The coupling method and operator relations

Sanne ter Horst ¹ North-West University

IWOTA 2017 Chemnitz, Germany

Joint work with M. Messerschmidt, A.C.M. Ran, M. Roelands and M. Wortel

¹This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Numbers 90670, and 93406).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Application of the Coupling Method
- Formalization of the Coupling Method

Three Banach space operator relations: MC, EAE and SC

- Question 1: Do MC, EAE and SC coincide
- Question 2: When are two operators MC/EAE/SC?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Integral operators with semi-separable kernel Define

$$K: L^2_n[0,\tau] \to L^2_n[0,\tau], \quad (Kf)(t) = \int_0^{\tau} k(t,s)f(s) \, ds, \quad (f \in L^2_n[0,\tau]).$$

Here

$$k(s,t) = \begin{cases} C(t)(I-P)B(s), & s < t; \\ -C(t)PB(s), & s > t, \end{cases}$$

with $P \in \operatorname{Mat}_{\mathbb{C}}^{n \times n}$ a projection and $C, B \in L^{2}_{n \times n}[0, \tau]$. Then K is Hilbert-Schmidt, so I - K is Fredholm.

Integral equation: Given $g \in L^2_n[0,\tau]$, find $f \in L^2_n[0,\tau]$ with

$$g = (I - K)f$$
, i.e., $g(t) = f(t) - \int_0^\tau k(t,s)f(s) \, ds$.

■▶ ▲ ■▶ = ● ● ●

Integral operators with semi-separable kernel Define

$$K: L^2_n[0,\tau] \to L^2_n[0,\tau], \quad (Kf)(t) = \int_0^{\tau} k(t,s)f(s) \, ds, \quad (f \in L^2_n[0,\tau]).$$

Here

$$k(s,t) = \begin{cases} C(t)(I-P)B(s), & s < t; \\ -C(t)PB(s), & s > t, \end{cases}$$

with $P \in \operatorname{Mat}_{\mathbb{C}}^{n \times n}$ a projection and $C, B \in L^{2}_{n \times n}[0, \tau]$. Then K is Hilbert-Schmidt, so I - K is Fredholm.

Integral equation: Given $g \in L^2_n[0,\tau]$, find $f \in L^2_n[0,\tau]$ with

$$g = (I - K)f$$
, i.e., $g(t) = f(t) - \int_0^\tau k(t,s)f(s) \, ds$.

Associated system

With B and C we associate the differential equation:

$$\dot{x}(t) = B(t)C(t)x(t) \quad (t \in [0,\tau]).$$

Write $U: [0, \tau] \to \mathsf{Mat}_{\mathbb{C}}^{n \times n}$ for the associated fundamental matrix.

Bart-Gohberg-Kaashoek '84 Define $S_{\tau} = PU(\tau)P : \operatorname{Im} P \to \operatorname{Im} P$

Bart-Gohberg-Kaashoek '84 Define $S_{\tau} = PU(\tau)P : \operatorname{Im} P \to \operatorname{Im} P$ and

$$H: L_n^2[0,\tau] \to L_n^2[0,\tau], (Hf)(t) = \int_0^\tau C(t)B(s)f(s) \, ds;$$
$$Q: L_n^2[0,\tau] \to \operatorname{Im} P, Qf = P \int_0^\tau B(s)f(s) \, ds$$
$$R: \operatorname{Im} P \to L_n^2[0,\tau], (Qx)(t) = C(t)Px.$$

Then I - H is invertible and

$$\begin{bmatrix} I - K & -R \\ -Q & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - H)^{-1} & (I - H)^{-1}R \\ Q(I - H)^{-1} & S_{\tau} \end{bmatrix}.$$
 (MC)

Bart-Gohberg-Kaashoek '84 Define $S_{\tau} = PU(\tau)P : \operatorname{Im} P \to \operatorname{Im} P$ and

$$H: L_n^2[0,\tau] \to L_n^2[0,\tau], (Hf)(t) = \int_0^\tau C(t)B(s)f(s) \, ds;$$
$$Q: L_n^2[0,\tau] \to \operatorname{Im} P, Qf = P \int_0^\tau B(s)f(s) \, ds$$
$$R: \operatorname{Im} P \to L_n^2[0,\tau], (Qx)(t) = C(t)Px.$$

Then I - H is invertible and

$$\begin{bmatrix} I - K & -R \\ -Q & I \end{bmatrix}^{-1} = \begin{bmatrix} (I - H)^{-1} & (I - H)^{-1}R \\ Q(I - H)^{-1} & S_{\tau} \end{bmatrix}.$$
 (MC)

Moreover, there exist invertible operators E and F such that

$$\begin{bmatrix} I - K & 0\\ 0 & I_{\text{Im}P} \end{bmatrix} = E \begin{bmatrix} S_{\tau} & 0\\ 0 & I_{L_n^2[0,\tau]} \end{bmatrix} F.$$
 (EAE)

The Schur complements of $\begin{bmatrix} I & -R \\ Q & I-H \end{bmatrix}$ are given by

$$I - K = (I - H) + RQ$$
 and $S_{\tau} = I + Q(I - H)^{-1}R$.

Fredholm properties

The identity

$$\begin{bmatrix} I - K & 0 \\ 0 & I_{\text{Im}P} \end{bmatrix} = E \begin{bmatrix} S_{\tau} & 0 \\ 0 & I_{L_n^2[0,\tau]} \end{bmatrix} F$$

with E and F invertible yields:

I-K (on $L^2_n[0,\tau]$) and $S_{ au}$ (on Im P) have the same 'Fredholm properties.'

And one can show:

 $\operatorname{Ker}(I-K) = (I-H)^{-1}R\operatorname{Ker} S_{\tau} \quad \text{and} \quad \operatorname{Im}(I-K) = \{f \colon Q(I-H)^{-1}f \in \operatorname{Im} S_{\tau}\}.$

Fredholm properties

The identity

$$\begin{bmatrix} I - K & 0 \\ 0 & I_{\text{Im }P} \end{bmatrix} = E \begin{bmatrix} S_{\tau} & 0 \\ 0 & I_{L_n^2[0,\tau]} \end{bmatrix} F$$

with E and F invertible yields:

I-K (on $L^2_n[0,\tau]$) and $S_{ au}$ (on Im P) have the same 'Fredholm properties.'

And one can show:

 $\operatorname{Ker}(I-K) = (I-H)^{-1}R\operatorname{Ker} S_{\tau} \quad \text{and} \quad \operatorname{Im}(I-K) = \{f \colon Q(I-H)^{-1}f \in \operatorname{Im} S_{\tau}\}.$

Generalized inverse

Expressing the Moore-Penrose generalized inverse of $\begin{bmatrix} I & -R \\ Q & I-H \end{bmatrix}$ in terms of its Schur complements one can compute the MP generalized inverse of I - K:

$$(I + K)^{+} = (I - H)^{-1} - (I - H)^{-1} RS_{\tau}^{+} Q(I - H)^{-1},$$

and solve the integal equation:

 $f = (I + K)^+ g$, if $g \in \operatorname{Im}(I - K)$.

