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Outline

• Application of the Coupling Method

• Formalization of the Coupling Method

Three Banach space operator relations: MC, EAE and SC

• Question 1: Do MC, EAE and SC coincide

• Question 2: When are two operators MC/EAE/SC?



The Coupling Method for integral equations

Integral operators with semi-separable kernel

Define

K : L2
n[0, τ ]→ L2

n[0, τ ], (Kf )(t) =

∫ τ

0

k(t, s)f (s) ds, (f ∈ L2
n[0, τ ]).

Here

k(s, t) =

{
C(t)(I − P)B(s), s < t;
−C(t)PB(s), s > t,

with P ∈ Matn×n
C a projection and C ,B ∈ L2

n×n[0, τ ].
Then K is Hilbert-Schmidt, so I − K is Fredholm.

Integral equation: Given g ∈ L2
n[0, τ ], find f ∈ L2

n[0, τ ] with

g = (I − K)f , i .e., g(t) = f (t)−
∫ τ

0

k(t, s)f (s) ds.

Associated system

With B and C we associate the differential equation:

ẋ(t) = B(t)C(t)x(t) (t ∈ [0, τ ]).

Write U : [0, τ ]→ Matn×n
C for the associated fundamental matrix.
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The Coupling Method for integral equations

Bart-Gohberg-Kaashoek ’84

Define Sτ = PU(τ)P : ImP → ImP

and

H : L2
n[0, τ ]→ L2

n[0, τ ],(Hf )(t) =

∫ τ

0

C(t)B(s)f (s) ds;

Q : L2
n[0, τ ]→ ImP,Qf = P

∫ τ

0

B(s)f (s) ds

R : ImP → L2
n[0, τ ],(Qx)(t) = C(t)Px .

Then I − H is invertible and[
I − K −R
−Q I

]−1

=

[
(I − H)−1 (I − H)−1R
Q(I − H)−1 Sτ

]
. (MC)

Moreover, there exist invertible operators E and F such that[
I − K 0

0 IImP

]
= E

[
Sτ 0
0 IL2

n [0,τ ]

]
F . (EAE)

The Schur complements of
[

I −R
Q I−H

]
are given by

I − K = (I − H) + RQ and Sτ = I + Q(I − H)−1R. (SC)
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The Coupling Method for integral equations

Fredholm properties

The identity [
I − K 0

0 IImP

]
= E

[
Sτ 0
0 IL2

n [0,τ ]

]
F

with E and F invertible yields:

I − K (on L2
n[0, τ ]) and Sτ (on ImP) have the same ’Fredholm properties.’

And one can show:

Ker (I−K) = (I−H)−1R KerSτ and Im (I−K) = {f : Q(I−H)−1f ∈ Im Sτ}.

Generalized inverse
Expressing the Moore-Penrose generalized inverse of

[
I −R
Q I−H

]
in terms of its

Schur complements one can compute the MP generalized inverse of I − K :

(I + K)+ = (I − H)−1 − (I − H)−1RS+
τ Q(I − H)−1,

and solve the integal equation:

f = (I + K)+g , if g ∈ Im (I − K).
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The Coupling Method: Formalization

Two Banach space operators U : X → X and V : Y → Y are called matricially
coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if:

(MC) There exist an invertible operator Û :
[X
Y
]
→
[X
Y
]

such that

Û =

[
U U12

U21 U22

]
and Û−1 =

[
V11 V12

V21 V

]
.

(EAE) There exist Banach spaces X0 and Y0 and invertible operators E and F s.t.[
U 0
0 IX0

]
= E

[
V 0
0 IY0

]
F .

(SC) There exists an operator matrix S = [ A B
C D ] :

[X
Y
]
→
[X
Y
]

with A and D
invertible and

U = A− BD−1C , V = D − CA−1B.
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[X
Y
]
→
[X
Y
]

such that
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Y
]
→
[X
Y
]

with A and D
invertible and

U = A− BD−1C , V = D − CA−1B.

In the example

I − K and Sτ are MC ⇒ I − K and Sτ are EAE ⇒ I − K and Sτ are SC
⇓ ⇓

Fredholm properties generalized inverse



The Coupling Method: Formalization

Two Banach space operators U : X → X and V : Y → Y are called matricially
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and Û−1 =

[
V11 V12

V21 V

]
.

