

)
= f (x , ω), x ∈ D, (22a)

u(x , ω) = 1, x ∈ {−1} × [−1, 1], (22b)

u(x , ω) = 0, x ∈ [−1, 1] × {−1}, (22c)
∂u
∂n

(x , ω) = 0, x ∈ {1} × [−1, 1] ∪ [−1, 1] × {1}.
(22d)

The random fields κ and f are given by their finite KL
expansions

κ(x , ω) = κ0(x ) + ακ

M∑

m=1

√
λ

(κ)
m κm(x )ξm(ω),

f (x , ω) = f0(x ) + αf

M∑

m=1

√
λ

(f )
m fm(x )ξm(ω),

(23)

with {ξm}M
m=1 uncorrelated centered random variables of

unit variance, both expansions resulting from a Bessel
covariance function (21) with a = 20 and mean values
κ0(x ) ≡ 1, f0(x ) ≡ 0. The factors ακ and αf are chosen
such that the resulting fields have a prescribed (con-
stant) standard deviations of, unless specified otherwise,
σκ = σf = 0.4. Moreover, we assume the random varia-
bes {ξm}M

m=1 are fully cross-correlated, i.e. that the ran-
dom variables occurring in the random fields κ and f
are the same. In the experiments that follow we con-
sider both uniformly and normally distributed random
variables ξm. The stochastic space is spanned by tensor
product polynomials of degree pξ in M random vari-
ables, and we set pξ = 3 unless stated otherwise. We use
double orthogonal polynomials for the stochastic basis
functions, so that the Galerkin system is block diagonal.

The spatial discretization uses piecewise tensor
product polynomials of degree px on n · n axis-parallel
rectangular elements with function values at Gauss–
Lobatto nodes as the degrees of freedom (GLL spec-
tral elements). To resolve the singularity at the corner
(−1, −1) we use a graded rectangular mesh resulting
from the tensor product of the nodes {−1, −1 + 2ρn−1,
. . . , −1 + 2ρ, 1} with a grading factor ρ = 0.15. In our

examples we fix n=5 and px =13, resulting in Nx =4, 225
spatial degrees of freedom accounting for the essential
boundary conditions.

To solve the block diagonal systems efficiently, we
employ Krylov subspace methods which solve these
block equations in succession and which are designed
to reuse search subspaces generated in previous solves.
Two such recently introduced methods are known as
GCROT and GCRO-DR [10,11,31]. While GCROT
selects subspaces based on canonical angles between
the search space and its image under the system matrix,
GCRO-DR employs subspaces spanned by harmonic
Ritz vectors of the system matrix with respect to the
search space, i.e. approximate eigenvectors. In all exper-
iments we have used as a preconditioner in these Krylov
solvers an incomplete Cholesky decomposition with no
fill-in of the mean stiffness matrix K0. The stopping cri-
terion for each solve was a reduction of the (Euclid-
ean) residual norm by a factor of 10−8. The parameters
used for GCROT (see [10] for their meanings) were
m = 15 inner steps, inner selection cutoff of s = 10,
inner selection parameters p1 = 0, p2 = 2, and outer
truncation parameters kthresh = 20, kmax = 25 and
knew = 5. For GCRO-DR (see [31]) we used m = 40
and k = 25. These choices results in methods which
at any time during the iteration require storage of at
most 40 basis vectors and are able to recycle a sub-
space of dimension up to 25 from one linear system solve
to the next.

Table 2 shows the average iteration counts per block
equation of the Galerkin system for stochastic polyno-
mial degree pξ = 3 (Nξ = 256) using various Krylov
solvers for both uniformly and normally distributed ran-
dom variables {ξm} for variations of the variance of the
random fields. We compare the full GMRES method
with GCROT with and without subspace recycling as
well as GCRO-DR with recycling. We observe that sub-
space recycling results in considerable savings per system
and that, in these examples, the effect is more pro-
nounced for the GCROT method than for GCRO-DR,
from which we conclude that subspace angle informa-
tion across block systems was more useful than
spectral information. One also observes that, for both
methods, smaller variances lead to larger savings due
to subspace recycling. Table 3 gives analogous iteration
counts for variation of the number of stochastic degrees
of freedom Nξ , which is seen to have little influence.
Finally, in Table 4, we vary the correlation parameter
a, adjusting the number of random variables {ξm}M

m=1
such that λj/λ1 < 0.01 for all j > M. We observe that,
although increasing M leads to a strong increase in the
number of stochastic degrees of freedom, the average
iteration counts increase only modestly.
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Table 2 Average iteration counts per linear system for solving
the Galerkin system of equations using (full) GMRES, GCROT
without recycling as well as both GCROT and GCRO-DR with
recycling for ξm ∼ U[−

√
3,

√
3] (top) and ξm ∼ N(0, 1) (bottom)

σκ (= σf ) GMRES GCROT GCROT-re GCRO-DR-re

Uniform distribution
0.05 32 34 7 12
0.1 33 34 10 12
0.2 33 34 13 13
0.4 33 34 14 13
0.8 33 34 17 14
Normal distribution
0.05 33 33 9 12
0.1 33 33 12 13
0.2 33 33 14 13
0.4 33 33 16 13

Table 3 Average iteration counts per linear system for solving
the Galerkin system for variations of the number of degrees of
freedom in the stochastic space Wh (uniform distribution)

pξ Nξ GMRES GCROT GCROT-re GCRO-DR-
re

1 16 33 34 16 16
2 81 33 34 15 14
3 256 33 34 14 13
4 625 33 34 14 13
5 1,296 33 34 14 13

Table 4 Average iteration counts per linear system for solving the
Galerkin system for variations of the correlation length a (uniform
distribution)

a M Nξ GCROT-re GCRO-DR-re

20 2 16 14 17
5 4 256 15 14
2 6 4,096 17 15

6 Conclusions

We have given a brief overview of how boundary value
problems with random data may be solved using the
SFEM and have presented some of the variations of this
approach. We have further shown how analytical and
structural properties of the resulting linear algebra prob-
lems may be exploited to make the otherwise extremely
costly computational requirements of implementing the
SFEM tractable. Presently, work on efficient implemen-
tation of the SFEM is in its early stages and in this work
we have only treated the simplest case of random fields
with linear expansions in independent random variables,
and already there, the linear system and eigenvalue com-
putations are daunting. Consideration of random fields
with nonlinear expansions, for which the systems do not

decouple, are orders of magnitude more challenging.
Yet further challenges are posed by nonlinear stochastic
equations, time-dependence as well as inverse problems
with stochastic data. In summary, the SFEM is a prom-
ising technique, but much remains to be done to make
particularly the linear algebra calculations required for
its implementation tractable.
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