Two Banach space operators $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ are called *matricially coupled* (MC), *equivalent after extension* (EAE) resp. *Schur coupled* (SC) if:

(MC) There exist an invertible operator $\widehat{U}: \begin{bmatrix} \chi\\ \mathcal{Y} \end{bmatrix} \to \begin{bmatrix} \chi\\ \mathcal{Y} \end{bmatrix}$ such that

$$\widehat{U} = \begin{bmatrix} U & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \text{ and } \widehat{U}^{-1} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V \end{bmatrix}$$

(EAE) There exist Banach spaces \mathcal{X}_0 and \mathcal{Y}_0 and invertible operators E and F s.t.

$$\begin{bmatrix} U & 0 \\ 0 & I_{\chi_0} \end{bmatrix} = E \begin{bmatrix} V & 0 \\ 0 & I_{\mathcal{Y}_0} \end{bmatrix} F$$

(SC) There exists an operator matrix $S = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \chi \\ \mathcal{Y} \end{bmatrix} \rightarrow \begin{bmatrix} \chi \\ \mathcal{Y} \end{bmatrix}$ with A and D invertible and

$$\boldsymbol{U} = \boldsymbol{A} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}, \quad \boldsymbol{V} = \boldsymbol{D} - \boldsymbol{C}\boldsymbol{A}^{-1}\boldsymbol{B}.$$

Two Banach space operators $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ are called *matricially coupled* (MC), *equivalent after extension* (EAE) resp. *Schur coupled* (SC) if:

(MC) There exist an invertible operator $\widehat{U}: \begin{bmatrix} \chi\\ \mathcal{Y} \end{bmatrix} \to \begin{bmatrix} \chi\\ \mathcal{Y} \end{bmatrix}$ such that

$$\widehat{U} = \begin{bmatrix} U & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \text{ and } \widehat{U}^{-1} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V \end{bmatrix}$$

(EAE) There exist Banach spaces \mathcal{X}_0 and \mathcal{Y}_0 and invertible operators E and F s.t.

$$\begin{bmatrix} U & 0 \\ 0 & I_{\chi_0} \end{bmatrix} = E \begin{bmatrix} V & 0 \\ 0 & I_{\mathcal{Y}_0} \end{bmatrix} F$$

(SC) There exists an operator matrix $S = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \chi \\ \mathcal{Y} \end{bmatrix} \rightarrow \begin{bmatrix} \chi \\ \mathcal{Y} \end{bmatrix}$ with A and D invertible and

$$\boldsymbol{U} = \boldsymbol{A} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}, \quad \boldsymbol{V} = \boldsymbol{D} - \boldsymbol{C}\boldsymbol{A}^{-1}\boldsymbol{B}.$$

In the example

$$\begin{array}{ccc} I - K \text{ and } S_{\tau} \text{ are MC} & \Rightarrow & I - K \text{ and } S_{\tau} \text{ are EAE} & \Rightarrow & I - K \text{ and } S_{\tau} \text{ are SC} \\ & & & \downarrow \\ & & & & \downarrow \\ & & & & \text{Fredholm properties} & & & & \text{generalized inverse} \end{array}$$

-

Two Banach space operators $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ are called *matricially coupled* (MC), *equivalent after extension* (EAE) resp. *Schur coupled* (SC) if:

(MC) There exist an invertible operator $\widehat{U}:\left[\begin{smallmatrix}\mathcal{X}\\\mathcal{Y}\end{smallmatrix}\right]\to\left[\begin{smallmatrix}\mathcal{X}\\\mathcal{Y}\end{smallmatrix}\right]$ such that

$$\widehat{U} = \begin{bmatrix} U & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \text{ and } \widehat{U}^{-1} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V \end{bmatrix}$$

(EAE) There exist Banach spaces \mathcal{X}_0 and \mathcal{Y}_0 and invertible operators E and F s.t.

$$\begin{bmatrix} U & 0 \\ 0 & I_{\chi_0} \end{bmatrix} = E \begin{bmatrix} V & 0 \\ 0 & I_{\mathcal{Y}_0} \end{bmatrix} F$$

(SC) There exists an operator matrix $S = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \chi \\ \chi \end{bmatrix} \rightarrow \begin{bmatrix} \chi \\ \chi \end{bmatrix}$ with A and D invertible and

$$\boldsymbol{U} = \boldsymbol{A} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}, \quad \boldsymbol{V} = \boldsymbol{D} - \boldsymbol{C}\boldsymbol{A}^{-1}\boldsymbol{B}.$$

More recent applications

- Diffraction theory (Castro, Duduchava, Speck, e.g., 2014)
- Truncated Toeplitz operators (Câmara, Partington, 2016)
- Connection with Paired Operators approach (Speck, 2017)
- Wiener-Hopf factorization (Groenewald, Kaashoek, Ran, 2017)

Two Banach space operators $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ are called *matricially coupled* (MC), *equivalent after extension* (EAE) resp. *Schur coupled* (SC) if:

(MC) There exist an invertible operator $\widehat{U}: \begin{bmatrix} \chi\\ \mathcal{Y} \end{bmatrix} \to \begin{bmatrix} \chi\\ \mathcal{Y} \end{bmatrix}$ such that

$$\widehat{U} = \begin{bmatrix} U & U_{12} \\ U_{21} & U_{22} \end{bmatrix} \text{ and } \widehat{U}^{-1} = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V \end{bmatrix}$$

(EAE) There exist Banach spaces \mathcal{X}_0 and \mathcal{Y}_0 and invertible operators E and F s.t.

$$\begin{bmatrix} U & 0 \\ 0 & I_{\chi_0} \end{bmatrix} = E \begin{bmatrix} V & 0 \\ 0 & I_{\mathcal{Y}_0} \end{bmatrix} F$$

(SC) There exists an operator matrix $S = \begin{bmatrix} A & B \\ C & D \end{bmatrix} : \begin{bmatrix} \chi \\ \chi \end{bmatrix} \rightarrow \begin{bmatrix} \chi \\ \chi \end{bmatrix}$ with A and D invertible and

$$\boldsymbol{U} = \boldsymbol{A} - \boldsymbol{B}\boldsymbol{D}^{-1}\boldsymbol{C}, \quad \boldsymbol{V} = \boldsymbol{D} - \boldsymbol{C}\boldsymbol{A}^{-1}\boldsymbol{B}.$$

More recent applications

- Completeness theorems in dynamical systems (Kaashoek, Verduyn Lunel)
- Unbounded operator functions (Engström, Torshage, Arxiv)

Question (Bart-Tsekanovskii '92)

Do the operator relations MC, EAE and SC coincide?