(EAE) There exist Banach spaces X0 and Y0 and invertible operators E and F s.t.[
U 0
0 IX0

]
= E

[
V 0
0 IY0

]
F .

(SC) There exists an operator matrix S = [ A B
C D ] :

[X
Y
]
→
[X
Y
]

with A and D
invertible and

U = A− BD−1C , V = D − CA−1B.

More recent applications
• Diffraction theory (Castro, Duduchava, Speck, e.g., 2014)

• Truncated Toeplitz operators (Câmara, Partington, 2016)

• Connection with Paired Operators approach (Speck, 2017)

• Wiener-Hopf factorization (Groenewald, Kaashoek, Ran, 2017)
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with A and D
invertible and
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More recent applications
• Completeness theorems in dynamical systems (Kaashoek, Verduyn Lunel)

• Unbounded operator functions (Engström, Torshage, Arxiv)
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Question (Bart-Tsekanovskii ’92)

Do the operator relations MC, EAE and SC coincide?

MC ⇐⇒ EAE ⇐= SC

Early results

• Bart-Gohberg-Kaashoek ’84: MC ⇒ EAE

• Bart-Tsekanovskii ’92: EAE ⇒ MC (so EAE⇔MC)

• Bart-Tsekanovskii ’94: SC ⇒ EAE

Proof MC =⇒ EAE[
U 0
0 IY

]
= E

[
V 0
0 IX

]
F holds with E =

[
U12 U
U22 U21

]
and F =

[
−U21 IY
V11U V12

]
and

E−1 =

[
V21 V
V11 V12

]
, F−1 =

[
−V12 I
U22V U21

]
.
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Question (Bart-Tsekanovskii ’92)

Do the operator relations MC, EAE and SC coincide?

EAOE
⇓

MC ⇐⇒ EAE ⇐= SC
m

SEAEEarly results

• Bart-Gohberg-Kaashoek ’84: MC ⇒ EAE

• Bart-Tsekanovskii ’92: EAE ⇒ MC (so EAE⇔MC)

• Bart-Tsekanovskii ’94: SC ⇒ EAE

• Remaining implication: Does EAE ⇒ SC hold?

• BT’92: Yes if U and V are Fredholm (Banach space: + index = 0)
• BGKR’05: Yes if SC is an equivalence relation (this is true for EAE)
• BT’92: Yes if U and V are SEAE (SEAE ⇔ SC)

(SEAE = Strong EAE = EAE with E21 and F12 invertible)
• BGKR’05: Yes if U and V are EAOE (EAOE ⇒ SC)

(EAOE= EAE with X0 = {0} or Y0 = {0} (one-sided extension))

(BT=Bart-Tsekanovskii, BGKR=Bart-Gohberg-Kaashoek-Ran)



Approximation by invertibles

Theorem (tH-Ran ’13) Let U and V be EAE operators that can be approx. by
invertible operators (in norm). Then U and V are SEAE, and hence SC.

Proof Go for SEAE (F12 and E21 invertible).
By concrete formulas for EAE ⇒ MC ⇒ EAE, WLOG

E =

[
E11 U
E21 E22

]
, E−1 =

[
Ẽ11 V

Ẽ21 Ẽ22

]
, F =

[
F11 IY
F21 F22

]
, F−1 =

[
F̃11 IX
F̃21 F̃22

]
.

In particular, E21V + E22Ẽ22 = I . Take an invertible Ṽ close to V s.t.

N := E21Ṽ + E22Ẽ22 is invertible.

Then also
E21 − E22Ẽ22Ṽ

−1 = NṼ−1 is invertible.

Then note that [ U 0
0 I ] = Ê [ V 0

0 I ] F̂ holds with

Ê = E

[
I 0

Ẽ22Ṽ
−1 I

]
=

[
∗ ∗

E21 − E22Ẽ22Ṽ
−1 ∗

]
,

F̂ =

[
I 0

−Ẽ22Ṽ
−1V I

]
F =

[
∗ I
∗ ∗

]
.

Thus U and V are SEAE.
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EAE and SC on separable Hilbert spaces

Question Which operators can be approximated by invertibles?

Banach space operators: Not much seems to be known.
Hilbert space operators:

Feldman-Kadison ’54: General criterion + specialization to separable case.

