The Estimates of Powers of Operator Generated by lirational Rotation

Ali A. Shukur

Belarusian State University
IWOTA 2017

Introduction

Definition

An analytic function $R(\lambda ; T):=(T-\lambda I)^{-1}$ defined on resolvent set $\rho(T)$ is called resolvent operator.

Introduction

Definition

An analytic function $R(\lambda ; T):=(T-\lambda I)^{-1}$ defined on resolvent set $\rho(T)$ is called resolvent operator.

Definition

An operator T is called power-bounded if there exists constant C such that

$$
\sup _{n \geq 0}\left\|T^{n}\right\|=C<\infty
$$

Weighted Shift Operator

Definition

A bounded linear operator T on a Banach space $F(X)$ of functions or vector-valued functions on a set X is called weighted Shift operator (WCO) if it can by represented in the form

$$
\begin{equation*}
T u(x)=a(x) u(\alpha(x)), \quad x \in X \tag{1}
\end{equation*}
$$

where $\alpha: X \rightarrow X$ is a given map and $a(x)$ is a scalar- or matrix-valued function on X.

Weighted Shift Operator Generated by Rotation

If we consider representation

$$
\mathbb{S}^{1}=\mathbb{R} \backslash \mathbb{Z}
$$

then a rotation on the unit circle can be formulated in an additive form, i.e. the map $\gamma: x \rightarrow x+h$ acts as a rotation of angle $2 \pi h$ on unit circle \mathbb{S}^{1}.

Definition

An operator T_{γ} acting on $C\left(\mathbb{S}^{1}\right)$ by formula

$$
T_{\gamma} u(x)=u(\gamma(x)),
$$

is called a rotation operator. For any $a \in C\left(\mathbb{S}^{1}\right)$, an operator acting by formula

$$
\begin{equation*}
\left(a T_{h} u\right)(x)=a(x) u(x+h), \tag{2}
\end{equation*}
$$

is called a weighted shift operator generated by rotation.

Denete by

$$
a_{n}(x)=\prod_{j=0}^{n-1}|a(x+j h)|
$$

Norm of powers of operator (2) is given by

$$
\left\|\left[a T_{h}\right]^{n}\right\|=\max _{x} a_{n}(x) .
$$

Lemma (1.)

Let $a T_{h}$ be a weighted shift operator generated by rotation.
(1) If h is a rational number, i.e. $h=: \frac{m}{N}, N \neq 0$, - some fractions, then $\sigma\left(a T_{h}\right)=\Sigma_{N}(a)$ where

$$
\Sigma_{N}(a)=\left\{\lambda: \exists x \in X, \lambda^{N}=a_{N}(x)\right\} .
$$

(2) If h is irrational number, then $\sigma\left(a T_{h}\right)=\{\lambda:|\lambda|=\Phi(a)\}$, where $\Phi(a)$ is the geometric average of a, i.e.

$$
\begin{equation*}
\Phi(a)=\exp \left[\int_{0}^{1} \ln |a(x)| d x\right] \tag{3}
\end{equation*}
$$

and $R\left(a T_{h}\right)=\Phi(a)$.

Theorem (Sh. (2015))

Let $h=\frac{m}{N}, m \neq 0$. There exists constant $C=C(a, N)$ such that for the norm of powers of operator $a T_{h}$ satisfies

$$
R\left(a T_{h}\right)^{n} \leq\left\|\left[a T_{h}\right]^{n}\right\| \leq C(a, N) R\left(a T_{h}\right)^{n} .
$$

