Strict singularity of a Volterra-type integral operator on H^p

Santeri Miihkinen, University of Eastern Finland

IWOTA Chemnitz, 14-18 August 2017

Santeri Miihkinen, UEF

Volterra-type integral operator

14-18 August 2017 1 / 22

Background and motivation

- Pommerenke (1977): A novel proof of the deep John-Nirenberg inequality using:
- An integral operator of the type

$$T_g f(z) = \int_0^z f(\zeta) g'(\zeta) d\zeta, \,\, z \in \mathbb{D},$$

where f and g are analytic (holomorphic) in the unit disc $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ of the complex plane $(f, g \in H(\mathbb{D}))$.

- g is fixed, the symbol of T_g .
- Example 1: $g(z) = z \Rightarrow T_g f(z) = \int_0^z f(\zeta) d\zeta$ (the classical Volterra operator)

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ヨー のへの

- Example 2: $g(z) = \log \frac{1}{1-z} \Rightarrow \frac{1}{z} T_g f(z) = \frac{1}{z} \int_0^z \frac{f(\zeta)}{1-\zeta} d\zeta = \sum_{k=0}^\infty \left(\frac{1}{k+1} \sum_{n=0}^k a_n\right) z^k$ (the Cesàro operator).
- Characterize the properties of T_g in terms of the "function-theoretic" properties of the symbol g.
- Aleman and Siskakis (1995): systematic research on T_g
- Hardy spaces

$$H^{p} = \bigg\{ f \in H(\mathbb{D}) : \|f\|_{p} = \sup_{0 \le r < 1} \bigg(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{p} dt \bigg)^{1/p} < \infty \bigg\},$$

where 0 .

◆□▶ ◆□▶ ★ヨ▶ ★ヨ▶ ヨー のへの

• $T_g: H^p \rightarrow H^p, 1 \le p < \infty$, bounded (compact) iff $g \in BMOA$ ($g \in VMOA$), where

$$BMOA = \left\{ h \in H(\mathbb{D}) : \|h\|_* = \sup_{a \in \mathbb{D}} \|h \circ \sigma_a - h(a)\|_2 < \infty \right\}$$

and

$$VMOA = \left\{ h \in BMOA : \limsup_{|a| \to 1} \|h \circ \sigma_a - h(a)\|_2 = 0
ight\},$$

where $\sigma_a(z) = \frac{a-z}{1-\bar{a}z}$, $a, z \in \mathbb{D}$. • Aleman and Cima (2001): scale 0 .

Santeri Miihkinen, UEF

- Boundedness, compactness and spectral properties of T_g known in many analytic function spaces.
- Structural properties of T_g have not been widely studied.

< □ > < 同 >

Strict singularity and ℓ^p -singularity

- A bounded operator L between Banach spaces X and Y is strictly singular, if L restricted to any infinite-dimensional closed subspace of X is not a linear isomorphism onto its range. In other words, it is not bounded below on any infinite dimensional closed subspace $M \subset X$.
- A notion introduced by T. Kato in '58 (in connection to perturbation theory of Fredholm operators).
- Compact operators are strictly singular.
- Denote by S(X) the strictly singular operators on X.

- S(X) (norm-closed) ideal of the bounded operators B(X): $L \in S(X), U \in B(X) \Rightarrow LU, UL \in S(X).$
- Example. For p < q, the inclusion mapping i: l^p → l^q, i(x) = x, is a non-compact strictly singular operator.
- A bounded operator $L: X \to Y$ is ℓ^p -singular if it is not bounded below on any subspace M isomorphic to ℓ^p , i.e. it does not fix a copy of ℓ^p . The class of ℓ^p -singular operators is denoted by $S_p(H^p)$.

- Example. The projection $\frac{P: H^{p} \to H^{p}, P(\sum_{k=0}^{\infty} a_{k}z^{k}) = \sum_{k=0} a_{2^{k}}z^{2^{k}} \text{ is bounded and}}{\operatorname{span}\{z^{2^{k}}\} \text{ is isomorphic to } \ell^{2} \text{ by Paley's theorem. Hence}} P \in S_{p}(H^{p}) \setminus S_{2}(H^{p}).$
- The strict singularity of T_g acting on H^p ?