Theorem (Feldman-Kadison ’54) Let W : Z → Z, with Z a separable Hilbert
space. Then W cannot be approximated by invertible operators if and only if
W has closed range and dim KerW 6= dim KerW ∗.

Thus a separable Hilbert space operator can be approximated by invertibles or
has closed range. (Not true on non-separable Hilbert spaces.)

Theorem (tH-Ran ’13) Let U and V be closed range Hilbert space operators.
Then U and V are EAE if and only if U and V are SC if and only if

dim KerU = dim KerV and dim KerU∗ = dim KerV ∗.

Theorem (tH-Ran ’13) Assume U and V are EAE operators on separable
Hilbert spaces. Then U and V are SEAE, and hence SC.
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When are operators EAE?

Question When are operators U and V EAE?

Known: Assume U and V are closed range Hilbert space operators. Then:

U and V are EAE ⇐⇒ dim KerU = dim KerV and dim KerU∗ = dim KerV ∗.

Definition (generated operator ideal) For a Banach space operator
U : X → X and Banach spaces Z1 and Z2 we define

IU(Z1,Z2) :=

{
n∑

j=1

RjUR
′
j : Rj : X → Z2, R ′j : Z1 → X , n ∈ N

}

and the operator ideal generated by U: IU =
⋃
Z1,Z2

IU(Z1,Z2).

Theorem (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
compact Banach space operators that are EAE. Then IU = IV .
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Timotin’s approach to the general Hilbert space case, Pt I

Let U : X → X and V : Y → Y be Hilbert space operators. Define

|U| = (U∗U)1/2 and |V | = (V ∗V )1/2.

Theorem (Timotin ’14) The operators U and V are EAE if and only if |U| and
|V | are EAE and

dim kerU = dim kerV , dim kerU∗ = dim kerV ∗. (∗)

For any interval I ⊂ R, let E|U|[I ] and E|V |[I ] be the spectral projections of |U|
and |V | on I .

Theorem (Fillmore-Williams ’71) The operators U and V are equivalent if and
only if (∗) holds and there is a δ > 0 so that for all 0 < α ≤ β <∞ we have

dim ranE|U|([α, β)) ≤ dim ranE|V |([αδ, β/δ))

dim ranE|V |([α, β)) ≤ dim ranE|U|([αδ, β/δ)).



Timotin’s approach to the general Hilbert space case, Pt I

Let U : X → X and V : Y → Y be Hilbert space operators. Define

|U| = (U∗U)1/2 and |V | = (V ∗V )1/2.

Theorem (Timotin ’14) The operators U and V are EAE if and only if |U| and
|V | are EAE and

dim kerU = dim kerV , dim kerU∗ = dim kerV ∗. (∗)

For any interval I ⊂ R, let E|U|[I ] and E|V |[I ] be the spectral projections of |U|
and |V | on I .

Theorem (Fillmore-Williams ’71) The operators U and V are equivalent if and
only if (∗) holds and there is a δ > 0 so that for all 0 < α ≤ β <∞ we have

dim ranE|U|([α, β)) ≤ dim ranE|V |([αδ, β/δ))

dim ranE|V |([α, β)) ≤ dim ranE|U|([αδ, β/δ)).



Timotin’s approach to the general Hilbert space case, Pt II

Theorem (Timotin ’14) For Hilbert space operators U and V TFAE:

• U and V are EAE;

• U and V satisfy

dim kerU = dim kerV , dim kerU∗ = dim kerV ∗. (∗)

and there exist 0 < δ < 1 and a > 0 such that for al 0 < α ≤ β< a

dim ranE|U|([α, β)) ≤ dim ranE|V |([αδ, β/δ))

dim ranE|V |([α, β)) ≤ dim ranE|U|([αδ, β/δ)).

• U and V are EAOE, and hence SC.
(Recall: EAOE= EAE with X0 = {0} or Y0 = {0} (one-sided extension))
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(Recall: EAOE= EAE with X0 = {0} or Y0 = {0} (one-sided extension))

This result specializes to compact operators in the following form.

Theorem (Timotin ’14) Assume U and V are compact (and of infinite rank)
with singular values un ↘ 0 and vn ↘ 0, respectively. Then U and V are
EAE=MC=SC if and only if (∗) holds and their singular values are comparable
after a shift: There exist 0 < δ < 1 and m ∈ N such that

δ ≤ un
vn+m

≤ 1

δ
for all n ≥ 0 or δ ≤ vn

un+m
≤ 1

δ
for all n ≥ 0.
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Which shows U and V EAE is much stronger than generating the same operator
ideal.