In particular, if $n=\nu N$, then

$$
\left\|\left[a T_{h}\right]^{n}\right\|=R(a ; N)^{n} ;
$$

if $n=\nu N+l, 1<l<N$, then

$$
\lim _{n \rightarrow \infty} \frac{\left\|\left[a T_{h}\right]^{n}\right\|}{R(a ; N)^{n}}=\max _{s \in M(l)}\left|a_{l}(s)\right|
$$

where

$$
M(l)=\left\{t:\left|a_{l}(t)\right|=\max _{x} a_{l}(x)\right\} .
$$

Assume that the spectral radius in (3) is equal to 1 , then

$$
\begin{equation*}
\int_{0}^{1} \varphi(x)=0 \tag{4}
\end{equation*}
$$

where $\varphi(x)=\ln |a(x)|$ and

$$
\ln \left\|\left[a T_{h}\right]^{n}\right\|=\max _{x} \sum_{j=0}^{n-1} \varphi(x+j h)
$$

The convergence of the sequence $\varphi_{n}(x)$ is relate to different aspects, in particular, to homological equation

$$
\begin{equation*}
g(x+h)-g(x)=\varphi(x) \tag{5}
\end{equation*}
$$

and to problem of small denominators ${ }^{1}$.
The equality (4) is the necessary condition but not the sufficient of solution of (5).

However, the equation (5) has been cited as an example when the sole solutions of analytical functional equations are non-differentiable functions in

Fifth Hilbert's Problem

[^0]
II International Congress of Mathematicians

 in Paris on 8 August 1900

"Who of us would not be glad to lift the veil behind which the future lies hidden; to cast a glance at the next advances of our science and at the secrets of its development during future centuries?" Thus David Hilbert began his historic speech on mathematical problems at the International Congress of Mathematicians in 1900.

David Hilbert 1862-1943.
*IMU and Wikipedia.

Theorem (Gordon, 1975)

If $\varphi(x) \in C^{2}\left(\mathbb{S}^{1}\right)$ is not trigonometrical polynomial, then there exsits an irrational number h for which the equation (5) has no measurable solutions.

ДОСТАТОЧНОЕ УСЛОВНЕ НЕРАЗРЕШIMМОСТІ АДДИТИВНОГО ФУНКЦНОНАЛЬНОГО ГОмОЛОГИЧЕСКОГО УРАВНЕНИЯ, СВЯЗАННОГО С ЭРТОДИЧЕСКИМ повоРотом окРужностI
A. Я. Гордеп
 $g(x+a)-g(x)=f(f), \quad x \operatorname{med} 1$.
(5)

$$
\begin{equation*}
\frac{\lim _{p \rightarrow \infty}}{}\left(\frac{\sum_{n=1}^{p-1}\left|\sigma_{m}\right|}{\left|r_{p}\right|}+\frac{\sum_{m=p+1}^{\infty}\left|f_{n}\right|}{\left|l_{p}\right|}\right)<c \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\ln f B^{\circ} V=\quad s_{k}(x)=\sum_{j=0}^{a-1} f(x+f a)-\sum_{m=-\infty}^{\infty} \xi_{k=0} t_{s} v^{v^{n}} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
|x|<4 \sum_{1}^{p-1}\left|g_{m}\right| ; \quad|z|<2 k \sum_{p+1}^{\infty}\left|f_{m}\right| \tag{4}
\end{equation*}
$$

$$
|x|>2\left|\varepsilon_{k p}\right|\left|I_{p}\right|(1-\varepsilon)-2\left|a^{2 p}-i\right| I_{p} \mid(t-0) .
$$

(5)

$$
\left|s^{4 y}-4\right|>2^{\prime 2} ; \quad\left|z_{k p}\right|-\frac{\left|a^{2 p}-1\right|}{\left|a^{p}-1\right|}>\frac{2}{\pi} k
$$

Саедоватозво, в сиау (5) ира $z \in E_{\text {vge }}$
$|\gamma|>2^{n}\left|f_{p}\right|(1-4) ; \quad|Y|>(4 \pi) k|/ z|(1-2)$.

