The coupling method and operator relations

Sanne ter Horst ${ }^{1}$
North-West University

IWOTA 2017
Chemnitz, Germany

Joint work with M. Messerschmidt, A.C.M. Ran, M. Roelands and M. Wortel

NORTH-WEST UNIVERSITY YUNIBESITI YA BOKONE-BOPHIRIMA NOORDWES-UNIVERSITEIT

[^0]
Outline

- Application of the Coupling Method
- Formalization of the Coupling Method

Three Banach space operator relations: MC, EAE and SC

- Question 1: Do MC, EAE and SC coincide
- Question 2: When are two operators MC/EAE/SC?

The Coupling Method for integral equations

Integral operators with semi-separable kernel
Define

$$
K: L_{n}^{2}[0, \tau] \rightarrow L_{n}^{2}[0, \tau], \quad(K f)(t)=\int_{0}^{\tau} k(t, s) f(s) d s, \quad\left(f \in L_{n}^{2}[0, \tau]\right) .
$$

Here

$$
k(s, t)=\left\{\begin{array}{cc}
C(t)(I-P) B(s), & s<t ; \\
-C(t) P B(s), & s>t,
\end{array}\right.
$$

with $P \in \mathrm{Mat}_{\mathbb{C}}^{n \times n}$ a projection and $C, B \in L_{n \times n}^{2}[0, \tau]$.
Then K is Hilbert-Schmidt, so $I-K$ is Fredholm.
Integral equation: Given $g \in L_{n}^{2}[0, \tau]$, find $f \in L_{n}^{2}[0, \tau]$ with

$$
g=(I-K) f, \quad \text { i.e., } \quad g(t)=f(t)-\int_{0}^{\tau} k(t, s) f(s) d s .
$$

The Coupling Method for integral equations

Integral operators with semi-separable kernel
Define

$$
K: L_{n}^{2}[0, \tau] \rightarrow L_{n}^{2}[0, \tau], \quad(K f)(t)=\int_{0}^{\tau} k(t, s) f(s) d s, \quad\left(f \in L_{n}^{2}[0, \tau]\right)
$$

Here

$$
k(s, t)=\left\{\begin{array}{cl}
C(t)(I-P) B(s), & s<t \\
-C(t) P B(s), & s>t
\end{array}\right.
$$

with $P \in \operatorname{Mat}_{\mathbb{C}}^{n \times n}$ a projection and $C, B \in L_{n \times n}^{2}[0, \tau]$.
Then K is Hilbert-Schmidt, so $I-K$ is Fredholm.
Integral equation: Given $g \in L_{n}^{2}[0, \tau]$, find $f \in L_{n}^{2}[0, \tau]$ with

$$
g=(I-K) f, \quad \text { i.e., } \quad g(t)=f(t)-\int_{0}^{\tau} k(t, s) f(s) d s
$$

Associated system
With B and C we associate the differential equation:

$$
\dot{x}(t)=B(t) C(t) x(t) \quad(t \in[0, \tau])
$$

Write $U:[0, \tau] \rightarrow$ Mat $_{\mathbb{C}}^{n \times n}$ for the associated fundamental matrix.

The Coupling Method for integral equations

Bart-Gohberg-Kaashoek '84
Define $S_{\tau}=P U(\tau) P: \operatorname{Im} P \rightarrow \operatorname{Im} P$

The Coupling Method for integral equations

Bart-Gohberg-Kaashoek '84
Define $S_{\tau}=P U(\tau) P: \operatorname{Im} P \rightarrow \operatorname{Im} P$ and

$$
\begin{aligned}
H & : L_{n}^{2}[0, \tau] \rightarrow L_{n}^{2}[0, \tau],(H f)(t)=\int_{0}^{\tau} C(t) B(s) f(s) d s \\
& Q: L_{n}^{2}[0, \tau] \rightarrow \operatorname{Im} P, Q f=P \int_{0}^{\tau} B(s) f(s) d s \\
& R: \operatorname{Im} P \rightarrow L_{n}^{2}[0, \tau],(Q x)(t)=C(t) P x .
\end{aligned}
$$

Then $I-H$ is invertible and

$$
\left[\begin{array}{cc}
I-K & -R \tag{MC}\\
-Q & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
(I-H)^{-1} & (I-H)^{-1} R \\
Q(I-H)^{-1} & S_{\tau}
\end{array}\right] .
$$

The Coupling Method for integral equations

Bart-Gohberg-Kaashoek '84
Define $S_{\tau}=P U(\tau) P: \operatorname{Im} P \rightarrow \operatorname{Im} P$ and

$$
\begin{aligned}
H & : L_{n}^{2}[0, \tau] \rightarrow L_{n}^{2}[0, \tau],(H f)(t)=\int_{0}^{\tau} C(t) B(s) f(s) d s \\
& Q: L_{n}^{2}[0, \tau] \rightarrow \operatorname{Im} P, Q f=P \int_{0}^{\tau} B(s) f(s) d s \\
& R: \operatorname{Im} P \rightarrow L_{n}^{2}[0, \tau],(Q x)(t)=C(t) P x .
\end{aligned}
$$

Then $I-H$ is invertible and

$$
\left[\begin{array}{cc}
I-K & -R \tag{MC}\\
-Q & I
\end{array}\right]^{-1}=\left[\begin{array}{cc}
(I-H)^{-1} & (I-H)^{-1} R \\
Q(I-H)^{-1} & S_{\tau}
\end{array}\right] .
$$

Moreover, there exist invertible operators E and F such that

$$
\left[\begin{array}{cc}
I-K & 0 \tag{EAE}\\
0 & I_{\mathrm{Im} P}
\end{array}\right]=E\left[\begin{array}{cc}
S_{\tau} & 0 \\
0 & I_{L_{n}^{2}[0, \tau]}
\end{array}\right] F .
$$

The Schur complements of $\left[\begin{array}{cc}1 & -R \\ Q & 1-H\end{array}\right]$ are given by

$$
\begin{equation*}
I-K=(I-H)+R Q \quad \text { and } \quad S_{\tau}=I+Q(I-H)^{-1} R \tag{SC}
\end{equation*}
$$

The Coupling Method for integral equations

Fredholm properties
The identity

$$
\left[\begin{array}{cc}
I-K & 0 \\
0 & I_{\operatorname{Im} P}
\end{array}\right]=E\left[\begin{array}{cc}
S_{\tau} & 0 \\
0 & I_{L_{n}[0, \tau]}
\end{array}\right] F
$$

with E and F invertible yields:
$I-K$ (on $\left.L_{n}^{2}[0, \tau]\right)$ and S_{τ} (on Im P) have the same 'Fredholm properties.'
And one can show:
$\operatorname{Ker}(I-K)=(I-H)^{-1} R \operatorname{Ker} S_{\tau} \quad$ and $\quad \operatorname{Im}(I-K)=\left\{f: Q(I-H)^{-1} f \in \operatorname{Im} S_{\tau}\right\}$.

The Coupling Method for integral equations

Fredholm properties
The identity

$$
\left[\begin{array}{cc}
I-K & 0 \\
0 & I_{\operatorname{Im} P}
\end{array}\right]=E\left[\begin{array}{cc}
S_{\tau} & 0 \\
0 & I_{L_{n}^{2}[0, \tau]}
\end{array}\right] F
$$

with E and F invertible yields:
$I-K$ (on $\left.L_{n}^{2}[0, \tau]\right)$ and S_{τ} (on $\operatorname{Im} P$) have the same 'Fredholm properties.'
And one can show:
$\operatorname{Ker}(I-K)=(I-H)^{-1} R \operatorname{Ker} S_{\tau} \quad$ and $\quad \operatorname{Im}(I-K)=\left\{f: Q(I-H)^{-1} f \in \operatorname{Im} S_{\tau}\right\}$.