Theorem (Schatten ’60) Let U and V be compact Hilbert space operators with
with singular values un ↘ 0 and vn ↘ 0. Then IU = IV if and only if there exist
M > 0 and m ∈ N so that

um(n−1)+j ≤ Mvn and vm(n−1)+j ≤ Mun (n ∈ N, j = 1, . . . ,m − 1).



Essentially incomparable Banach spaces and EAE

Definition Banach spaces X a Y are called essentially incomparable if for any
operators T : X → Y and S : Y → X

I − TS and I − ST are Fredholm.

Pitt-Rosenthal Theorem
Any operator T : `p → `q, for 1 ≤ q < p <∞, is compact. (Hence `p and `q

are essentially incomparable.)

Theorem (tH-Messerschmidt-Ran ’15) Assume X and Y are infinite
dimensional, essentially incomparable Banach spaces. Then operators
U : X → X and V : Y → Y with U or V compact cannot be EAE.

Recall: EAOE= EAE with X0 = {0} or Y0 = {0} (one-sided extension)

Theorem (tH-Messerschmidt-Ran ’15) Assume X and Y are infinite
dimensional, essentially incomparable Banach spaces. Then no operators
U : X → X and V : Y → Y are ever EAOE.

Corollary In general the operator relation EAOE cannot coincide with and
SC/EAE/MC.
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Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Then there exists a closed subspace of Y of finite
co-dimension that is topologically isomorphic to a closed subspace of X .

Corollary (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Assume Y is prime, i.e., every infinite dimensional
complementable subspace of Y is topologically isomorphic to Y. Then X
contains a copy of Y.

Proposition (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y with
V compact. Assume (P) is a Banach space property s.t. every closed subspace
of X has property (P) and (P) is preserved under direct sums with finite
dimensional spaces. If U and V are EAE, then Y also has property (P).

Corollary (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Then:

• If X is isomorphic to a Hilbert space, then so is Y;

• If X is separable, then so is Y;

• If X is reflexive, then so is Y;

• If X has the Radon-Nikodym property, then so does Y;

• If X has the Hereditary Dunford-Pettis property, then so does Y.



Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Then there exists a closed subspace of Y of finite
co-dimension that is topologically isomorphic to a closed subspace of X .

Corollary (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Assume Y is prime, i.e., every infinite dimensional
complementable subspace of Y is topologically isomorphic to Y. Then X
contains a copy of Y.

Proposition (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y with
V compact. Assume (P) is a Banach space property s.t. every closed subspace
of X has property (P) and (P) is preserved under direct sums with finite
dimensional spaces. If U and V are EAE, then Y also has property (P).

Corollary (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Then:

• If X is isomorphic to a Hilbert space, then so is Y;

• If X is separable, then so is Y;

• If X is reflexive, then so is Y;

• If X has the Radon-Nikodym property, then so does Y;

• If X has the Hereditary Dunford-Pettis property, then so does Y.



Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Then there exists a closed subspace of Y of finite
co-dimension that is topologically isomorphic to a closed subspace of X .

Corollary (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Assume Y is prime, i.e., every infinite dimensional
complementable subspace of Y is topologically isomorphic to Y. Then X
contains a copy of Y.

Proposition (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y with
V compact. Assume (P) is a Banach space property s.t. every closed subspace
of X has property (P) and (P) is preserved under direct sums with finite
dimensional spaces. If U and V are EAE, then Y also has property (P).

Corollary (tH-Messerschmidt-Ran ’15) Let U : X → X and V : Y → Y be
EAE with V compact. Then:

• If X is isomorphic to a Hilbert space, then so is Y;

• If X is separable, then so is Y;

• If X is reflexive, then so is Y;

• If X has the Radon-Nikodym property, then so does Y;

• If X has the Hereditary Dunford-Pettis property, then so does Y.



EAE ⇒ SC for compact operators

Theorem (tH-Messerschmidt-Ran-Roelands-Wortel ’15) Let U ∈ B(X ) and
V ∈ B(Y) be compact. Then

U and V are EAE ⇐⇒ U and V are EAOE ⇐⇒ U and V are SC.