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - 釣�?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question (Bart-Tsekanovskii '92)

Do the operator relations MC, EAE and SC coincide?

$$MC \iff EAE \iff SC$$

Early results

- Bart-Gohberg-Kaashoek '84: $MC \Rightarrow EAE$
- Bart-Tsekanovskii '92: EAE \Rightarrow MC (so EAE \Leftrightarrow MC)
- Bart-Tsekanovskii '94: SC \Rightarrow EAE

Proof MC
$$\implies$$
 EAE
 $\begin{bmatrix} U & 0 \\ 0 & I_{\mathcal{Y}} \end{bmatrix} = E \begin{bmatrix} V & 0 \\ 0 & I_{\mathcal{X}} \end{bmatrix} F$ holds with $E = \begin{bmatrix} U_{12} & U \\ U_{22} & U_{21} \end{bmatrix}$ and $F = \begin{bmatrix} -U_{21} & I_{\mathcal{Y}} \\ V_{11}U & V_{12} \end{bmatrix}$ and
 $E^{-1} = \begin{bmatrix} V_{21} & V \\ V_{11} & V_{12} \end{bmatrix}$, $F^{-1} = \begin{bmatrix} -V_{12} & I \\ U_{22}V & U_{21} \end{bmatrix}$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question (Bart-Tsekanovskii '92)

Do the operator relations MC, EAE and SC coincide?

$MC \iff EAE \iff SC$

Early results

- Bart-Gohberg-Kaashoek '84: $MC \Rightarrow EAE$
- Bart-Tsekanovskii '92: EAE \Rightarrow MC (so EAE \Leftrightarrow MC)
- Bart-Tsekanovskii '94: SC \Rightarrow EAE
- Remaining implication: Does EAE ⇒ SC hold?

Û

Question (Bart-Tsekanovskii '92)

Do the operator relations MC, EAE and SC coincide?

$\mathsf{MC} \iff \mathsf{EAE} \iff \mathsf{SC}$

Early results

- Bart-Gohberg-Kaashoek '84: $MC \Rightarrow EAE$
- Bart-Tsekanovskii '92: EAE \Rightarrow MC (so EAE \Leftrightarrow MC)
- Bart-Tsekanovskii '94: SC \Rightarrow EAE
- Remaining implication: Does EAE \Rightarrow SC hold?
 - BT'92: Yes if U and V are Fredholm (Banach space: + index = 0)
 - BGKR'05: Yes if SC is an equivalence relation (this is true for EAE)

(BT=Bart-Tsekanovskii, BGKR=Bart-Gohberg-Kaashoek-Ran)

Question (Bart-Tsekanovskii '92)

Do the operator relations MC, EAE and SC coincide?

$$\begin{array}{c} \mathsf{EAOE} \\ \Downarrow \\ \mathsf{MC} \iff \mathsf{EAE} \iff \begin{array}{c} \mathsf{SC} \\ \updownarrow \\ \mathsf{SEAE} \end{array}$$

Early results

- Bart-Gohberg-Kaashoek '84: $MC \Rightarrow EAE$
- Bart-Tsekanovskii '92: EAE \Rightarrow MC (so EAE \Leftrightarrow MC)
- Bart-Tsekanovskii '94: SC ⇒ EAE
- Remaining implication: Does EAE ⇒ SC hold?
 - BT'92: Yes if U and V are Fredholm (Banach space: + index = 0)
 - BGKR'05: Yes if SC is an equivalence relation (this is true for EAE)
 - BT'92: Yes if U and V are SEAE (SEAE ⇔ SC) (SEAE = Strong EAE = EAE with E₂₁ and F₁₂ invertible)
 - BGKR'05: Yes if U and V are EAOE (EAOE \Rightarrow SC) (EAOE= EAE with $\mathcal{X}_0 = \{0\}$ or $\mathcal{Y}_0 = \{0\}$ (one-sided extension))

(BT=Bart-Tsekanovskii, BGKR=Bart-Gohberg-Kaashoek-Ran)

Theorem (tH-Ran '13) Let U and V be EAE operators that can be approx. by invertible operators (in norm). Then U and V are SEAE, and hence SC.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (tH-Ran '13) Let U and V be EAE operators that can be approx. by invertible operators (in norm). Then U and V are SEAE, and hence SC.

Proof Go for SEAE (F_{12} and E_{21} invertible). By concrete formulas for EAE \Rightarrow MC \Rightarrow EAE, WLOG

$$E = \begin{bmatrix} E_{11} & U \\ E_{21} & E_{22} \end{bmatrix}, \quad E^{-1} = \begin{bmatrix} \widetilde{E}_{11} & V \\ \widetilde{E}_{21} & \widetilde{E}_{22} \end{bmatrix}, \quad F = \begin{bmatrix} F_{11} & I_{\mathcal{Y}} \\ F_{21} & F_{22} \end{bmatrix}, \quad F^{-1} = \begin{bmatrix} \widetilde{F}_{11} & I_{\mathcal{X}} \\ \widetilde{F}_{21} & \widetilde{F}_{22} \end{bmatrix}$$

In particular, $E_{21}V + E_{22}\widetilde{E}_{22} = I.$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Theorem (tH-Ran '13) Let U and V be EAE operators that can be approx. by invertible operators (in norm). Then U and V are SEAE, and hence SC.

Proof Go for SEAE (F_{12} and E_{21} invertible). By concrete formulas for EAE \Rightarrow MC \Rightarrow EAE, WLOG

$$\begin{split} E &= \begin{bmatrix} E_{11} & U \\ E_{21} & E_{22} \end{bmatrix}, \ E^{-1} = \begin{bmatrix} \widetilde{E}_{11} & V \\ \widetilde{E}_{21} & \widetilde{E}_{22} \end{bmatrix}, \ F = \begin{bmatrix} F_{11} & I_{\mathcal{Y}} \\ F_{21} & F_{22} \end{bmatrix}, \ F^{-1} = \begin{bmatrix} \widetilde{F}_{11} & I_{\mathcal{X}} \\ \widetilde{F}_{21} & \widetilde{F}_{22} \end{bmatrix} \\ In \text{ particular, } E_{21}V + E_{22}\widetilde{E}_{22} = I. \ \text{Take an invertible } \widetilde{V} \text{ close to } V \text{ s.t.} \\ N &:= E_{21}\widetilde{V} + E_{22}\widetilde{E}_{22} \text{ is invertible.} \end{split}$$

Then also

$$E_{21}-E_{22}\widetilde{E}_{22}\widetilde{V}^{-1}=N\widetilde{V}^{-1}$$
 is invertible.

Theorem (tH-Ran '13) Let U and V be EAE operators that can be approx. by invertible operators (in norm). Then U and V are SEAE, and hence SC.

Proof Go for SEAE (F_{12} and E_{21} invertible). By concrete formulas for EAE \Rightarrow MC \Rightarrow EAE, WLOG

$$E = \begin{bmatrix} E_{11} & U \\ E_{21} & E_{22} \end{bmatrix}, \quad E^{-1} = \begin{bmatrix} \widetilde{E}_{11} & V \\ \widetilde{E}_{21} & \widetilde{E}_{22} \end{bmatrix}, \quad F = \begin{bmatrix} F_{11} & I_{\mathcal{Y}} \\ F_{21} & F_{22} \end{bmatrix}, \quad F^{-1} = \begin{bmatrix} \widetilde{F}_{11} & I_{\mathcal{X}} \\ \widetilde{F}_{21} & \widetilde{F}_{22} \end{bmatrix}$$

In particular, $E_{21}V + E_{22}\widetilde{E}_{22} = I$. Take an invertible \widetilde{V} close to V s.t.

$$N:=E_{21}\widetilde{V}+E_{22}\widetilde{E}_{22}$$
 is invertible.