Generalized inverse

Expressing the Moore-Penrose generalized inverse of $\left[\begin{array}{ll}1 & -R \\ Q & I-H\end{array}\right]$ in terms of its Schur complements one can compute the MP generalized inverse of $I-K$:

$$
(I+K)^{+}=(I-H)^{-1}-(I-H)^{-1} R S_{\tau}^{+} Q(I-H)^{-1}
$$

and solve the integal equation:

$$
f=(I+K)^{+} g, \quad \text { if } g \in \operatorname{Im}(I-K)
$$

The Coupling Method: Formalization

Two Banach space operators $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ are called matricially coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if:
(MC) There exist an invertible operator $\widehat{U}:\left[\begin{array}{l}\mathcal{Y} \\ \mathcal{Y}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{Y} \\ \mathcal{y}\end{array}\right]$ such that

$$
\widehat{U}=\left[\begin{array}{cc}
U & U_{12} \\
U_{21} & U_{22}
\end{array}\right] \quad \text { and } \quad \widehat{U}^{-1}=\left[\begin{array}{cc}
V_{11} & V_{12} \\
V_{21} & V
\end{array}\right] .
$$

(EAE) There exist Banach spaces \mathcal{X}_{0} and \mathcal{Y}_{0} and invertible operators E and F s.t.

$$
\left[\begin{array}{cc}
U & 0 \\
0 & I_{X_{0}}
\end{array}\right]=E\left[\begin{array}{cc}
V & 0 \\
0 & I_{y_{0}}
\end{array}\right] F .
$$

(SC) There exists an operator matrix $S=\left[\begin{array}{ll}A & B \\ C & B\end{array}\right]:\left[\begin{array}{l}\mathcal{Y} \\ \mathcal{Y}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{Y} \\ \mathcal{y}\end{array}\right]$ with A and D invertible and

$$
U=A-B D^{-1} C, \quad V=D-C A^{-1} B .
$$

The Coupling Method: Formalization

Two Banach space operators $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ are called matricially coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if:
(MC) There exist an invertible operator $\widehat{U}:\left[\begin{array}{l}\mathcal{Y} \\ \mathcal{Y}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{Y} \\ \mathcal{y}\end{array}\right]$ such that

$$
\widehat{U}=\left[\begin{array}{cc}
U & U_{12} \\
U_{21} & U_{22}
\end{array}\right] \quad \text { and } \quad \widehat{U}^{-1}=\left[\begin{array}{cc}
V_{11} & V_{12} \\
V_{21} & V
\end{array}\right] .
$$

(EAE) There exist Banach spaces \mathcal{X}_{0} and \mathcal{Y}_{0} and invertible operators E and F s.t.

$$
\left[\begin{array}{cc}
U & 0 \\
0 & I_{X_{0}}
\end{array}\right]=E\left[\begin{array}{cc}
V & 0 \\
0 & I_{y_{0}}
\end{array}\right] F .
$$

(SC) There exists an operator matrix $S=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right]$ with A and D invertible and

$$
U=A-B D^{-1} C, \quad V=D-C A^{-1} B .
$$

In the example
$I-K$ and S_{τ} are MC $\Rightarrow I-K$ and S_{τ} are EAE $\Rightarrow I-K$ and S_{τ} are SC
Fredholm properties
generalized inverse

The Coupling Method: Formalization

Two Banach space operators $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ are called matricially coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if:
(MC) There exist an invertible operator $\widehat{U}:\left[\begin{array}{l}\mathcal{Y} \\ \mathcal{Y}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{Y} \\ \mathcal{y}\end{array}\right]$ such that

$$
\widehat{U}=\left[\begin{array}{cc}
U & U_{12} \\
U_{21} & U_{22}
\end{array}\right] \quad \text { and } \quad \widehat{U}^{-1}=\left[\begin{array}{cc}
V_{11} & V_{12} \\
V_{21} & V
\end{array}\right] .
$$

(EAE) There exist Banach spaces \mathcal{X}_{0} and \mathcal{Y}_{0} and invertible operators E and F s.t.

$$
\left[\begin{array}{cc}
U & 0 \\
0 & I_{X_{0}}
\end{array}\right]=E\left[\begin{array}{cc}
V & 0 \\
0 & I_{y_{0}}
\end{array}\right] F .
$$

(SC) There exists an operator matrix $S=\left[\begin{array}{cc}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathcal{Y} \\ \mathcal{Y}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right]$ with A and D invertible and

$$
U=A-B D^{-1} C, \quad V=D-C A^{-1} B
$$

More recent applications

- Diffraction theory (Castro, Duduchava, Speck, e.g., 2014)
- Truncated Toeplitz operators (Câmara, Partington, 2016)
- Connection with Paired Operators approach (Speck, 2017)
- Wiener-Hopf factorization (Groenewald, Kaashoek, Ran, 2017)

The Coupling Method: Formalization

Two Banach space operators $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ are called matricially coupled (MC), equivalent after extension (EAE) resp. Schur coupled (SC) if:
(MC) There exist an invertible operator $\widehat{U}:\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right] \rightarrow\left[\begin{array}{c}\mathcal{Y} \\ \mathcal{Y}\end{array}\right]$ such that

$$
\widehat{U}=\left[\begin{array}{cc}
U & U_{12} \\
U_{21} & U_{22}
\end{array}\right] \quad \text { and } \quad \widehat{U}^{-1}=\left[\begin{array}{cc}
V_{11} & V_{12} \\
V_{21} & V
\end{array}\right] .
$$

(EAE) There exist Banach spaces \mathcal{X}_{0} and \mathcal{Y}_{0} and invertible operators E and F s.t.

$$
\left[\begin{array}{cc}
U & 0 \\
0 & I_{X_{0}}
\end{array}\right]=E\left[\begin{array}{cc}
V & 0 \\
0 & I_{y_{0}}
\end{array}\right] F .
$$

(SC) There exists an operator matrix $S=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]:\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right] \rightarrow\left[\begin{array}{l}\mathcal{X} \\ \mathcal{Y}\end{array}\right]$ with A and D invertible and

$$
U=A-B D^{-1} C, \quad V=D-C A^{-1} B .
$$

More recent applications

- Completeness theorems in dynamical systems (Kaashoek, Verduyn Lunel)
- Unbounded operator functions (Engström, Torshage, Arxiv)

Do MC, EAE and SC coincide?

Question (Bart-Tsekanovskii '92)
Do the operator relations MC, EAE and SC coincide?

Do MC, EAE and SC coincide?

Question (Bart-Tsekanovskii '92)

Do the operator relations MC, EAE and SC coincide?

$$
M C \Longleftrightarrow E A E \Longleftrightarrow S C
$$

Early results

- Bart-Gohberg-Kaashoek '84: MC \Rightarrow EAE
- Bart-Tsekanovskii '92: EAE \Rightarrow MC (so $\mathrm{EAE} \Leftrightarrow \mathrm{MC}$)
- Bart-Tsekanovskii '94: SC \Rightarrow EAE

Proof MC $\Longrightarrow E A E$
$\left[\begin{array}{ll}U & 0 \\ 0 & y\end{array}\right]=E\left[\begin{array}{cc}v & 0 \\ 0 & 1 x\end{array}\right] F$ holds with $E=\left[\begin{array}{cc}U_{12} & U \\ U_{22} & U_{21}\end{array}\right]$ and $F=\left[\begin{array}{cc}-U_{21} & 1 \\ V_{11} & V_{12}\end{array}\right]$ and

$$
E^{-1}=\left[\begin{array}{cc}
V_{21} & V \\
V_{11} & V_{12}
\end{array}\right], \quad F^{-1}=\left[\begin{array}{cc}
-V_{12} & I \\
U_{22} V & U_{21}
\end{array}\right] .
$$

Do MC, EAE and SC coincide?