Sketch of proof

By the constructions from EAE ⇒ MC ⇒ EAE, WLOG X0 = Y, Y0 = X and
E and F have the form

F =

[
F11 IY
F21 F22

]
, E =

[
E11 U
E21 −F11

]
F−1 =

[
−F22 IX

I + F11F22 −F11

]
, E−1 =

[
Ê11 V

Ê21 F22

]
.

Then U ⊗ IY = E(V ⊗ IX )F yields

(i) I = F21 − F22F11, (ii) U = E11VF11 + UF21, (iii) E21VF11 = F11F21,

(iv) E11V = −UF22, (v) F11F22 = E21V − I , (vi) Ê11U = VF11,

(vii) Ê21U = F21, (viii) E11Ê11 = I − UÊ21, (ix) E21Ê11 = F11Ê21,

(x) Ê11E11 = I − VE21, (xi) Ê21E11 = −F22E21.
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Sketch of proof II

Since U and V are compact

−F22F11 = I − Ê21U and − F11F22 = I − E21V are Fredholm.

Atkinson’s Theorem: F11 and F22 are Fredholm and Ind(F11) = −Ind(F22).

Similar argument: E11 and Ê11 are Fredholm and Ind(E11) = −Ind(Ê11).
We can decompose

F22 =

[
F ′22 0
0 0

]
:

[
K2

KerF22

]
→
[

ImF22

H2

]
,

E11 =

[
E ′11 0
0 0

]
:

[
F1

KerE11

]
→
[

ImE11

G1

]
,

with F ′22 and E ′11 invertible, and decompose U and V accordingly:

U =

[
U11 U12

U21 U22

]
:

[
ImF22

H2

]
→
[

ImE11

G1

]
,

V =

[
V11 V12

V21 V22

]
:

[
K2

KerF22

]
→
[

F1

KerE11

]
.

Use further identities:

U21 = 0, V12 = 0 and U11 and V11 are equivalent: U11F
′
22 = −E ′11V11.



Sketch of proof III

We have U11 and V11 equivalent (U11F
′
22 = −E ′11V11) and

U =

[
U11 U12

0 U22

]
:

[
ImF22

H2

]
→
[

ImE11

G1

]
,

V =

[
V11 0
V21 V22

]
:

[
K2

KerF22

]
→
[

F1

KerE11

]
.

After many more manipulations of the identities: U22 and V22 are invertible.
Then U and V are equivalent to

Ũ :=

[
U11 0
0 IH2

]
and Ṽ :=

[
V11 0
0 IKerE11

]
and H2 and KerE11 are finite dimensional. Say dimH2 < dim KerE11.
Let T : H2 → KerE11 be injective and Z ′ a complement of Z := JH2 in
KerE11. Then Ũ and Ṽ are EAOE via U11 0 0

0 IH2 0
0 0 IZ′

 =

 E ′11 0 0
0 T+TZ 0
0 0 IZ′

  V11 0 0
0 IZ 0
0 0 IZ′

  −F ′−1
22 0 0
0 ΠZT 0
0 0 IZ′


with T+ a left inverse of T , JZ : Z → KerE11 and ΠZ : KerE11 → Z the
canonical embedding and projection. Then U and V are also EAOE, and hence
SC.



Beyond compact operators

Observation: The arguments involving compact operators only use that the
invertible elements in the Calkin algebra of the compacts are the Fredholm
operator.

Definition Let T : X → Y be a Banach space operator. We we call T :

• inessential if IY − TS is Fredholm for any S : Y → X (equiv. IX − ST is
Fredholm for any S : Y → X ) (Kleinecke, 1963).

• strictly singular if for no infinite dimensional, closed, complementable
subspace M of X the operator T |M :M→ Y is an isomorphism.

• strictly co-singular if for no infinite codimensional, closed, complementable
subspace N of Y the operator PNT : X → N is surjective.

Then for operators T : X → X :

{compacts} ⊂ {strictly singular}
{strictly co-singular} ⊂ {inessentials} ⊂ B(X )

are all closed operator ideals in B(X ) and the inessential operators In(X ) is the
largest closed ideal in B(X ) s.t. in the Calkin algebra B(X )/In(X ) the
Fredholm operators in B(X ) coincide with the invertible operators.

In all results above “compact” can be replaced by “inessential”.
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Exotic Banach spaces

We now know EAE and SC coincide:

• for Hilbert space operators

• for Fredholm Banach space operators with index 0

• for inessential Banach space operators (and hence compact and strictly
singular).

