Course content for International Master program "Mathematical modeling, computation and optimization"

Course	Singularity theory
Content and Aims	Content:• Differentiable and holomorphic functions• Critical and non-degenerate points of such functions• The Morse lemma• Local rings, Lemma of Nakayama• Finite Determinancy• Classification of simple singularities• Deformations, Transversality• Versal Deformations of hypersurface singularities
	<u>Aim of the course</u> : This lectures deals with so-called hypersurface singularities, which are special (critical) points of a differentiable or holomorphic function in several variables. The main topic of the lecture is the classification of such singularities together with some basic statements on their deformations.
Teaching	 This course consists of lectures and exercise classes. Lecture: Singularity theory (4h/week) Exercise class: Singularity theory (2h/week)
Prerequisits	Basic notions of Analysis, Linear Algebra and Higher Algebra
Exams	Oral exam (30 minutes)
Credits	8 ECTS points
Frequency	This course is given at least every second year.
Working time	The estimated total working time for this course is 240 hours.
Duration	This course is given during one semester.