Question (Bart-Tsekanovskii '92)
Do the operator relations MC, EAE and SC coincide?

$$
M C \Longleftrightarrow \mathrm{EAE} \Longleftarrow S C
$$

Early results

- Bart-Gohberg-Kaashoek '84: MC \Rightarrow EAE
- Bart-Tsekanovskii '92: EAE \Rightarrow MC (so EAE \Leftrightarrow MC)
- Bart-Tsekanovskii '94: SC \Rightarrow EAE
- Remaining implication: Does EAE $\Rightarrow \mathrm{SC}$ hold?

Do MC, EAE and SC coincide?

Question (Bart-Tsekanovskii '92)

Do the operator relations MC, EAE and SC coincide?

$$
\mathrm{MC} \Longleftrightarrow \mathrm{EAE} \Longleftarrow \mathrm{SC}
$$

Early results

- Bart-Gohberg-Kaashoek '84: MC \Rightarrow EAE
- Bart-Tsekanovskii '92: EAE $\Rightarrow \mathrm{MC}$ (so EAE $\Leftrightarrow \mathrm{MC}$)
- Bart-Tsekanovskii '94: SC \Rightarrow EAE
- Remaining implication: Does $\mathrm{EAE} \Rightarrow \mathrm{SC}$ hold?
- BT'92: Yes if U and V are Fredholm (Banach space: + index $=0$)
- BGKR'05: Yes if SC is an equivalence relation (this is true for EAE)
(BT=Bart-Tsekanovskii, BGKR=Bart-Gohberg-Kaashoek-Ran)

Do MC, EAE and SC coincide?

Question (Bart-Tsekanovskii '92)

Do the operator relations MC, EAE and SC coincide?

Early results

- Bart-Gohberg-Kaashoek '84: MC \Rightarrow EAE
- Bart-Tsekanovskii '92: EAE $\Rightarrow \mathrm{MC}$ (so EAE $\Leftrightarrow \mathrm{MC}$)
- Bart-Tsekanovskii '94: SC \Rightarrow EAE
- Remaining implication: Does $\mathrm{EAE} \Rightarrow \mathrm{SC}$ hold?
- BT'92: Yes if U and V are Fredholm (Banach space: + index $=0$)
- BGKR'05: Yes if SC is an equivalence relation (this is true for EAE)
- BT'92: Yes if U and V are SEAE (SEAE $\Leftrightarrow S C$) (SEAE $=$ Strong EAE $=$ EAE with E_{21} and F_{12} invertible)
- BGKR'05: Yes if U and V are EAOE (EAOE $\Rightarrow S C$) (EAOE $=$ EAE with $\mathcal{X}_{0}=\{0\}$ or $\mathcal{Y}_{0}=\{0\}$ (one-sided extension))
($\mathrm{BT}=$ Bart-Tsekanovskii, BGKR=Bart-Gohberg-Kaashoek-Ran)

Approximation by invertibles

Theorem (tH-Ran '13) Let U and V be EAE operators that can be approx. by invertible operators (in norm). Then U and V are SEAE, and hence SC.

Approximation by invertibles

Theorem (tH-Ran '13) Let U and V be EAE operators that can be approx. by invertible operators (in norm). Then U and V are SEAE, and hence SC.

Proof Go for SEAE (F_{12} and E_{21} invertible).
By concrete formulas for $E A E \Rightarrow M C \Rightarrow E A E, W L O G$
\(E=\left[$$
\begin{array}{cc}E_{11} & U \\
E_{21} & E_{22}\end{array}
$$\right], \quad E^{-1}=\left[\begin{array}{cc}\widetilde{E}_{11} \& V

\widetilde{E}_{21} \& \widetilde{E}_{22}\end{array}\right], \quad F=\left[\right.\)| F_{11} | |
| :---: | :---: |
| F_{21} | F_{22} |\(], \quad F^{-1}=\left[\begin{array}{cc}\widetilde{F}_{11} \& I_{\mathcal{X}}

\widetilde{F}_{21} \& \widetilde{F}_{22}\end{array}\right]\).
In particular, $E_{21} V+E_{22} \widetilde{E}_{22}=I$.

Approximation by invertibles

Theorem (tH-Ran '13) Let U and V be EAE operators that can be approx. by invertible operators (in norm). Then U and V are SEAE, and hence SC.

Proof Go for SEAE (F_{12} and E_{21} invertible).
By concrete formulas for $E A E \Rightarrow M C \Rightarrow E A E, W L O G$
$E=\left[\begin{array}{cc}E_{11} & U \\ E_{21} & E_{22}\end{array}\right], \quad E^{-1}=\left[\begin{array}{cc}\widetilde{E}_{11} & V \\ \widetilde{E}_{21} & \widetilde{E}_{22}\end{array}\right], \quad F=\left[\begin{array}{cc}F_{11} & l_{\mathcal{Y}} \\ F_{21} & F_{22}\end{array}\right], \quad F^{-1}=\left[\begin{array}{cc}\widetilde{F}_{11} & I_{\mathcal{X}} \\ \widetilde{F}_{21} & \widetilde{F}_{22}\end{array}\right]$.
In particular, $E_{21} V+E_{22} \widetilde{E}_{22}=I$. Take an invertible \widetilde{V} close to V s.t.

$$
N:=E_{21} \widetilde{V}+E_{22} \widetilde{E}_{22} \text { is invertible. }
$$

Then also

$$
E_{21}-E_{22} \widetilde{E}_{22} \widetilde{V}^{-1}=N \widetilde{V}^{-1} \text { is invertible. }
$$

Approximation by invertibles

Theorem (tH-Ran '13) Let U and V be EAE operators that can be approx. by invertible operators (in norm). Then U and V are SEAE, and hence SC.

Proof Go for SEAE (F_{12} and E_{21} invertible).
By concrete formulas for $E A E \Rightarrow M C \Rightarrow E A E, W L O G$
\(E=\left[$$
\begin{array}{cc}E_{11} & U \\
E_{21} & E_{22}\end{array}
$$\right], \quad E^{-1}=\left[\begin{array}{cc}\widetilde{E}_{11} \& V

\widetilde{E}_{21} \& \widetilde{E}_{22}\end{array}\right], \quad F=\left[\right.\)| F_{11} | |
| :---: | :---: |
| F_{21} | F_{22} |\(], \quad F^{-1}=\left[\begin{array}{cc}\widetilde{F}_{11} \& \mathcal{I}_{X}

\widetilde{F}_{21} \& \widetilde{F}_{22}\end{array}\right]\).
In particular, $E_{21} V+E_{22} \widetilde{E}_{22}=1$. Take an invertible \widetilde{V} close to V s.t.

$$
N:=E_{21} \widetilde{V}+E_{22} \widetilde{E}_{22} \text { is invertible. }
$$

Then also

$$
E_{21}-E_{22} \widetilde{E}_{22} \widetilde{V}^{-1}=N \widetilde{V}^{-1} \text { is invertible. }
$$

Then note that $\left[\begin{array}{ll}u & 0 \\ 0 & 1\end{array}\right]=\widehat{E}\left[\begin{array}{ll}V & 0 \\ 0 & 1\end{array}\right] \widehat{F}$ holds with

$$
\begin{aligned}
& \widehat{E}=E\left[\begin{array}{cc}
I & 0 \\
\widetilde{E}_{22} \widetilde{V}^{-1} & 1
\end{array}\right]=\left[\begin{array}{cc}
* & * \\
E_{21}-E_{22} \widetilde{E}_{22} \widetilde{V}^{-1} & *
\end{array}\right], \\
& \widehat{F}=\left[\begin{array}{cc}
1 & 0 \\
-\widetilde{E}_{22} \widetilde{V}^{-1} V & 1
\end{array}\right] F=\left[\begin{array}{cc}
* & 1 \\
* & *
\end{array}\right] .
\end{aligned}
$$

Thus U and V are SEAE.