Main result

Theorem 1

Let $g \in BMOA \setminus VMOA$ and $1 \le p < \infty$. Then there exists a subspace $M \subset H^p$ isomorphic to ℓ^p s.t. the restriction $T_g|M \colon M \to T_g(M)$ is bounded below. (i.e. A non-compact $T_g \colon H^p \to H^p$ fixes a copy of ℓ^p .) In particular, T_g is not strictly singular.

• T_g is rigid in the sense that

$$T_g \in S(H^p) \Leftrightarrow T_g \in K(H^p) \Leftrightarrow T_g \in S_p(H^p).$$

• Not true for an arbitrary operator.

イロト イポト イヨト イヨト 二日

Strategy of the proof

Figure: Operators U, V and T_g

- Strategy: Construct bounded operators U and V:
- U bounded below when T_g is non-compact (i.e. $g \in BMOA \setminus VMOA$).
- The diagram commutes: $U = T_g V$
- $T_g|M: M \to T_g(M)$ bounded below on $M = V(\ell^p) \approx \ell^p$.

- How to define U and V?
- We utilize suitably chosen standard normalized test functions $f_a \in H^p$ defined by

$$f_a(z)=\left[rac{1-|a|^2}{(1-ar a z)^2}
ight]^{1/p},\quad z\in\mathbb{D},$$

for each $a \in \mathbb{D}$.

• For p = 2, the functions f_a are the normalized reproducing kernels of H^2 .

Main result

Define

$$V: \ell^p \to H^p, \ V(\alpha) = \sum_{n=1}^{\infty} \alpha_n f_{a_n}$$

and

$$U: \ell^p \to H^p, \ U(\alpha) = \sum_{n=1}^{\infty} \alpha_n T_g f_{a_n},$$

where the sequence $(a_n) \in \mathbb{D}$, $|a_n| \to 1$ is suitably chosen and $\alpha = (\alpha_n) \in \ell^p$.

Tools

Tools

- V is bounded, if $|a_n|
 ightarrow 1$ fast enough.
- How to show that U is bounded below?
- A result by Aleman and Cima (2001):

Theorem 2

Let $0 and <math>t \in (0, p/2)$. Then there exists a constant C = C(p, t) > 0 s.t.

$$\|T_g f_a\|_p \geq C \|g \circ \sigma_a - g(a)\|_t$$

for all $a \in \mathbb{D}$.

 Recall: g ∈ BMOA \ VMOA ⇔ lim sup_{|a|→1} ||g ∘ σ_a − g(a)||_p > 0 for any 0

Tools

• Thus if T_g is non-compact, then there exists a sequence $(a_n) \subset \mathbb{D}, a_n \to \omega \in \mathbb{T} = \partial \mathbb{D}$ s.t. $\lim_{n \to \infty} ||T_g f_{a_n}||_p > 0$.

■▶ ▲ ■ ▶ ■ ● ○ ○ ○

Tools

• A localization result for T_g :

Lemma 3

Let $g \in BMOA$, $1 \le p < \infty$, and $(a_k) \subset \mathbb{D}$ be a sequence such that $a_k \to \omega \in \mathbb{T}$. Define

$$A_{\varepsilon} = \{e^{i heta} : |e^{i heta} - \omega| < \varepsilon\}$$

for each $\varepsilon > 0.Then$

(i)
$$\lim_{k \to \infty} \int_{\mathbb{T} \setminus A_{\varepsilon}} |T_g f_{a_k}|^p dm = 0 \text{ for every } \varepsilon > 0.$$

(ii)
$$\lim_{\varepsilon \to 0} \int_{A_{\varepsilon}} |T_g f_{a_k}|^p dm = 0 \text{ for each } k.$$

< □ > < 同 >

- ▲ 車 ▶ ▲ 車 ▶ ▲ 車 ▶ ● ④ � @

- Using a result by Aleman and Cima (Theorem 2) and conditions (i) and (ii) in Lemma 3, it is possible to choose a subsequence (b_n) of (a_n) (where $\lim_{n\to\infty} ||T_g f_{a_n}||_p > 0$) s.t.
- Functions $|T_g f_{b_n}|$ resemble "disjointly supported peaks in $L^p(\mathbb{T})$ " near some boundary point $\omega \in \mathbb{T}$, i.e. $(T_g f_{b_n})$ is equivalent to the natural basis of ℓ^p .
- This ensures that $||U(\alpha)||_p = ||\sum_n \alpha_n T_g f_{b_n}||_p \ge C ||\alpha||_{\ell^p}$ for all $\alpha = (\alpha_n) \in \ell^p$.