Then also

$$E_{21} - E_{22}\widetilde{E}_{22}\widetilde{V}^{-1} = N\widetilde{V}^{-1}$$
 is invertible.

Then note that $\begin{bmatrix} U & 0 \\ 0 & I \end{bmatrix} = \widehat{E} \begin{bmatrix} V & 0 \\ 0 & I \end{bmatrix} \widehat{F}$ holds with

$$\widehat{E} = E \begin{bmatrix} I & 0\\ \widetilde{E}_{22}\widetilde{V}^{-1} & I \end{bmatrix} = \begin{bmatrix} * & *\\ E_{21} - E_{22}\widetilde{E}_{22}\widetilde{V}^{-1} & * \end{bmatrix}$$
$$\widehat{F} = \begin{bmatrix} I & 0\\ -\widetilde{E}_{22}\widetilde{V}^{-1}V & I \end{bmatrix} F = \begin{bmatrix} * & I\\ * & * \end{bmatrix}.$$

Thus U and V are SEAE.

EAE and SC on separable Hilbert spaces

(ロ)、(型)、(E)、(E)、 E) の(の)

Question Which operators can be approximated by invertibles?

EAE and SC on separable Hilbert spaces

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question Which operators can be approximated by invertibles? Banach space operators: Not much seems to be known. Hilbert space operators:

Feldman-Kadison '54: General criterion + specialization to separable case.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Question Which operators can be approximated by invertibles? Banach space operators: Not much seems to be known. Hilbert space operators:

Feldman-Kadison '54: General criterion + specialization to separable case.

Theorem (Feldman-Kadison '54) Let $W : \mathbb{Z} \to \mathbb{Z}$, with \mathbb{Z} a separable Hilbert space. Then W cannot be approximated by invertible operators if and only if W has closed range and dim Ker $W \neq$ dim Ker W^* .

Thus a separable Hilbert space operator can be approximated by invertibles or has closed range. (Not true on non-separable Hilbert spaces.)

Question Which operators can be approximated by invertibles? Banach space operators: Not much seems to be known. Hilbert space operators:

Feldman-Kadison '54: General criterion + specialization to separable case.

Theorem (Feldman-Kadison '54) Let $W : \mathbb{Z} \to \mathbb{Z}$, with \mathbb{Z} a separable Hilbert space. Then W cannot be approximated by invertible operators if and only if W has closed range and dim Ker $W \neq \dim \text{Ker } W^*$.

Thus a separable Hilbert space operator can be approximated by invertibles or has closed range. (Not true on non-separable Hilbert spaces.)

Theorem (tH-Ran '13) Let U and V be closed range Hilbert space operators. Then U and V are EAE if and only if U and V are SC if and only if

dim Ker U = dim Ker V and dim Ker U^* = dim Ker V^* .

Theorem (tH-Ran '13) Assume U and V are EAE operators on separable Hilbert spaces. Then U and V are SEAE, and hence SC.

When are operators EAE?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Question When are operators U and V EAE?

Known: Assume U and V are closed range Hilbert space operators. Then:

U and V are EAE \iff dim Ker U = dim Ker V and dim Ker U^* = dim Ker V^* .

Question When are operators U and V EAE?

Known: Assume U and V are closed range Hilbert space operators. Then:

U and V are EAE \iff dim Ker U = dim Ker V and dim Ker U^* = dim Ker V^* .

Definition (generated operator ideal) For a Banach space operator $U : \mathcal{X} \to \mathcal{X}$ and Banach spaces \mathcal{Z}_1 and \mathcal{Z}_2 we define

$$\mathfrak{I}_{U}(\mathcal{Z}_{1},\mathcal{Z}_{2}):=\left\{\sum_{j=1}^{n}R_{j}UR_{j}'\colon R_{j}:\mathcal{X}\to\mathcal{Z}_{2},\ R_{j}':\mathcal{Z}_{1}\to\mathcal{X},\ n\in\mathbb{N}\right\}$$

and the operator ideal generated by $U: \mathfrak{I}_U = \bigcup_{\mathcal{Z}_1, \mathcal{Z}_2} \mathfrak{I}_U(\mathcal{Z}_1, \mathcal{Z}_2).$

Theorem (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ be compact Banach space operators that are EAE. Then $\mathfrak{I}_U = \mathfrak{I}_V$.

Timotin's approach to the general Hilbert space case, Pt I

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let $U: \mathcal{X} \to \mathcal{X}$ and $V: \mathcal{Y} \to \mathcal{Y}$ be Hilbert space operators. Define

$$|U| = (U^*U)^{1/2}$$
 and $|V| = (V^*V)^{1/2}$.

Theorem (Timotin '14) The operators U and V are EAE if and only if |U| and |V| are EAE and

dim ker $U = \dim \ker V$, dim ker $U^* = \dim \ker V^*$. (*)

Timotin's approach to the general Hilbert space case, Pt I

Let $U: \mathcal{X} \to \mathcal{X}$ and $V: \mathcal{Y} \to \mathcal{Y}$ be Hilbert space operators. Define

$$|U| = (U^*U)^{1/2}$$
 and $|V| = (V^*V)^{1/2}$.

Theorem (Timotin '14) The operators U and V are EAE if and only if |U| and |V| are EAE and

dim ker $U = \dim \ker V$, dim ker $U^* = \dim \ker V^*$. (*)

For any interval $I \subset \mathbb{R}$, let $E_{|U|}[I]$ and $E_{|V|}[I]$ be the spectral projections of |U| and |V| on I.

Theorem (Fillmore-Williams '71) The operators U and V are equivalent if and only if (*) holds and there is a $\delta > 0$ so that for all $0 < \alpha \leq \beta < \infty$ we have

dim ran $E_{|U|}([\alpha, \beta)) \leq \dim \operatorname{ran} E_{|V|}([\alpha\delta, \beta/\delta))$ dim ran $E_{|V|}([\alpha, \beta)) \leq \dim \operatorname{ran} E_{|U|}([\alpha\delta, \beta/\delta)).$ Timotin's approach to the general Hilbert space case, Pt II

Theorem (Timotin '14) For Hilbert space operators U and V TFAE:

- U and V are EAE;
- U and V satisfy

dim ker $U = \dim \ker V$, dim ker $U^* = \dim \ker V^*$. (*)

and there exist 0 $<\delta<1$ and ${\bf a}>{\bf 0}$ such that for al 0 $<\alpha\leq\beta<{\bf a}$

$$\dim \operatorname{ran} E_{|U|}([\alpha,\beta)) \leq \dim \operatorname{ran} E_{|V|}([\alpha\delta,\beta/\delta))$$
$$\dim \operatorname{ran} E_{|V|}([\alpha,\beta)) \leq \dim \operatorname{ran} E_{|U|}([\alpha\delta,\beta/\delta)).$$

• U and V are EAOE, and hence SC. (Recall: EAOE= EAE with $X_0 = \{0\}$ or $Y_0 = \{0\}$ (one-sided extension)) Timotin's approach to the general Hilbert space case, Pt II

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Timotin '14) For Hilbert space operators U and V TFAE:

- U and V are EAE;
- U and V satisfy

dim ker $U = \dim \ker V$, dim ker $U^* = \dim \ker V^*$. (*)

and there exist 0 < δ < 1 and a > 0 such that for al 0 < $\alpha \leq \beta <$ a

$$\dim \operatorname{ran} E_{|U|}([\alpha, \beta)) \leq \dim \operatorname{ran} E_{|V|}([\alpha\delta, \beta/\delta))$$
$$\dim \operatorname{ran} E_{|V|}([\alpha, \beta)) \leq \dim \operatorname{ran} E_{|U|}([\alpha\delta, \beta/\delta)).$$

• U and V are EAOE, and hence SC.
(Recall: EAOE= EAE with
$$X_0 = \{0\}$$
 or $Y_0 = \{0\}$ (one-sided extension))

This result specializes to compact operators in the following form.