EAE and SC on separable Hilbert spaces

Question Which operators can be approximated by invertibles?

EAE and SC on separable Hilbert spaces

Question Which operators can be approximated by invertibles? Banach space operators: Not much seems to be known. Hilbert space operators:

Feldman-Kadison '54: General criterion + specialization to separable case.

EAE and SC on separable Hilbert spaces

Question Which operators can be approximated by invertibles?
Banach space operators: Not much seems to be known.
Hilbert space operators:
Feldman-Kadison '54: General criterion + specialization to separable case.
Theorem (Feldman-Kadison '54) Let $W: \mathcal{Z} \rightarrow \mathcal{Z}$, with \mathcal{Z} a separable Hilbert space. Then W cannot be approximated by invertible operators if and only if W has closed range and $\operatorname{dim} \operatorname{Ker} W \neq \operatorname{dim} \operatorname{Ker} W^{*}$.

Thus a separable Hilbert space operator can be approximated by invertibles or has closed range. (Not true on non-separable Hilbert spaces.)

EAE and SC on separable Hilbert spaces

Question Which operators can be approximated by invertibles?
Banach space operators: Not much seems to be known.
Hilbert space operators:
Feldman-Kadison '54: General criterion + specialization to separable case.
Theorem (Feldman-Kadison '54) Let $W: \mathcal{Z} \rightarrow \mathcal{Z}$, with \mathcal{Z} a separable Hilbert space. Then W cannot be approximated by invertible operators if and only if W has closed range and $\operatorname{dim} \operatorname{Ker} W \neq \operatorname{dim} \operatorname{Ker} W^{*}$.

Thus a separable Hilbert space operator can be approximated by invertibles or has closed range. (Not true on non-separable Hilbert spaces.)

Theorem (tH-Ran '13) Let U and V be closed range Hilbert space operators.
Then U and V are EAE if and only if U and V are SC if and only if

$$
\operatorname{dim} \operatorname{Ker} U=\operatorname{dim} \operatorname{Ker} V \text { and } \operatorname{dim} \operatorname{Ker} U^{*}=\operatorname{dim} \operatorname{Ker} V^{*} .
$$

Theorem (tH-Ran '13) Assume U and V are EAE operators on separable Hilbert spaces. Then U and V are SEAE, and hence SC.

When are operators EAE?

Question When are operators U and V EAE?
Known: Assume U and V are closed range Hilbert space operators. Then:
U and V are EAE $\Longleftrightarrow \operatorname{dim} \operatorname{Ker} U=\operatorname{dim} \operatorname{Ker} V$ and $\operatorname{dim} \operatorname{Ker} U^{*}=\operatorname{dim} \operatorname{Ker} V^{*}$.

When are operators EAE?

Question When are operators U and V EAE?
Known: Assume U and V are closed range Hilbert space operators. Then:
U and V are EAE $\Longleftrightarrow \operatorname{dim} \operatorname{Ker} U=\operatorname{dim} \operatorname{Ker} V$ and $\operatorname{dim} \operatorname{Ker} U^{*}=\operatorname{dim} \operatorname{Ker} V^{*}$.

Definition (generated operator ideal) For a Banach space operator $U: \mathcal{X} \rightarrow \mathcal{X}$ and Banach spaces \mathcal{Z}_{1} and \mathcal{Z}_{2} we define

$$
\Im_{U}\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right):=\left\{\sum_{j=1}^{n} R_{j} \cup R_{j}^{\prime}: R_{j}: \mathcal{X} \rightarrow \mathcal{Z}_{2}, R_{j}^{\prime}: \mathcal{Z}_{1} \rightarrow \mathcal{X}, n \in \mathbb{N}\right\}
$$

and the operator ideal generated by $U: \Im_{U}=\bigcup_{\mathcal{Z}_{1}, \mathcal{Z}_{2}} \Im_{U}\left(\mathcal{Z}_{1}, \mathcal{Z}_{2}\right)$.
Theorem (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be compact Banach space operators that are EAE. Then $\mathfrak{I}_{U}=\mathfrak{I}_{V}$.

Timotin's approach to the general Hilbert space case, Pt I

Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be Hilbert space operators. Define

$$
|U|=\left(U^{*} U\right)^{1 / 2} \quad \text { and } \quad|V|=\left(V^{*} V\right)^{1 / 2}
$$

Theorem (Timotin '14) The operators U and V are EAE if and only if $|U|$ and $|V|$ are EAE and

$$
\operatorname{dim} \operatorname{ker} U=\operatorname{dim} \operatorname{ker} V, \quad \operatorname{dim} \operatorname{ker} U^{*}=\operatorname{dim} \operatorname{ker} V^{*} .
$$

Timotin's approach to the general Hilbert space case, Pt I

Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be Hilbert space operators. Define

$$
|U|=\left(U^{*} U\right)^{1 / 2} \quad \text { and } \quad|V|=\left(V^{*} V\right)^{1 / 2}
$$

Theorem (Timotin '14) The operators U and V are EAE if and only if $|U|$ and $|V|$ are EAE and

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} U=\operatorname{dim} \operatorname{ker} V, \quad \operatorname{dim} \operatorname{ker} U^{*}=\operatorname{dim} \operatorname{ker} V^{*} . \tag{*}
\end{equation*}
$$

For any interval $I \subset \mathbb{R}$, let $E_{|U|}[I]$ and $E_{|V|}[I]$ be the spectral projections of $|U|$ and $|V|$ on I.

Theorem (Fillmore-Williams '71) The operators U and V are equivalent if and only if (*) holds and there is a $\delta>0$ so that for all $0<\alpha \leq \beta<\infty$ we have

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ran} E_{|U|}([\alpha, \beta)) \leq \operatorname{dim} \operatorname{ran} E_{|V|}([\alpha \delta, \beta / \delta)) \\
& \operatorname{dim} \operatorname{ran} E_{|V|}([\alpha, \beta)) \leq \operatorname{dim} \operatorname{ran} E_{|U|}([\alpha \delta, \beta / \delta)) .
\end{aligned}
$$

Timotin's approach to the general Hilbert space case, Pt II

Theorem (Timotin '14) For Hilbert space operators U and V TFAE:

- U and V are $E A E$;
- U and V satisfy

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} U=\operatorname{dim} \operatorname{ker} V, \quad \operatorname{dim} \operatorname{ker} U^{*}=\operatorname{dim} \operatorname{ker} V^{*} . \tag{*}
\end{equation*}
$$

and there exist $0<\delta<1$ and $\mathbf{a}>\mathbf{0}$ such that for al $0<\alpha \leq \beta<\mathbf{a}$

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ran} E_{|U|}([\alpha, \beta)) \leq \operatorname{dim} \operatorname{ran} E_{|V|}([\alpha \delta, \beta / \delta)) \\
& \operatorname{dim} \operatorname{ran} E_{|V|}([\alpha, \beta)) \leq \operatorname{dim} \operatorname{ran} E_{|U|}([\alpha \delta, \beta / \delta))
\end{aligned}
$$

- U and V are EAOE, and hence SC. (Recall: $E A O E=E A E$ with $\mathcal{X}_{0}=\{0\}$ or $\mathcal{Y}_{0}=\{0\}$ (one-sided extension))

Timotin's approach to the general Hilbert space case, Pt II

Theorem (Timotin '14) For Hilbert space operators U and V TFAE:

- U and V are $E A E$;
- U and V satisfy

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} U=\operatorname{dim} \operatorname{ker} V, \quad \operatorname{dim} \operatorname{ker} U^{*}=\operatorname{dim} \operatorname{ker} V^{*} . \tag{*}
\end{equation*}
$$

and there exist $0<\delta<1$ and $\mathbf{a}>\mathbf{0}$ such that for al $0<\alpha \leq \beta<\mathbf{a}$