4
72
A. 月. Гораои

$$
\begin{equation*}
\frac{|X+z|}{|Y|}<\frac{1}{1-\varepsilon}\left(2^{\frac{1}{2}} \frac{\sum_{1}^{\infty-1}\left|\delta_{m}\right|}{\left|z_{p}\right|}+\frac{\pi}{2} \frac{\sum_{p+1}^{\infty}\left|I_{m}\right|}{\left|I_{p}\right|}\right) . \tag{}
\end{equation*}
$$

$$
\left|s_{y}(x)\right|=|X+Y+Z|>||Y|
$$

$f(x)=\sum_{k=-\infty}^{\infty} F_{k} \exp \left(2 \pi=i_{k} x\right)$,

 Ipancionias, © (tb)
 $1 \exp$

\qquad

Пестуриао в редияцио
ЦИтиРОванНАЯ лиТЕРАТУРА

Theorem (Antonevich, Sh. (2017))

Let $\varphi(x)$ not be trigonometrical polynomial and it satisfies condition (4). For any sequence ω_{n} such that $\frac{\omega_{n}}{n} \rightarrow 0$, there exists irrational number h, such that for some subsequence n_{j} holds

$$
\left\|\left[a T_{h}\right]^{n_{j}}\right\| \geq e^{\omega_{n_{j}}} .
$$

It means that the growth rate of powers of operators generated by irrational rotation can be arbitrary.

Considered number h can be constructed as Liouville's number, i.e.

$$
\left|h-\frac{m}{N}\right|<\frac{1}{N^{\mu}} \quad \mu>0
$$

Lemma (2.)

If function $\varphi(x)$ is not trigonometrical polynomial and satisfies (4), then for any N_{0} there exists rational number $h=\frac{m}{N}$ for $N \geq N_{0}$ such that

$$
R\left(a T_{h}\right)>1 .
$$

Theorem (Erdös, 1975)
Let $\eta_{1}<\eta_{2}<\eta_{3}<\ldots$ be an infinite sequence of integers satisfying

$$
\lim _{n \rightarrow \infty} \sup \eta_{n}^{\frac{1}{t^{n}}}=\infty
$$

for every $t>0$, and $\eta_{n}>n^{1+\epsilon}$. For some fixed $\epsilon>0$ and $n>n_{0}(\epsilon)$. Then

$$
h=\sum_{n=1}^{\infty} \frac{1}{\eta_{n}}
$$

is a Liouville number.

Let $\epsilon>0$ and

$$
A_{\epsilon}=\left\{h \in \mathbb{R}: \exists C \text { such that }\left|h-\frac{m}{N}\right| \geq \frac{C(h)}{N^{2+\epsilon}} \forall m \in \mathbb{Z}\right\}
$$

Theorem

Let $\varphi(x) \in C^{m}\left(\mathbb{S}^{1}\right)$ and it satisfies condition (4) and let $h \in A_{\epsilon}$ for some $\epsilon>0$. If $m>\epsilon+3$, then the weighted shift operator generated by irrational rotation is a power-bounded operator, i.e.

$$
\sup _{n \geq 0}\left\|\left[a T_{h}\right]^{n}\right\|<C^{2-m+\epsilon}
$$

Theorem

If function $\varphi(x)$ is a trigonometrical polynomial, then the weighted shift operator generated by irrational rotation is a power-bounded operator, i.e.

$$
\sup _{n \geq 0}\left\|\left[a T_{h}\right]^{n}\right\|<C
$$

for any irrational number h.

If $\sigma(T) \in \mathbb{S}^{1}$, then :

$$
R(\lambda ; T)=-\sum_{n=1}^{\infty} \frac{1}{\lambda^{n+1}} T^{n}
$$

and

$$
\begin{equation*}
\|R(\lambda ; T)\| \leq \sum_{n=1}^{\infty} \frac{1}{|\lambda|^{n+1}}\left\|T^{n}\right\| \quad(|\lambda|>1) \tag{6}
\end{equation*}
$$

Theorem (Kriess Matrix Theorem, 1953)

Let T be a linear bounded Banach space operator. If T is power-bounded and $\sigma(T)=\mathbb{S}^{1}$, then the resolvent holds

$$
\begin{equation*}
\|R(\lambda ; T)\| \leq \frac{C}{|\lambda|-1} \quad(|\lambda|>1) \tag{7}
\end{equation*}
$$

Condition (7) is called Kriess's resolvent condition.