Theorem (Timotin '14) Assume U and V are compact (and of infinite rank) with singular values $u_n \searrow 0$ and $v_n \searrow 0$, respectively. Then U and V are EAE=MC=SC if and only if (*) holds and their singular values are comparable after a shift: There exist $0 < \delta < 1$ and $m \in \mathbb{N}$ such that

$$\delta \leq \frac{u_n}{v_{n+m}} \leq \frac{1}{\delta} \text{ for all } n \geq 0 \quad \text{or} \quad \delta \leq \frac{v_n}{u_{n+m}} \leq \frac{1}{\delta} \text{ for all } n \geq 0.$$

Timotin's approach to the general Hilbert space case, Pt II

Theorem (Timotin '14) For Hilbert space operators U and V TFAE:

- U and V are EAE;
- U and V satisfy

dim ker $U = \dim \ker V$, dim ker $U^* = \dim \ker V^*$. (*)

and there exist 0 $<\delta<1$ and ${\bf a}>{\bf 0}$ such that for al 0 $<\alpha\leq\beta<{\bf a}$

$$\dim \operatorname{ran} E_{|U|}([\alpha, \beta)) \leq \dim \operatorname{ran} E_{|V|}([\alpha\delta, \beta/\delta))$$
$$\dim \operatorname{ran} E_{|V|}([\alpha, \beta)) \leq \dim \operatorname{ran} E_{|U|}([\alpha\delta, \beta/\delta)).$$

• U and V are EAOE, and hence SC. (Recall: EAOE= EAE with $X_0 = \{0\}$ or $Y_0 = \{0\}$ (one-sided extension))

Which shows U and V EAE is much stronger than generating the same operator ideal.

Theorem (Schatten '60) Let U and V be compact Hilbert space operators with with singular values $u_n \searrow 0$ and $v_n \searrow 0$. Then $\mathfrak{I}_U = \mathfrak{I}_V$ if and only if there exist M > 0 and $m \in \mathbb{N}$ so that

$$u_{m(n-1)+j} \leq Mv_n$$
 and $v_{m(n-1)+j} \leq Mu_n$ $(n \in \mathbb{N}, j = 1, \dots, m-1).$

Essentially incomparable Banach spaces and EAE

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition Banach spaces $\mathcal{X} \neq \mathcal{Y}$ are called *essentially incomparable* if for any operators $T : \mathcal{X} \rightarrow \mathcal{Y}$ and $S : \mathcal{Y} \rightarrow \mathcal{X}$

I - TS and I - ST are Fredholm.

Pitt-Rosenthal Theorem

Any operator $T: \ell^p \to \ell^q$, for $1 \le q , is compact. (Hence <math>\ell^p$ and ℓ^q are essentially incomparable.)

Essentially incomparable Banach spaces and EAE

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Definition Banach spaces $\mathcal{X} \neq \mathcal{Y}$ are called *essentially incomparable* if for any operators $T : \mathcal{X} \rightarrow \mathcal{Y}$ and $S : \mathcal{Y} \rightarrow \mathcal{X}$

I - TS and I - ST are Fredholm.

Pitt-Rosenthal Theorem

Any operator $T: \ell^p \to \ell^q$, for $1 \le q , is compact. (Hence <math>\ell^p$ and ℓ^q are essentially incomparable.)

Theorem (tH-Messerschmidt-Ran '15) Assume \mathcal{X} and \mathcal{Y} are infinite dimensional, essentially incomparable Banach spaces. Then operators $U: \mathcal{X} \to \mathcal{X}$ and $V: \mathcal{Y} \to \mathcal{Y}$ with U or V compact cannot be EAE.

Essentially incomparable Banach spaces and EAE

Definition Banach spaces $\mathcal{X} \neq \mathcal{Y}$ are called *essentially incomparable* if for any operators $T : \mathcal{X} \rightarrow \mathcal{Y}$ and $S : \mathcal{Y} \rightarrow \mathcal{X}$

I - TS and I - ST are Fredholm.

Pitt-Rosenthal Theorem

Any operator $T: \ell^p \to \ell^q$, for $1 \le q , is compact. (Hence <math>\ell^p$ and ℓ^q are essentially incomparable.)

Theorem (tH-Messerschmidt-Ran '15) Assume \mathcal{X} and \mathcal{Y} are infinite dimensional, essentially incomparable Banach spaces. Then operators $U: \mathcal{X} \to \mathcal{X}$ and $V: \mathcal{Y} \to \mathcal{Y}$ with U or V compact cannot be EAE.

Recall: EAOE= EAE with $\mathcal{X}_0 = \{0\}$ or $\mathcal{Y}_0 = \{0\}$ (one-sided extension)

Theorem (tH-Messerschmidt-Ran '15) Assume \mathcal{X} and \mathcal{Y} are infinite dimensional, essentially incomparable Banach spaces. Then no operators $U: \mathcal{X} \to \mathcal{X}$ and $V: \mathcal{Y} \to \mathcal{Y}$ are ever EAOE.

Corollary In general the operator relation EAOE cannot coincide with and *SC/EAE/MC*.

Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ be EAE with V compact. Then there exists a closed subspace of \mathcal{Y} of finite co-dimension that is topologically isomorphic to a closed subspace of \mathcal{X} .

Corollary (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ be EAE with V compact. Assume \mathcal{Y} is prime, i.e., every infinite dimensional complementable subspace of \mathcal{Y} is topologically isomorphic to \mathcal{Y} . Then \mathcal{X} contains a copy of \mathcal{Y} .

Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ be EAE with V compact. Then there exists a closed subspace of \mathcal{Y} of finite co-dimension that is topologically isomorphic to a closed subspace of \mathcal{X} .

Corollary (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ be EAE with V compact. Assume \mathcal{Y} is prime, i.e., every infinite dimensional complementable subspace of \mathcal{Y} is topologically isomorphic to \mathcal{Y} . Then \mathcal{X} contains a copy of \mathcal{Y} .

Proposition (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ with V compact. Assume (P) is a Banach space property s.t. every closed subspace of \mathcal{X} has property (P) and (P) is preserved under direct sums with finite dimensional spaces. If U and V are EAE, then Y also has property (P).

Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ be EAE with V compact. Then there exists a closed subspace of \mathcal{Y} of finite co-dimension that is topologically isomorphic to a closed subspace of \mathcal{X} .

Corollary (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ be EAE with V compact. Assume \mathcal{Y} is prime, i.e., every infinite dimensional complementable subspace of \mathcal{Y} is topologically isomorphic to \mathcal{Y} . Then \mathcal{X} contains a copy of \mathcal{Y} .

Proposition (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ with V compact. Assume (P) is a Banach space property s.t. every closed subspace of \mathcal{X} has property (P) and (P) is preserved under direct sums with finite dimensional spaces. If U and V are EAE, then Y also has property (P).

Corollary (tH-Messerschmidt-Ran '15) Let $U : \mathcal{X} \to \mathcal{X}$ and $V : \mathcal{Y} \to \mathcal{Y}$ be EAE with V compact. Then:

- If \mathcal{X} is isomorphic to a Hilbert space, then so is \mathcal{Y} ;
- If X is separable, then so is Y;
- If \mathcal{X} is reflexive, then so is \mathcal{Y} ;
- If X has the Radon-Nikodym property, then so does Y;
- If \mathcal{X} has the Hereditary Dunford-Pettis property, then so does \mathcal{Y} .

$\mathsf{EAE} \Rightarrow \mathsf{SC}$ for compact operators

Theorem (tH-Messerschmidt-Ran-Roelands-Wortel '15) Let $U \in \mathcal{B}(\mathcal{X})$ and $V \in \mathcal{B}(\mathcal{Y})$ be compact. Then

U and V are EAE \iff U and V are EAOE \iff U and V are SC.

$\mathsf{EAE} \Rightarrow \mathsf{SC}$ for compact operators

Theorem (tH-Messerschmidt-Ran-Roelands-Wortel '15) Let $U \in \mathcal{B}(\mathcal{X})$ and $V \in \mathcal{B}(\mathcal{Y})$ be compact. Then

U and V are EAE \iff U and V are EAOE \iff U and V are SC.

Sketch of proof

By the constructions from EAE \Rightarrow MC \Rightarrow EAE, WLOG $\mathcal{X}_0 = \mathcal{Y}$, $\mathcal{Y}_0 = \mathcal{X}$ and E and F have the form

$$F = \begin{bmatrix} F_{11} & I_{\mathcal{Y}} \\ F_{21} & F_{22} \end{bmatrix}, \quad E = \begin{bmatrix} E_{11} & U \\ E_{21} & -F_{11} \end{bmatrix}$$
$$F^{-1} = \begin{bmatrix} -F_{22} & I_{\mathcal{X}} \\ I + F_{11}F_{22} & -F_{11} \end{bmatrix}, \quad E^{-1} = \begin{bmatrix} \widehat{E}_{11} & V \\ \widehat{E}_{21} & F_{22} \end{bmatrix}$$

Then $U \otimes I_{\mathcal{Y}} = E(V \otimes I_{\mathcal{X}})F$ yields

(i) $I = F_{21} - F_{22}F_{11}$, (ii) $U = E_{11}VF_{11} + UF_{21}$, (iii) $E_{21}VF_{11} = F_{11}F_{21}$, (iv) $E_{11}V = -UF_{22}$, (v) $F_{11}F_{22} = E_{21}V - I$, (vi) $\hat{E}_{11}U = VF_{11}$, (vii) $\hat{E}_{21}U = F_{21}$, (viii) $E_{11}\hat{E}_{11} = I - U\hat{E}_{21}$, (ix) $E_{21}\hat{E}_{11} = F_{11}\hat{E}_{21}$, (x) $\hat{E}_{11}E_{11} = I - VE_{21}$, (xi) $\hat{E}_{21}E_{11} = -F_{22}E_{21}$.

Sketch of proof II

Since U and V are compact

 $-F_{22}F_{11}=I-\widehat{E}_{21}U \quad \text{and} \quad -F_{11}F_{22}=I-E_{21}V \quad \text{are Fredholm}.$

Atkinson's Theorem: F_{11} and F_{22} are Fredholm and $Ind(F_{11}) = -Ind(F_{22})$. Similar argument: E_{11} and \hat{E}_{11} are Fredholm and $Ind(E_{11}) = -Ind(\hat{E}_{11})$. We can decompose

$$\begin{split} F_{22} &= \left[\begin{array}{cc} F'_{22} & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{cc} \mathcal{K}_2 \\ \operatorname{Ker} F_{22} \end{array} \right] \to \left[\begin{array}{cc} \operatorname{Im} F_{22} \\ \mathcal{H}_2 \end{array} \right], \\ E_{11} &= \left[\begin{array}{cc} E'_{11} & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{cc} \mathcal{F}_1 \\ \operatorname{Ker} E_{11} \end{array} \right] \to \left[\begin{array}{cc} \operatorname{Im} E_{11} \\ \mathcal{G}_1 \end{array} \right], \end{split}$$

with F'_{22} and E'_{11} invertible, and decompose U and V accordingly:

$$U = \begin{bmatrix} U_{11} & U_{12} \\ U_{21} & U_{22} \end{bmatrix} : \begin{bmatrix} \operatorname{Im} F_{22} \\ \mathcal{H}_2 \end{bmatrix} \rightarrow \begin{bmatrix} \operatorname{Im} E_{11} \\ \mathcal{G}_1 \end{bmatrix},$$
$$V = \begin{bmatrix} V_{11} & V_{12} \\ V_{21} & V_{22} \end{bmatrix} : \begin{bmatrix} \mathcal{K}_2 \\ \operatorname{Ker} F_{22} \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{F}_1 \\ \operatorname{Ker} E_{11} \end{bmatrix}.$$

Use further identities:

$$U_{21} = 0$$
, $V_{12} = 0$ and U_{11} and V_{11} are equivalent: $U_{11}F'_{22} = -E'_{11}V_{11}$.

Sketch of proof III

We have U_{11} and V_{11} equivalent $\left(U_{11}F_{22}'=-E_{11}'V_{11}
ight)$ and

$$U = \begin{bmatrix} U_{11} & U_{12} \\ 0 & U_{22} \end{bmatrix} : \begin{bmatrix} \operatorname{Im} F_{22} \\ \mathcal{H}_2 \end{bmatrix} \rightarrow \begin{bmatrix} \operatorname{Im} E_{11} \\ \mathcal{G}_1 \end{bmatrix},$$
$$V = \begin{bmatrix} V_{11} & 0 \\ V_{21} & V_{22} \end{bmatrix} : \begin{bmatrix} \mathcal{K}_2 \\ \operatorname{Ker} F_{22} \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{F}_1 \\ \operatorname{Ker} E_{11} \end{bmatrix}$$