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ran} E_{|U|}([\alpha, \beta)) \leq \operatorname{dim} \operatorname{ran} E_{|V|}([\alpha \delta, \beta / \delta)) \\
& \operatorname{dim} \operatorname{ran} E_{|V|}([\alpha, \beta)) \leq \operatorname{dim} \operatorname{ran} E_{|U|}([\alpha \delta, \beta / \delta))
\end{aligned}
$$

- U and V are EAOE, and hence SC. (Recall: $E A O E=E A E$ with $\mathcal{X}_{0}=\{0\}$ or $\mathcal{Y}_{0}=\{0\}$ (one-sided extension))

This result specializes to compact operators in the following form.
Theorem (Timotin '14) Assume U and V are compact (and of infinite rank) with singular values $u_{n} \searrow 0$ and $v_{n} \searrow 0$, respectively. Then U and V are $E A E=M C=S C$ if and only if ($*$) holds and their singular values are comparable after a shift: There exist $0<\delta<1$ and $m \in \mathbb{N}$ such that

$$
\delta \leq \frac{u_{n}}{v_{n+m}} \leq \frac{1}{\delta} \text { for all } n \geq 0 \quad \text { or } \quad \delta \leq \frac{v_{n}}{u_{n+m}} \leq \frac{1}{\delta} \text { for all } n \geq 0
$$

Timotin's approach to the general Hilbert space case, Pt II

Theorem (Timotin '14) For Hilbert space operators U and V TFAE:

- U and V are $E A E$;
- U and V satisfy

$$
\begin{equation*}
\operatorname{dim} \operatorname{ker} U=\operatorname{dim} \operatorname{ker} V, \quad \operatorname{dim} \operatorname{ker} U^{*}=\operatorname{dim} \operatorname{ker} V^{*} . \tag{*}
\end{equation*}
$$

and there exist $0<\delta<1$ and $\mathbf{a}>\mathbf{0}$ such that for al $0<\alpha \leq \beta<\mathbf{a}$

$$
\begin{aligned}
& \operatorname{dim} \operatorname{ran} E_{|U|}([\alpha, \beta)) \leq \operatorname{dim} \operatorname{ran} E_{|V|}([\alpha \delta, \beta / \delta)) \\
& \operatorname{dim} \operatorname{ran} E_{|V|}([\alpha, \beta)) \leq \operatorname{dim} \operatorname{ran} E_{|U|}([\alpha \delta, \beta / \delta))
\end{aligned}
$$

- U and V are EAOE, and hence SC. (Recall: $E A O E=E A E$ with $\mathcal{X}_{0}=\{0\}$ or $\mathcal{Y}_{0}=\{0\}$ (one-sided extension))

Which shows U and V EAE is much stronger than generating the same operator ideal.

Theorem (Schatten '60) Let U and V be compact Hilbert space operators with with singular values $u_{n} \searrow 0$ and $v_{n} \searrow 0$. Then $\mathfrak{I}_{U}=\mathfrak{I}_{V}$ if and only if there exist $M>0$ and $m \in \mathbb{N}$ so that

$$
u_{m(n-1)+j} \leq M v_{n} \quad \text { and } \quad v_{m(n-1)+j} \leq M u_{n} \quad(n \in \mathbb{N}, j=1, \ldots, m-1)
$$

Essentially incomparable Banach spaces and EAE

Definition Banach spaces \mathcal{X} a \mathcal{Y} are called essentially incomparable if for any operators $T: \mathcal{X} \rightarrow \mathcal{Y}$ and $S: \mathcal{Y} \rightarrow \mathcal{X}$

$$
I-T S \text { and } I-S T \text { are Fredholm. }
$$

Pitt-Rosenthal Theorem
Any operator $T: \ell^{p} \rightarrow \ell^{q}$, for $1 \leq q<p<\infty$, is compact. (Hence ℓ^{p} and ℓ^{q} are essentially incomparable.)

Essentially incomparable Banach spaces and EAE

Definition Banach spaces \mathcal{X} a \mathcal{Y} are called essentially incomparable if for any operators $T: \mathcal{X} \rightarrow \mathcal{Y}$ and $S: \mathcal{Y} \rightarrow \mathcal{X}$

$$
I-T S \text { and } I-S T \text { are Fredholm. }
$$

Pitt-Rosenthal Theorem

Any operator $T: \ell^{p} \rightarrow \ell^{q}$, for $1 \leq q<p<\infty$, is compact. (Hence ℓ^{p} and ℓ^{q} are essentially incomparable.)
Theorem (tH-Messerschmidt-Ran '15) Assume \mathcal{X} and \mathcal{Y} are infinite dimensional, essentially incomparable Banach spaces. Then operators $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ with U or V compact cannot be EAE.

Essentially incomparable Banach spaces and EAE

Definition Banach spaces \mathcal{X} a \mathcal{Y} are called essentially incomparable if for any operators $T: \mathcal{X} \rightarrow \mathcal{Y}$ and $S: \mathcal{Y} \rightarrow \mathcal{X}$

$$
I-T S \text { and } I-S T \text { are Fredholm. }
$$

Pitt-Rosenthal Theorem
Any operator $T: \ell^{p} \rightarrow \ell^{q}$, for $1 \leq q<p<\infty$, is compact. (Hence ℓ^{p} and ℓ^{q} are essentially incomparable.)
Theorem (tH-Messerschmidt-Ran '15) Assume \mathcal{X} and \mathcal{Y} are infinite dimensional, essentially incomparable Banach spaces. Then operators $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ with U or V compact cannot be EAE.

Recall: $\mathrm{EAOE}=\mathrm{EAE}$ with $\mathcal{X}_{0}=\{0\}$ or $\mathcal{Y}_{0}=\{0\}$ (one-sided extension)
Theorem (tH-Messerschmidt-Ran '15) Assume \mathcal{X} and \mathcal{Y} are infinite dimensional, essentially incomparable Banach spaces. Then no operators $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ are ever $E A O E$.

Corollary In general the operator relation EAOE cannot coincide with and SC/EAE/MC.

Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be EAE with V compact. Then there exists a closed subspace of \mathcal{Y} of finite co-dimension that is topologically isomorphic to a closed subspace of \mathcal{X}.

Corollary (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be EAE with V compact. Assume \mathcal{Y} is prime, i.e., every infinite dimensional complementable subspace of \mathcal{Y} is topologically isomorphic to \mathcal{Y}. Then \mathcal{X} contains a copy of \mathcal{Y}.

Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be EAE with V compact. Then there exists a closed subspace of \mathcal{Y} of finite co-dimension that is topologically isomorphic to a closed subspace of \mathcal{X}.

Corollary (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be EAE with V compact. Assume \mathcal{Y} is prime, i.e., every infinite dimensional complementable subspace of \mathcal{Y} is topologically isomorphic to \mathcal{Y}. Then \mathcal{X} contains a copy of \mathcal{Y}.

Proposition (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ with V compact. Assume (P) is a Banach space property s.t. every closed subspace of \mathcal{X} has property (P) and (P) is preserved under direct sums with finite dimensional spaces. If U and V are $E A E$, then Y also has property (P).

Implications of EAE + compact

Proposition (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be EAE with V compact. Then there exists a closed subspace of \mathcal{Y} of finite co-dimension that is topologically isomorphic to a closed subspace of \mathcal{X}.

Corollary (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be EAE with V compact. Assume \mathcal{Y} is prime, i.e., every infinite dimensional complementable subspace of \mathcal{Y} is topologically isomorphic to \mathcal{Y}. Then \mathcal{X} contains a copy of \mathcal{Y}.

Proposition (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ with V compact. Assume (P) is a Banach space property s.t. every closed subspace of \mathcal{X} has property (P) and (P) is preserved under direct sums with finite dimensional spaces. If U and V are $E A E$, then Y also has property (P).