Theorem (Ritt, 1962)

Let T be a linear bounded Banach space operator. If T is power-bounded and $\sigma(T)=\{1\}$, then the resolvent holds

$$
\begin{equation*}
\|R(\lambda ; T)\| \leq \frac{C}{|\lambda-1|} \quad(|\lambda|>1) \tag{8}
\end{equation*}
$$

Condition (8) is called Ritt's resolvent condition.

Theorem (Antonevich, Sh. (2016))

Let T be a linear bounded Banach space operator. If $\sigma(T) \in \mathbb{S}^{1}$, then the resolvent holds

$$
\begin{equation*}
\|R(\lambda ; T)\| \leq C \exp \left[\frac{\rho}{(|\lambda|-1)^{\gamma}}\right] \tag{9}
\end{equation*}
$$

if and only if

$$
\left\|T^{n}\right\| \leq C \exp \left[\nu n^{\beta}\right]
$$

where the relations between the orders and types are given by:

$$
\begin{gather*}
\gamma=\frac{\beta}{1-\beta}, \beta=\frac{\gamma}{1+\gamma}, \tag{10}\\
\rho=\frac{(\beta \nu)^{\beta}}{\gamma}, \quad \nu=\frac{(\rho \gamma)^{\frac{1}{\gamma+1}}}{\beta} . \tag{11}
\end{gather*}
$$

Theorem

Let T be a linear bounded Banach space operator. If $\sigma(T) \in \mathbb{S}^{1}$, then the resolvent holds

$$
\begin{equation*}
\|R(\lambda ; T)\| \leq \frac{C}{(|\lambda|-1)^{\xi+1}} \tag{12}
\end{equation*}
$$

if and only if

$$
\left\|T^{n}\right\| \leq C n^{\xi}
$$

$$
\left\|\left(a T_{h}-\lambda I\right)^{-1}\right\| \geq\left\{\begin{array}{l}
C \exp \left[\frac{\rho}{(|\lambda|-1)^{\gamma}}\right], \text { only if } \omega_{n_{j}}=\nu n_{j}^{\beta} \\
\frac{C}{(|\lambda|-1)^{\xi+1}} \quad \text { only if } \omega_{n_{j}}=\xi \ln n_{j} .
\end{array}\right.
$$

where h is irrational number.

Open qestion:

For which irrational number h, the subsequence $\omega_{n_{j}}$ has power growth?

Some References

- Antonevich A.B. Linear functional equation.operator approach,Berlin:Birkhauser; 1996.
- Antonevich A.B. and Shukur Ali A. Estimations of the Norm of Powers of Operators Generated by Irrational Rotation, J. Doklady of the national academy of science of Belarus, Vol. 60 (1),2017, P.30-35.(in Russian)
- Anosov D. V., On an additive functional homology equation connected with an ergodic rotation of the circle, Math. USSR-Izv., 7:6 (1973), 1257-1271. (in Russian)
- Katznelson Y., L. Tzafriri On power bounded operators, J. Functional analysis. - 1986. - Vol. 68. - P. 313-328.
- Shukur Ali A., The beahvior of power of operator, generated by rational rotation, J. Vitsnik of Belarusian State Uni. Ser. 1.2016.2.P. 110-115. (in Russian)

Thank you!
 Have a nice day.

[^0]: ${ }^{1}$ V.I Arnold, Small denominators and problems of stability of motion in classical and celestial mechanics, Uspehi Mat. Nauk, 18:6(114) (1963), P.91-192