After many more manipulations of the identities: U_{22} and V_{22} are invertible. Then U and V are equivalent to

$$\widetilde{U} := \left[\begin{array}{cc} U_{11} & 0 \\ 0 & I_{\mathcal{H}_2} \end{array} \right] \quad \text{and} \quad \widetilde{V} := \left[\begin{array}{cc} V_{11} & 0 \\ 0 & I_{\mathsf{Ker} \, E_{11}} \end{array} \right]$$

and \mathcal{H}_2 and Ker E_{11} are finite dimensional. Say dim $\mathcal{H}_2 < \dim \text{Ker } E_{11}$. Let $T : \mathcal{H}_2 \rightarrow \text{Ker } E_{11}$ be injective and \mathcal{Z}' a complement of $\mathcal{Z} := J\mathcal{H}_2$ in Ker E_{11} . Then \widetilde{U} and \widetilde{V} are EAOE via

$$\begin{bmatrix} U_{11} & 0 & 0 \\ 0 & I_{\mathcal{H}_2} & 0 \\ 0 & 0 & I_{Z'} \end{bmatrix} = \begin{bmatrix} E'_{11} & 0 & 0 \\ 0 & T^+ T_{\mathcal{Z}} & 0 \\ 0 & 0 & I_{Z'} \end{bmatrix} \begin{bmatrix} V_{11} & 0 & 0 \\ 0 & I_{\mathcal{Z}} & 0 \\ 0 & 0 & I_{Z'} \end{bmatrix} \begin{bmatrix} -F'_{22} & 0 & 0 \\ 0 & \Pi_{\mathcal{Z}} T & 0 \\ 0 & 0 & I_{Z'} \end{bmatrix}$$

with T^+ a left inverse of T, $J_Z : Z \to \text{Ker } E_{11}$ and $\Pi_Z : \text{Ker } E_{11} \to Z$ the canonical embedding and projection. Then U and V are also EAOE, and hence SC.

(ロ)、(型)、(E)、(E)、 E) の(の)

Observation: The arguments involving compact operators only use that the invertible elements in the Calkin algebra of the compacts are the Fredholm operator.

Beyond compact operators

Observation: The arguments involving compact operators only use that the invertible elements in the Calkin algebra of the compacts are the Fredholm operator.

Definition Let $T : \mathcal{X} \to \mathcal{Y}$ be a Banach space operator. We we call T:

- *inessential* if $I_{\mathcal{Y}} TS$ is Fredholm for any $S : \mathcal{Y} \to \mathcal{X}$ (equiv. $I_{\mathcal{X}} ST$ is Fredholm for any $S : \mathcal{Y} \to \mathcal{X}$) (Kleinecke, 1963).
- strictly singular if for no infinite dimensional, closed, complementable subspace M of X the operator T|_M : M → Y is an isomorphism.
- *strictly co-singular* if for no infinite codimensional, closed, complementable subspace \mathcal{N} of \mathcal{Y} the operator $P_{\mathcal{N}}T : \mathcal{X} \to \mathcal{N}$ is surjective.

Beyond compact operators

Observation: The arguments involving compact operators only use that the invertible elements in the Calkin algebra of the compacts are the Fredholm operator.

Definition Let $T : \mathcal{X} \to \mathcal{Y}$ be a Banach space operator. We we call T:

- *inessential* if $I_{\mathcal{Y}} TS$ is Fredholm for any $S : \mathcal{Y} \to \mathcal{X}$ (equiv. $I_{\mathcal{X}} ST$ is Fredholm for any $S : \mathcal{Y} \to \mathcal{X}$) (Kleinecke, 1963).
- strictly singular if for no infinite dimensional, closed, complementable subspace M of X the operator T|_M : M → Y is an isomorphism.
- strictly co-singular if for no infinite codimensional, closed, complementable subspace N of Y the operator P_NT : X → N is surjective.

Then for operators $T : \mathcal{X} \to \mathcal{X}$:

$$\{\mathsf{compacts}\} \subset \frac{\{\mathsf{strictly singular}\}}{\{\mathsf{strictly co-singular}\}} \subset \{\mathsf{inessentials}\} \subset \mathcal{B}(\mathcal{X})$$

are all closed operator ideals in $\mathcal{B}(\mathcal{X})$ and the inessential operators $ln(\mathcal{X})$ is the largest closed ideal in $\mathcal{B}(\mathcal{X})$ s.t. in the Calkin algebra $\mathcal{B}(\mathcal{X})/ln(\mathcal{X})$ the Fredholm operators in $\mathcal{B}(\mathcal{X})$ coincide with the invertible operators.

In all results above "compact" can be replaced by "inessential".

Exotic Banach spaces

We now know EAE and SC coincide:

- for Hilbert space operators
- for Fredholm Banach space operators with index 0
- for inessential Banach space operators (and hence compact and strictly singular).

Exotic Banach spaces

We now know EAE and SC coincide:

- for Hilbert space operators
- for Fredholm Banach space operators with index 0
- for inessential Banach space operators (and hence compact and strictly singular).

Definition A Banach space \mathcal{X} has

- few operators if every operator on X is of the form λI_X + S with λ ∈ C and S strictly singular;
- *very few operators* if every operator on \mathcal{X} is of the form $\lambda I_{\mathcal{X}} + K$ with $\lambda \in \mathbb{C}$ and K compact.

In both cases the Calkin algebra is one dimensional. For operators on such spaces EAE and SC coincide.

Exotic Banach spaces

We now know EAE and SC coincide:

- for Hilbert space operators
- for Fredholm Banach space operators with index 0
- for inessential Banach space operators (and hence compact and strictly singular).

Definition A Banach space \mathcal{X} has

- few operators if every operator on X is of the form λl_X + S with λ ∈ C and S strictly singular;
- *very few operators* if every operator on \mathcal{X} is of the form $\lambda I_{\mathcal{X}} + K$ with $\lambda \in \mathbb{C}$ and K compact.

In both cases the Calkin algebra is one dimensional. For operators on such spaces EAE and SC coincide.

Existence of such spaces:

- Few operators: Gowers-Maurey 1997; All hereditarily indecomposable Banach spaces have few operators
- Very few operators: Argyros-Heydon 2011

For $f \in L^\infty$ over the unit circle \mathbb{T} , define the multiplication operator

$$M_f: L^p \rightarrow L^p, \quad (M_fg)(e^{it}) = f(e^{it})g(e^{it})$$

which decomposes w.r.t. the direct sum $L^p = K^p \dot{+} H^p$ as

$$M_{f} = \begin{bmatrix} \widetilde{T}_{f} & \widetilde{H}_{f} \\ H_{f} & T_{f} \end{bmatrix} : \begin{bmatrix} K^{p} \\ H^{p} \end{bmatrix} \rightarrow \begin{bmatrix} K^{p} \\ H^{p} \end{bmatrix}$$

with H_f and T_f the Hankel and Toeplitz operators of f and \widetilde{H}_f and \widetilde{T}_f associated with the Hankel and Toeplitz operators of $\widetilde{f}(z) = \overline{f(\overline{z})}$.