Corollary (tH-Messerschmidt-Ran '15) Let $U: \mathcal{X} \rightarrow \mathcal{X}$ and $V: \mathcal{Y} \rightarrow \mathcal{Y}$ be EAE with V compact. Then:

- If \mathcal{X} is isomorphic to a Hilbert space, then so is \mathcal{Y};
- If \mathcal{X} is separable, then so is \mathcal{Y};
- If \mathcal{X} is reflexive, then so is \mathcal{Y};
- If \mathcal{X} has the Radon-Nikodym property, then so does \mathcal{Y};
- If \mathcal{X} has the Hereditary Dunford-Pettis property, then so does \mathcal{Y}.

$\mathrm{EAE} \Rightarrow \mathrm{SC}$ for compact operators

Theorem (tH-Messerschmidt-Ran-Roelands-Wortel '15) Let $U \in \mathcal{B}(\mathcal{X})$ and $V \in \mathcal{B}(\mathcal{Y})$ be compact. Then U and V are $E A E \Longleftrightarrow U$ and V are $E A O E \quad \Longleftrightarrow \quad$ and V are $S C$.

$\mathrm{EAE} \Rightarrow \mathrm{SC}$ for compact operators

Theorem (tH-Messerschmidt-Ran-Roelands-Wortel '15) Let $U \in \mathcal{B}(\mathcal{X})$ and $V \in \mathcal{B}(\mathcal{Y})$ be compact. Then
U and V are $E A E \quad U$ and V are $E A O E \quad U$ and V are $S C$.

Sketch of proof

By the constructions from EAE $\Rightarrow \mathrm{MC} \Rightarrow \mathrm{EAE}$, WLOG $\mathcal{X}_{0}=\mathcal{Y}, \mathcal{Y}_{0}=\mathcal{X}$ and E and F have the form

$$
\begin{gathered}
F=\left[\begin{array}{cc}
F_{11} & I \\
F_{21} & F_{22}
\end{array}\right], \quad E=\left[\begin{array}{cc}
E_{11} & U \\
E_{21} & -F_{11}
\end{array}\right] \\
F^{-1}=\left[\begin{array}{cc}
-F_{22} & I_{\mathcal{X}} \\
I+F_{11} F_{22} & -F_{11}
\end{array}\right], \quad E^{-1}=\left[\begin{array}{cc}
\widehat{E}_{11} & V \\
\widehat{E}_{21} & F_{22}
\end{array}\right] .
\end{gathered}
$$

Then $U \otimes I y=E\left(V \otimes I_{\mathcal{X}}\right) F$ yields

$$
\begin{aligned}
& \text { (i) } I=F_{21}-F_{22} F_{11} \text {, (ii) } U=E_{11} V F_{11}+U F_{21} \text {, (iii) } E_{21} V F_{11}=F_{11} F_{21} \text {, } \\
& \text { (iv) } E_{11} V=-U F_{22}, \quad \text { (v) } F_{11} F_{22}=E_{21} V-I, \quad \text { (vi) } \widehat{E}_{11} U=V F_{11} \text {, } \\
& \text { (vii) } \widehat{E}_{21} U=F_{21} \text {, (viii) } E_{11} \widehat{E}_{11}=I-U \widehat{E}_{21} \text {, (ix) } E_{21} \widehat{E}_{11}=F_{11} \widehat{E}_{21} \text {, } \\
& \text { (x) } \widehat{E}_{11} E_{11}=I-V E_{21}, \quad \text { (xi) } \widehat{E}_{21} E_{11}=-F_{22} E_{21} \text {. }
\end{aligned}
$$

Sketch of proof II

Since U and V are compact

$$
-F_{22} F_{11}=I-\widehat{E}_{21} U \text { and } \quad-F_{11} F_{22}=I-E_{21} V \text { are Fredholm. }
$$

Atkinson's Theorem: F_{11} and F_{22} are Fredholm and $\operatorname{Ind}\left(F_{11}\right)=-\operatorname{Ind}\left(F_{22}\right)$. Similar argument: E_{11} and \widehat{E}_{11} are Fredholm and $\operatorname{Ind}\left(E_{11}\right)=-\operatorname{Ind}\left(\widehat{E}_{11}\right)$. We can decompose

$$
\begin{aligned}
& F_{22}=\left[\begin{array}{cc}
F_{22}^{\prime} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{K}_{2} \\
\operatorname{Ker} F_{22}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} F_{22} \\
\mathcal{H}_{2}
\end{array}\right], \\
& E_{11}=\left[\begin{array}{cc}
E_{11}^{\prime} & 0 \\
0 & 0
\end{array}\right]:\left[\begin{array}{c}
\mathcal{F}_{1} \\
\operatorname{Ker} E_{11}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} E_{11} \\
\mathcal{G}_{1}
\end{array}\right],
\end{aligned}
$$

with F_{22}^{\prime} and E_{11}^{\prime} invertible, and decompose U and V accordingly:

$$
\begin{aligned}
& U=\left[\begin{array}{ll}
U_{11} & U_{12} \\
U_{21} & U_{22}
\end{array}\right]:\left[\begin{array}{c}
\operatorname{Im} F_{22} \\
\mathcal{H}_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} E_{11} \\
\mathcal{G}_{1}
\end{array}\right], \\
& V=\left[\begin{array}{ll}
V_{11} & V_{12} \\
V_{21} & V_{22}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{K}_{2} \\
\operatorname{Ker} F_{22}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{F}_{1} \\
\operatorname{Ker} E_{11}
\end{array}\right] .
\end{aligned}
$$

Use further identities:
$U_{21}=0, V_{12}=0$ and U_{11} and V_{11} are equivalent: $U_{11} F_{22}^{\prime}=-E_{11}^{\prime} V_{11}$.

Sketch of proof III

We have U_{11} and V_{11} equivalent $\left(U_{11} F_{22}^{\prime}=-E_{11}^{\prime} V_{11}\right)$ and

$$
\begin{aligned}
& U=\left[\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right]:\left[\begin{array}{c}
\operatorname{Im} F_{22} \\
\mathcal{H}_{2}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\operatorname{Im} E_{11} \\
\mathcal{G}_{1}
\end{array}\right] \\
& V=\left[\begin{array}{cc}
V_{11} & 0 \\
V_{21} & V_{22}
\end{array}\right]:\left[\begin{array}{c}
\mathcal{K}_{2} \\
\operatorname{Ker} F_{22}
\end{array}\right] \rightarrow\left[\begin{array}{c}
\mathcal{F}_{1} \\
\operatorname{Ker} E_{11}
\end{array}\right] .
\end{aligned}
$$

After many more manipulations of the identities: U_{22} and V_{22} are invertible. Then U and V are equivalent to

$$
\widetilde{U}:=\left[\begin{array}{cc}
U_{11} & 0 \\
0 & I_{\mathcal{H}_{2}}
\end{array}\right] \quad \text { and } \quad \widetilde{V}:=\left[\begin{array}{cc}
V_{11} & 0 \\
0 & I_{\text {Ker } E_{11}}
\end{array}\right]
$$

and \mathcal{H}_{2} and $\operatorname{Ker} E_{11}$ are finite dimensional. Say $\operatorname{dim} \mathcal{H}_{2}<\operatorname{dim} \operatorname{Ker} E_{11}$. Let $T: \mathcal{H}_{2} \rightarrow \operatorname{Ker}_{11}$ be injective and \mathcal{Z}^{\prime} a complement of $\mathcal{Z}:=J \mathcal{H}_{2}$ in $\operatorname{Ker} E_{11}$. Then \widetilde{U} and \widetilde{V} are EAOE via

$$
\left[\begin{array}{ccc}
U_{11} & 0 & 0 \\
0 & I_{\mathcal{H}_{2}} & 0 \\
0 & 0 & I_{\mathcal{Z}^{\prime}}
\end{array}\right]=\left[\begin{array}{ccc}
E_{11}^{\prime} & 0 & 0 \\
0 & T^{+} T_{\mathcal{Z}} & 0 \\
0 & 0 & I_{\mathcal{Z}^{\prime}}
\end{array}\right]\left[\begin{array}{ccc}
V_{11} & 0 & 0 \\
0 & I_{\mathcal{Z}} & 0 \\
0 & 0 & I_{\mathcal{Z}^{\prime}}
\end{array}\right]\left[\begin{array}{ccc}
-F_{22}^{\prime-1} & 0 & 0 \\
0 & \Pi_{\mathcal{Z}} T & 0 \\
0 & 0 & I_{\mathcal{Z}^{\prime}}
\end{array}\right]
$$

with T^{+}a left inverse of $T, J_{\mathcal{Z}}: \mathcal{Z} \rightarrow \operatorname{Ker} E_{11}$ and $\Pi_{\mathcal{Z}}: \operatorname{Ker} E_{11} \rightarrow \mathcal{Z}$ the canonical embedding and projection. Then U and V are also EAOE, and hence SC.

