Rank one perturbations of linear relations with applications to DAE's

Carsten Trunk
TU Ilmenau
(together with J. Behrndt, L. Leben F. Martinez Peria, F. Philipp \& H. Winkler)

IWOTA 2017

Cauchy problem

$$
\begin{array}{rlccc}
\dot{x}=S x & \curvearrowright & (\lambda-S) x=0 & \curvearrowright & J C \\
\text { DAE } \quad E \dot{x} & =A x & \curvearrowright & (\lambda E-A) x=0 & \curvearrowright \\
J C
\end{array}
$$

Questions: What happens with JC under a rank one perturbation?

$$
\begin{array}{cccc}
\lambda-S & \rightarrow & \lambda-(S+\Delta S) & \text { (known) } \\
\lambda E-A & \rightarrow & \lambda(E+\Delta E)-(A+\Delta A) &
\end{array}
$$

(1) Movement of eigenvalues? (in general quite arbitrary)
(2) Change of the algebraic eigenspace? (TODAY)

Why are rank one perturbation of DAE interesting?
(collaboration wth Institut für Mikroelektronik- und Mechatronik (IMMS), Ilmenau)

Recall: Jordan chains of operators/matrices

Given $S: \operatorname{dom} S \rightarrow X,\left\{x_{0}, \ldots, x_{n-1}\right\} \subset \operatorname{dom} S$ is Jordan chain of length n at λ if

- $(S-\lambda) x_{0}=0, \quad$ and;
- $(S-\lambda) x_{i}=x_{i-1}, \quad i=1, \ldots, n-1$.

- \bullet -	$\operatorname{ker}(S-\lambda) \quad$ (Ferrers diagram)
-	$\operatorname{ker}(S-\lambda)^{2} \backslash \operatorname{ker}(S-\lambda)$
-	
-	$\operatorname{ker}(S-\lambda)^{3} \backslash \operatorname{ker}(S-\lambda)^{2}$
-	$\operatorname{ker}(S-\lambda)^{4} \backslash \operatorname{ker}(S-\lambda)^{3}$

Note: $\operatorname{dim}\left(\frac{\operatorname{ker}(S-\lambda)^{n}}{\operatorname{ker}(S-\lambda)^{n-1}}\right)$ is the number of Jordan chains of length $\geq n$.

Recent result

Theorem (J. Behrndt, L. Leben F. Martinez Peria \& CT, Lin. Alg. Appl. '15)
Let S and T be linear operators which are rank 1-perturbations and $n \in \mathbb{N}$:
(1) If $\operatorname{dim}\left(\frac{\operatorname{ker}(S-\lambda)^{n}}{\operatorname{ker}(S-\lambda)^{n-1}}\right)<\infty$, then

$$
\left|\operatorname{dim}\left(\frac{\operatorname{ker}(S-\lambda)^{n}}{\operatorname{ker}(S-\lambda)^{n-1}}\right)-\operatorname{dim}\left(\frac{\operatorname{ker}(T-\lambda)^{n}}{\operatorname{ker}(T-\lambda)^{n-1}}\right)\right| \leq 1
$$

(2) The above estimates are sharp.

Remark

The above statement was shown by S. Savchenko '05 for matrices.

Definition

S, T are rank 1-perturbations (of each other) if ex. $M \subseteq \operatorname{dom} S \cap \operatorname{dom} T$ with

- $S x=T x$ for every $x \in M$,
- $\max \{\operatorname{dim}(\operatorname{dom} S / M), \operatorname{dim}(\operatorname{dom} T / M)\}=1$.

Three typical situations:
(1) S, T matrices with $r k(S-T)=1$.
(2) S, T bounded operators with $\operatorname{dim}(\operatorname{ran}(S-T))=1$.
(3) Exists $\mu_{0} \in \rho(S) \cap \rho(T)$ with

$$
\operatorname{dim}\left(\operatorname{ran}\left(\left(S-\mu_{0}\right)^{-1}-\left(T-\mu_{0}\right)^{-1}\right)\right)=1
$$

Plan for today

- Generalize to DAE $s E-A$.
- But from now on we restrict to square matrices E, A in X.
- And also for simplicity only for $\lambda=0$.

Jordan chains for DAE $s E-A$

Definition

$\left\{x_{0}, \ldots, x_{n-1}\right\}$ is Jordan chain of length n at 0 if

$$
A x_{0}=0, \quad A x_{1}=E x_{0}, \ldots, \quad A x_{n-1}=E x_{n-2}
$$

Definition

Denote by \mathcal{A} the subspace in $X \times X$:

$$
\mathcal{A}:=\left\{\binom{x}{y} \in X \times X: A x=E y\right\}
$$

We have $\mathcal{A}=E^{-1} A$ if E is invertible or in the sense of linear relations.

Jordan chains

Define

$$
\mathcal{A}^{2}:=\left\{\binom{x}{z}:\binom{x}{y} \in \mathcal{A},\binom{y}{z} \in \mathcal{A} \text { for some } y\right\} .
$$

By induction, \mathcal{A}^{k}. Define $\operatorname{ker} \mathcal{A}:=\left\{x:(x 0)^{\top} \in \mathcal{A}\right\}$.

Proposition

The following two statements are equivalent.
(i) $\left(x_{0}, \ldots, x_{n-1}\right)$ is a Jordan chain of the DAE $s E-A$ at 0 .

$$
\begin{equation*}
\binom{x_{n-1}}{x_{n-2}},\binom{x_{n-2}}{x_{n-3}}, \ldots,\binom{x_{0}}{0} \in \mathcal{A} . \tag{ii}
\end{equation*}
$$

(iii) $x_{n-1} \in \operatorname{ker} \mathcal{A}^{n}, x_{n-2} \in \operatorname{ker} \mathcal{A}^{n-1}, \ldots, x_{0} \in \operatorname{ker} \mathcal{A}$.

That is: Jordan chains of the DAE $s E-A$ and the linear relation \mathcal{A} coincide.

Perturbation

Now we perturb $s E-A$. Choose u, v, w from X the (1-dim) pencil:

$$
s w u^{*}+w v^{*}
$$

and consider the new (perturbed) DAE

Definition

$$
\mathcal{B}:=\left\{\binom{x}{y} \in X \times X:\left(A+w v^{*}\right) x=\left(E+w u^{*}\right) y\right\}
$$

It is easy to see: $\max \{\operatorname{dim}(\mathcal{A} / M), \operatorname{dim}(\mathcal{B} / M)\} \leq 1$ for $M:=(\mathcal{A} \cap \mathcal{B})$.

Main result

Theorem

\mathcal{A} and \mathcal{B} as above.
(1) If $\operatorname{dim}\left(\frac{\operatorname{ker} \mathcal{A}^{n}}{\operatorname{ker} \mathcal{A}^{n-1}}\right)<\infty$, then

$$
\left|\operatorname{dim}\left(\frac{\operatorname{ker} \mathcal{A}^{n}}{\operatorname{ker} \mathcal{A}^{n-1}}\right)-\operatorname{dim}\left(\frac{\operatorname{ker} \mathcal{B}^{n}}{\operatorname{ker} \mathcal{B}^{n-1}}\right)\right| \leq n .
$$

(2) The above estimates are sharp.

Thank you!