Definition A Banach space X has

• few operators if every operator on X is of the form λIX + S with λ ∈ C
and S strictly singular;

• very few operators if every operator on X is of the form λIX + K with
λ ∈ C and K compact.

In both cases the Calkin algebra is one dimensional.
For operators on such spaces EAE and SC coincide.

Existence of such spaces:

• Few operators: Gowers-Maurey 1997; All hereditarily indecomposable
Banach spaces have few operators

• Very few operators: Argyros-Heydon 2011
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An application: Multiplication operators

For f ∈ L∞ over the unit circle T, define the multiplication operator

Mf : Lp → Lp, (Mf g)(e it) = f (e it)g(e it)

which decomposes w.r.t. the direct sum Lp = K p+̇Hp as

Mf =

[
T̃f H̃f

Hf Tf

]
:

[
K p

Hp

]
→
[

K p

Hp

]
with Hf and Tf the Hankel and Toeplitz operators of f and H̃f and T̃f

associated with the Hankel and Toeplitz operators of f̃ (z) = f (z).

Now assume f is in the Wiener space W (abs. summable Fourier coeffs.).

Then Hf and H̃f are compact and by Wiener’s 1/f theorem:

f (z) 6= 0 (z ∈ T) ⇐⇒ 1/f ∈ W.

and in that case[
T̃1/f H̃1/f

H1/f T1/f

]
= M1/f = M−1

f =

[
T̃f H̃f

Hf Tf

]−1

.
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An application: Multiplication operators

Reconfigure M1/f and M−1
f as:[

H1/f T1/f

T̃1/f H̃1/f

]
=

[
H̃f T̃f

Tf Hf

]−1

:

[
K p

Hp

]
→
[

Hp

K p

]−1

.

Conclusion: Hf and H1/f are MC, and H̃f and H̃1/f are MC.

Theorem (tH-Messerschmidt-Ran-Roelands-Wortel) Let f ∈ W with f (z) 6= 0,
z ∈ T. Then Hf and H1/f are EAE and hence Hf and H1/f generate the same
operator ideal. In particular, Hf is in the q-th Schatten-von Neumann class Cq

if and only if H1/f is in Cq.

Let P denote the Riesz projection from Lp onto Hp. By Peller’s theorem.

Corollary Let f ∈ W with f (z) 6= 0, z ∈ T. Then Pf is in the Besov space

B
1/q
q if and only if P(1/f ) is in B

1/q
q .

Corollary Let p = 2. Let f ∈ W with f (z) 6= 0, z ∈ T. Let αn ↘ 0 and βn ↘ 0
be the singular values of Hf and H1/f . Then there exists a positive integer k
and a c > 0 such that

c <
αn

βn+k
< 1/c (n ∈ N) or c <

βn
αn+k

< 1/c (n ∈ N). (∗)

It is not clear if (∗) holds with approx. numbers in case p 6= 2.
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Corollary Let f ∈ W with f (z) 6= 0, z ∈ T. Then Pf is in the Besov space

B
1/q
q if and only if P(1/f ) is in B

1/q
q .

Corollary Let p = 2. Let f ∈ W with f (z) 6= 0, z ∈ T. Let αn ↘ 0 and βn ↘ 0
be the singular values of Hf and H1/f . Then there exists a positive integer k
and a c > 0 such that

c <
αn

βn+k
< 1/c (n ∈ N) or c <

βn
αn+k

< 1/c (n ∈ N). (∗)

It is not clear if (∗) holds with approx. numbers in case p 6= 2.



Summary

• The operator relations MC, EAE and SC play an important role in today’s
application of operator theory.

• While in many applications MC, EAE and SC coincide, the implication

MC/EAE =⇒ SC

remains open in general, but is proved affirmatively for
I Hilbert space operators
I Fredholm operators with index 0
I Inessential operators (and hence compact and strictly singular operators)
I operators that can be approx. by invertibles

• What does EAE of U and V mean?
I Full answer for Hilbert space operators in terms of spectral projections
I For Hilbert space compact operators: singular values comparable after a

shift
I Banach space compact operators: Generate the same ideals
I Banach space compact operators: Banach space structure cannot be too

different

• Hopefully at a future IWOTA: full proof for EAE ⇒ SC, and many more
applications.
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