Beyond compact operators

Observation: The arguments involving compact operators only use that the invertible elements in the Calkin algebra of the compacts are the Fredholm operator.

Beyond compact operators

Observation: The arguments involving compact operators only use that the invertible elements in the Calkin algebra of the compacts are the Fredholm operator.
Definition Let $T: \mathcal{X} \rightarrow \mathcal{Y}$ be a Banach space operator. We we call T :

- inessential if $I_{\mathcal{Y}}-T S$ is Fredholm for any $S: \mathcal{Y} \rightarrow \mathcal{X}$ (equiv. $I_{\mathcal{X}}-S T$ is Fredholm for any $S: \mathcal{Y} \rightarrow \mathcal{X}$) (Kleinecke, 1963).
- strictly singular if for no infinite dimensional, closed, complementable subspace \mathcal{M} of \mathcal{X} the operator $\left.T\right|_{\mathcal{M}}: \mathcal{M} \rightarrow \mathcal{Y}$ is an isomorphism.
- strictly co-singular if for no infinite codimensional, closed, complementable subspace \mathcal{N} of \mathcal{Y} the operator $P_{\mathcal{N}} T: \mathcal{X} \rightarrow \mathcal{N}$ is surjective.

Beyond compact operators

Observation: The arguments involving compact operators only use that the invertible elements in the Calkin algebra of the compacts are the Fredholm operator.
Definition Let $T: \mathcal{X} \rightarrow \mathcal{Y}$ be a Banach space operator. We we call T :

- inessential if $I_{\mathcal{Y}}-T S$ is Fredholm for any $S: \mathcal{Y} \rightarrow \mathcal{X}$ (equiv. $I_{\mathcal{X}}-S T$ is Fredholm for any $S: \mathcal{Y} \rightarrow \mathcal{X}$) (Kleinecke, 1963).
- strictly singular if for no infinite dimensional, closed, complementable subspace \mathcal{M} of \mathcal{X} the operator $\left.T\right|_{\mathcal{M}}: \mathcal{M} \rightarrow \mathcal{Y}$ is an isomorphism.
- strictly co-singular if for no infinite codimensional, closed, complementable subspace \mathcal{N} of \mathcal{Y} the operator $P_{\mathcal{N}} T: \mathcal{X} \rightarrow \mathcal{N}$ is surjective.
Then for operators $T: \mathcal{X} \rightarrow \mathcal{X}$:

$$
\{\text { compacts }\} \subset \frac{\{\text { strictly singular }\}}{\{\text { strictly co-singular }\}} \subset\{\text { inessentials }\} \subset \mathcal{B}(\mathcal{X})
$$

are all closed operator ideals in $\mathcal{B}(\mathcal{X})$ and the inessential operators $\ln (\mathcal{X})$ is the largest closed ideal in $\mathcal{B}(\mathcal{X})$ s.t. in the Calkin algebra $\mathcal{B}(\mathcal{X}) / \ln (\mathcal{X})$ the Fredholm operators in $\mathcal{B}(\mathcal{X})$ coincide with the invertible operators.

In all results above "compact" can be replaced by "inessential".

Exotic Banach spaces

We now know EAE and SC coincide:

- for Hilbert space operators
- for Fredholm Banach space operators with index 0
- for inessential Banach space operators (and hence compact and strictly singular).

Exotic Banach spaces

We now know EAE and SC coincide:

- for Hilbert space operators
- for Fredholm Banach space operators with index 0
- for inessential Banach space operators (and hence compact and strictly singular).

Definition A Banach space \mathcal{X} has

- few operators if every operator on \mathcal{X} is of the form $\lambda I_{\mathcal{X}}+S$ with $\lambda \in \mathbb{C}$ and S strictly singular;
- very few operators if every operator on \mathcal{X} is of the form $\lambda I_{\mathcal{X}}+K$ with $\lambda \in \mathbb{C}$ and K compact.
In both cases the Calkin algebra is one dimensional.
For operators on such spaces EAE and SC coincide.

Exotic Banach spaces

We now know EAE and SC coincide:

- for Hilbert space operators
- for Fredholm Banach space operators with index 0
- for inessential Banach space operators (and hence compact and strictly singular).

Definition A Banach space \mathcal{X} has

- few operators if every operator on \mathcal{X} is of the form $\lambda I_{\mathcal{X}}+S$ with $\lambda \in \mathbb{C}$ and S strictly singular;
- very few operators if every operator on \mathcal{X} is of the form $\lambda I_{\mathcal{X}}+K$ with $\lambda \in \mathbb{C}$ and K compact.
In both cases the Calkin algebra is one dimensional.
For operators on such spaces EAE and SC coincide.
Existence of such spaces:
- Few operators: Gowers-Maurey 1997; All hereditarily indecomposable Banach spaces have few operators
- Very few operators: Argyros-Heydon 2011

An application: Multiplication operators

For $f \in L^{\infty}$ over the unit circle \mathbb{T}, define the multiplication operator

$$
M_{f}: L^{p} \rightarrow L^{p}, \quad\left(M_{f} g\right)\left(e^{i t}\right)=f\left(e^{i t}\right) g\left(e^{i t}\right)
$$

which decomposes w.r.t. the direct sum $L^{p}=K^{p} \dot{+} H^{p}$ as

$$
M_{f}=\left[\begin{array}{cc}
\widetilde{T}_{f} & \widetilde{H}_{f} \\
H_{f} & T_{f}
\end{array}\right]:\left[\begin{array}{l}
K^{p} \\
H^{p}
\end{array}\right] \rightarrow\left[\begin{array}{l}
K^{p} \\
H^{p}
\end{array}\right]
$$

with H_{f} and T_{f} the Hankel and Toeplitz operators of f and \widetilde{H}_{f} and \widetilde{T}_{f} associated with the Hankel and Toeplitz operators of $\widetilde{f}(z)=\overline{f(\bar{z})}$.

