Course Name	Inverse Problems
Contents and Objectives	Content: - Mathematical characterization of inverse problems and applications - Hadamard's definition of well-posedness and the phenomenon of ill-posedness - Inverse problems as linear operator equations in Hilbert spaces - Singular value decomposition of compact operators and regularization approaches for ill-posed problems - Iterative methods - statistical inverse problems Objectives of the course: Introduction to the mathematics of inverse problems, both from a theoretical perspective (using tools from functional analysis), but also covering numerical algorithms and applications. The students learn how to overcome the ill-posedness of a given problem by using an appropriate regularization method and incorporating given a priori information.
Teaching	This course consists of lectures and exercise classes. - Lecture: Inverse problems (4h/week) - Exercise class: Inverse problems (2h/week) This class can be taught remotely.
Prerequisites	Basic notions of Functional Analysis
Verwendbarkeit des Moduls	-
Examination	Oral exam (30 minutes)
Credits	8 ECTS points
Frequency	This course is given at least every second year.
Workload	The estimated total working time for this course is 240 hours.
Duration	This course is given during one semester.