For $f \in L^{\infty}$ over the unit circle \mathbb{T} , define the multiplication operator

$$M_f: L^p \rightarrow L^p, \quad (M_fg)(e^{it}) = f(e^{it})g(e^{it})$$

which decomposes w.r.t. the direct sum $L^p = K^p \dot{+} H^p$ as

$$M_{f} = \begin{bmatrix} \widetilde{T}_{f} & \widetilde{H}_{f} \\ H_{f} & T_{f} \end{bmatrix} : \begin{bmatrix} K^{p} \\ H^{p} \end{bmatrix} \rightarrow \begin{bmatrix} K^{p} \\ H^{p} \end{bmatrix}$$

with H_f and T_f the Hankel and Toeplitz operators of f and \widetilde{H}_f and \widetilde{T}_f associated with the Hankel and Toeplitz operators of $\widetilde{f}(z) = \overline{f(\overline{z})}$.

Now assume f is in the Wiener space W (abs. summable Fourier coeffs.). Then H_f and \tilde{H}_f are compact and by Wiener's 1/f theorem:

$$f(z) \neq 0 \ (z \in \mathbb{T}) \quad \Longleftrightarrow \quad 1/f \in \mathcal{W}.$$

and in that case

$$\begin{bmatrix} \widetilde{T}_{1/f} & \widetilde{H}_{1/f} \\ H_{1/f} & T_{1/f} \end{bmatrix} = M_{1/f} = M_f^{-1} = \begin{bmatrix} \widetilde{T}_f & \widetilde{H}_f \\ H_f & T_f \end{bmatrix}^{-1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Reconfigure $M_{1/f}$ and M_f^{-1} as:

$$\begin{bmatrix} H_{1/f} & T_{1/f} \\ \widetilde{T}_{1/f} & \widetilde{H}_{1/f} \end{bmatrix} = \begin{bmatrix} \widetilde{H}_f & \widetilde{T}_f \\ T_f & H_f \end{bmatrix}^{-1} : \begin{bmatrix} K^p \\ H^p \end{bmatrix} \to \begin{bmatrix} H^p \\ K^p \end{bmatrix}^{-1}$$

Conclusion: H_f and $H_{1/f}$ are MC, and \tilde{H}_f and $\tilde{H}_{1/f}$ are MC.

Reconfigure $M_{1/f}$ and M_f^{-1} as:

$$\begin{bmatrix} H_{1/f} & T_{1/f} \\ \widetilde{T}_{1/f} & \widetilde{H}_{1/f} \end{bmatrix} = \begin{bmatrix} \widetilde{H}_f & \widetilde{T}_f \\ T_f & H_f \end{bmatrix}^{-1} : \begin{bmatrix} K^p \\ H^p \end{bmatrix} \to \begin{bmatrix} H^p \\ K^p \end{bmatrix}^{-1}$$

Conclusion: H_f and $H_{1/f}$ are MC, and \tilde{H}_f and $\tilde{H}_{1/f}$ are MC.

Theorem (tH-Messerschmidt-Ran-Roelands-Wortel) Let $f \in W$ with $f(z) \neq 0$, $z \in \mathbb{T}$. Then H_f and $H_{1/f}$ are EAE and hence H_f and $H_{1/f}$ generate the same operator ideal. In particular, H_f is in the q-th Schatten-von Neumann class \mathfrak{C}_q if and only if $H_{1/f}$ is in \mathfrak{C}_q .

Reconfigure $M_{1/f}$ and M_f^{-1} as:

$$\begin{bmatrix} H_{1/f} & T_{1/f} \\ \widetilde{T}_{1/f} & \widetilde{H}_{1/f} \end{bmatrix} = \begin{bmatrix} \widetilde{H}_f & \widetilde{T}_f \\ T_f & H_f \end{bmatrix}^{-1} : \begin{bmatrix} K^p \\ H^p \end{bmatrix} \to \begin{bmatrix} H^p \\ K^p \end{bmatrix}^{-1}$$

Conclusion: H_f and $H_{1/f}$ are MC, and \widetilde{H}_f and $\widetilde{H}_{1/f}$ are MC.

Theorem (tH-Messerschmidt-Ran-Roelands-Wortel) Let $f \in W$ with $f(z) \neq 0$, $z \in \mathbb{T}$. Then H_f and $H_{1/f}$ are EAE and hence H_f and $H_{1/f}$ generate the same operator ideal. In particular, H_f is in the q-th Schatten-von Neumann class \mathfrak{C}_q if and only if $H_{1/f}$ is in \mathfrak{C}_q .

Let \mathbb{P} denote the Riesz projection from L^p onto H^p . By Peller's theorem.

Corollary Let $f \in W$ with $f(z) \neq 0$, $z \in \mathbb{T}$. Then $\mathbb{P}f$ is in the Besov space $B_q^{1/q}$ if and only if $\mathbb{P}(1/f)$ is in $B_q^{1/q}$.

Corollary Let p = 2. Let $f \in W$ with $f(z) \neq 0$, $z \in \mathbb{T}$. Let $\alpha_n \searrow 0$ and $\beta_n \searrow 0$ be the singular values of H_f and $H_{1/f}$. Then there exists a positive integer k and a c > 0 such that

$$c < rac{lpha_n}{eta_{n+k}} < 1/c \ (n \in \mathbb{N}) \ or \ c < rac{eta_n}{lpha_{n+k}} < 1/c \ (n \in \mathbb{N}).$$
 (*)

It is not clear if (*) holds with approx. numbers in case $p \neq 2$.

(ロ)、(型)、(E)、(E)、 E) の(の)

• The operator relations MC, EAE and SC play an important role in today's application of operator theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

- The operator relations MC, EAE and SC play an important role in today's application of operator theory.
- While in many applications MC, EAE and SC coincide, the implication

$$MC/EAE \implies SC$$

remains open in general, but is proved affirmatively for

- Hilbert space operators
- Fredholm operators with index 0
- Inessential operators (and hence compact and strictly singular operators)
- operators that can be approx. by invertibles

- The operator relations MC, EAE and SC play an important role in today's application of operator theory.
- While in many applications MC, EAE and SC coincide, the implication

$$MC/EAE \implies SC$$

remains open in general, but is proved affirmatively for

- Hilbert space operators
- Fredholm operators with index 0
- Inessential operators (and hence compact and strictly singular operators)
- operators that can be approx. by invertibles
- What does EAE of U and V mean?
 - Full answer for Hilbert space operators in terms of spectral projections
 - For Hilbert space compact operators: singular values comparable after a shift
 - Banach space compact operators: Generate the same ideals
 - Banach space compact operators: Banach space structure cannot be too different

- The operator relations MC, EAE and SC play an important role in today's application of operator theory.
- While in many applications MC, EAE and SC coincide, the implication

$$MC/EAE \implies SC$$

remains open in general, but is proved affirmatively for

- Hilbert space operators
- Fredholm operators with index 0
- Inessential operators (and hence compact and strictly singular operators)
- operators that can be approx. by invertibles
- What does EAE of U and V mean?
 - Full answer for Hilbert space operators in terms of spectral projections
 - For Hilbert space compact operators: singular values comparable after a shift
 - Banach space compact operators: Generate the same ideals
 - Banach space compact operators: Banach space structure cannot be too different
- Hopefully at a future IWOTA: full proof for EAE \Rightarrow SC, and many more applications.

THANK YOU FOR YOUR ATTENTION