Figure: Operators U, V and T_g

$$f \in M = V(\ell^p) = \overline{span}\{f_{b_n}\}$$

$$\Rightarrow \|T_g f\|_p = \|U(\alpha)\|_p \ge C \|\alpha\|_{\ell^p} \ge \|V(\alpha)\|_p = \|f\|_p.$$

Santeri Miihkinen, UEF

.

Strict singularity of T_g on Bergman spaces and Bloch space

- Standard Bergman spaces $A^p_{\alpha} = L^p(\mathbb{D}, dA_{\alpha}) \cap H(\mathbb{D})$, where $dA_{\alpha}(z) = (1 |z|^2)^{\alpha} dA(z)$, $\alpha > -1$ and $0 , are isomorphic to <math>\ell^p$.
- $S(\ell^p) = K(\ell^p) \Rightarrow$ the strict singularity and compactness are equivalent for T_g acting on A^p_{α} .
- Let \mathcal{B} be the Bloch space. Then $T_g: \mathcal{B} \to \mathcal{B}$ is strictly singular $\Rightarrow T_g | \mathcal{B}_0$ is strictly singular. Since the little Bloch space \mathcal{B}_0 is isomorphic to c_0 and $S(c_0) = K(c_0)$, the restriction $T_g | \mathcal{B}_0$ is compact.
- Finally, the biadjoint $(T_g|\mathcal{B}_0)^{**}$ can be identified with $T_g: \mathcal{B} \to \mathcal{B}$ and consequently T_g acting on \mathcal{B} is compact.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

Spaces BMOA and VMOA

- A result of Leibov ensures that there exists isomorphic copies of space c_0 of null-sequences inside VMOA : If $(h_n) \subset VMOA$ is a sequence of VMOA-functions s.t. $||h_n||_* \simeq 1$ and $||h_n||_2 \rightarrow 0$, then there exists a subsequence (h_{n_k}) which is equivalent to the standard basis of c_0 .
- If $T_g: BMOA \rightarrow BMOA$ is non-compact, then it turns out that $(T_g h_{n_k})$ satisfies conditions in Leibov's result and we can apply it again. Consequently, T_g fixes a copy of c_0 inside VMOA.
- Thus strict singularity and compactness coincide for *T_g* acting on *BMOA* (or *VMOA*).

Further results and questions

- $T_g: H^p \to H^p, 1 \le p < \infty$, is always ℓ^2 -singular (joint work with Nieminen, Saksman, and Tylli)
- An example of an analytic function space X ⊂ H(D) and a symbol g ∈ H(D) s.t. T_g ∈ S(X) \ K(X)?
- What about the case $T_g \colon H^p o H^q,$ where $1 \leq p < q < \infty?$

For further reading

- A. Aleman, A class of integral operators on spaces of analytic functions, Topics in complex analysis and operator theory, 3-30, Univ. Málaga, Málaga, 2007.
- A.G. Siskakis, Volterra operators on spaces of analytic functions-a survey, Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, Univ. Sevilla Secr. Publ., Seville, 2006, pp. 51-68.
- A. Aleman and A.G. Siskakis, *An integral operator on H^p*, Complex Variables Theory Appl. 28 (1995), no. 2, 149-158.
- A. Aleman and J.A. Cima, *An integral operator on H^p and Hardy's inequality,* J. Analyse Math. 85 (2001), 157-176.
- S. Miihkinen, *Strict singularity of a Volterra-type integral operator on* H^p , Proceedings of the AMS, 145 (2017), no. 1, 165-175.

THANK YOU!

Santeri Miihkinen, UEF

Volterra-type integral operator

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへで 14-18 August 2017

22 / 22