An application: Multiplication operators

For $f \in L^{\infty}$ over the unit circle \mathbb{T}, define the multiplication operator

$$
M_{f}: L^{p} \rightarrow L^{p}, \quad\left(M_{f} g\right)\left(e^{i t}\right)=f\left(e^{i t}\right) g\left(e^{i t}\right)
$$

which decomposes w.r.t. the direct sum $L^{p}=K^{p} \dot{+} H^{p}$ as

$$
M_{f}=\left[\begin{array}{cc}
\widetilde{T}_{f} & \widetilde{H}_{f} \\
H_{f} & T_{f}
\end{array}\right]:\left[\begin{array}{l}
K^{p} \\
H^{p}
\end{array}\right] \rightarrow\left[\begin{array}{l}
K^{p} \\
H^{p}
\end{array}\right]
$$

with H_{f} and T_{f} the Hankel and Toeplitz operators of f and \widetilde{H}_{f} and \widetilde{T}_{f} associated with the Hankel and Toeplitz operators of $\widetilde{f}(z)=\overline{f(\bar{z})}$.
Now assume f is in the Wiener space \mathcal{W} (abs. summable Fourier coeffs.). Then H_{f} and \widetilde{H}_{f} are compact and by Wiener's $1 / f$ theorem:

$$
f(z) \neq 0(z \in \mathbb{T}) \quad \Longleftrightarrow \quad 1 / f \in \mathcal{W}
$$

and in that case

$$
\left[\begin{array}{cc}
\widetilde{T}_{1 / f} & \widetilde{H}_{1 / f} \\
H_{1 / f} & T_{1 / f}
\end{array}\right]=M_{1 / f}=M_{f}^{-1}=\left[\begin{array}{cc}
\widetilde{T}_{f} & \widetilde{H}_{f} \\
H_{f} & T_{f}
\end{array}\right]^{-1}
$$

An application: Multiplication operators
Reconfigure $M_{1 / f}$ and M_{f}^{-1} as:

$$
\left[\begin{array}{cc}
H_{1 / f} & T_{1 / f} \\
\widetilde{T}_{1 / f} & \widetilde{H}_{1 / f}
\end{array}\right]=\left[\begin{array}{cc}
\widetilde{H}_{f} & \widetilde{T}_{f} \\
T_{f} & H_{f}
\end{array}\right]^{-1}:\left[\begin{array}{l}
K^{p} \\
H^{p}
\end{array}\right] \rightarrow\left[\begin{array}{l}
H^{p} \\
K^{p}
\end{array}\right]^{-1} .
$$

Conclusion: H_{f} and $H_{1 / f}$ are MC, and \widetilde{H}_{f} and $\widetilde{H}_{1 / f}$ are MC.

An application: Multiplication operators

Reconfigure $M_{1 / f}$ and M_{f}^{-1} as:

$$
\left[\begin{array}{cc}
H_{1 / f} & T_{1 / f} \\
\widetilde{T}_{1 / f} & \widetilde{H}_{1 / f}
\end{array}\right]=\left[\begin{array}{cc}
\widetilde{H}_{f} & \widetilde{T}_{f} \\
T_{f} & H_{f}
\end{array}\right]^{-1}:\left[\begin{array}{l}
K^{p} \\
H^{p}
\end{array}\right] \rightarrow\left[\begin{array}{l}
H^{p} \\
K^{p}
\end{array}\right]^{-1} .
$$

Conclusion: H_{f} and $H_{1 / f}$ are MC, and \widetilde{H}_{f} and $\widetilde{H}_{1 / f}$ are MC.
Theorem (tH-Messerschmidt-Ran-Roelands-Wortel) Let $f \in \mathcal{W}$ with $f(z) \neq 0$, $z \in \mathbb{T}$. Then H_{f} and $H_{1 / f}$ are EAE and hence H_{f} and $H_{1 / f}$ generate the same operator ideal. In particular, H_{f} is in the q-th Schatten-von Neumann class \mathfrak{C}_{q} if and only if $H_{1 / f}$ is in \mathfrak{C}_{q}.

An application: Multiplication operators

Reconfigure $M_{1 / f}$ and M_{f}^{-1} as:

$$
\left[\begin{array}{cc}
H_{1 / f} & T_{1 / f} \\
\widetilde{T}_{1 / f} & \widetilde{H}_{1 / f}
\end{array}\right]=\left[\begin{array}{cc}
\widetilde{H}_{f} & \widetilde{T}_{f} \\
T_{f} & H_{f}
\end{array}\right]^{-1}:\left[\begin{array}{l}
K^{p} \\
H^{p}
\end{array}\right] \rightarrow\left[\begin{array}{l}
H^{p} \\
K^{p}
\end{array}\right]^{-1} .
$$

Conclusion: H_{f} and $H_{1 / f}$ are MC, and \widetilde{H}_{f} and $\widetilde{H}_{1 / f}$ are MC.
Theorem (tH-Messerschmidt-Ran-Roelands-Wortel) Let $f \in \mathcal{W}$ with $f(z) \neq 0$, $z \in \mathbb{T}$. Then H_{f} and $H_{1 / f}$ are EAE and hence H_{f} and $H_{1 / f}$ generate the same operator ideal. In particular, H_{f} is in the q-th Schatten-von Neumann class \mathfrak{C}_{q} if and only if $H_{1 / f}$ is in \mathfrak{C}_{q}.

Let \mathbb{P} denote the Riesz projection from L^{p} onto H^{p}. By Peller's theorem.
Corollary Let $f \in \mathcal{W}$ with $f(z) \neq 0, z \in \mathbb{T}$. Then $\mathbb{P} f$ is in the Besov space $B_{q}^{1 / q}$ if and only if $\mathbb{P}(1 / f)$ is in $B_{q}^{1 / q}$.

Corollary Let $p=2$. Let $f \in \mathcal{W}$ with $f(z) \neq 0, z \in \mathbb{T}$. Let $\alpha_{n} \searrow 0$ and $\beta_{n} \searrow 0$ be the singular values of H_{f} and $H_{1 / f}$. Then there exists a positive integer k and a $c>0$ such that

$$
\begin{equation*}
c<\frac{\alpha_{n}}{\beta_{n+k}}<1 / c \quad(n \in \mathbb{N}) \quad \text { or } \quad c<\frac{\beta_{n}}{\alpha_{n+k}}<1 / c \quad(n \in \mathbb{N}) \tag{*}
\end{equation*}
$$

It is not clear if $(*)$ holds with approx. numbers in case $p \neq 2$.

Summary

- The operator relations MC, EAE and SC play an important role in today's application of operator theory.

Summary

- The operator relations MC, EAE and SC play an important role in today's application of operator theory.
- While in many applications MC, EAE and SC coincide, the implication

$$
\mathrm{MC} / \mathrm{EAE} \quad \Longrightarrow \quad \mathrm{SC}
$$

remains open in general, but is proved affirmatively for

- Hilbert space operators
- Fredholm operators with index 0
- Inessential operators (and hence compact and strictly singular operators)
- operators that can be approx. by invertibles

Summary

- The operator relations MC, EAE and SC play an important role in today's application of operator theory.
- While in many applications MC, EAE and SC coincide, the implication

$$
\mathrm{MC} / \mathrm{EAE} \quad \Longrightarrow \quad \mathrm{SC}
$$

remains open in general, but is proved affirmatively for

- Hilbert space operators
- Fredholm operators with index 0
- Inessential operators (and hence compact and strictly singular operators)
- operators that can be approx. by invertibles
- What does EAE of U and V mean?
- Full answer for Hilbert space operators in terms of spectral projections
- For Hilbert space compact operators: singular values comparable after a shift
- Banach space compact operators: Generate the same ideals
- Banach space compact operators: Banach space structure cannot be too different

Summary

- The operator relations MC, EAE and SC play an important role in today's application of operator theory.
- While in many applications MC, EAE and SC coincide, the implication

$$
\mathrm{MC} / \mathrm{EAE} \quad \Longrightarrow \quad \mathrm{SC}
$$

remains open in general, but is proved affirmatively for

- Hilbert space operators
- Fredholm operators with index 0
- Inessential operators (and hence compact and strictly singular operators)
- operators that can be approx. by invertibles
- What does EAE of U and V mean?
- Full answer for Hilbert space operators in terms of spectral projections
- For Hilbert space compact operators: singular values comparable after a shift
- Banach space compact operators: Generate the same ideals
- Banach space compact operators: Banach space structure cannot be too different
- Hopefully at a future IWOTA: full proof for $\mathrm{EAE} \Rightarrow \mathrm{SC}$, and many more applications.

THANK YOU FOR YOUR ATTENTION

[^0]: ${ }^{1}$ This work is based on the research supported in part by the National Research Foundation of South Africa (Grant Numbers 90670, and 93406).

