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Closed resonator: the corresponding operator has purely discrete spectrum, the system of
eigenfunctions in complete in L2 inside the resonator.
Open resonator: the continuous spectrum appears, eigenvalues transform to
quasi-eigenvalues (resonances). What about the completeness of the resonance states?

Рис. 1: Line with attached segment

The Schrödinger case (non-relativistic particle):
Popov, I.Y., Popov, A.I. J. King Saud Univ. - Science. 29, 133–136 (2017).
We deal with the Dirac case (relativistic particle)
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We consider the following operator at each edge of the metric graph Γ (E is the set of
edges, V is the set of vertices):

D = i~c
d

dx
⊗ σ1 +mc2 ⊗ σ3

where σ1 =

(

0 1
1 0

)

and σ3 =

(

1 0
0 −1

)

are the Pauli matrix. The domain is as follows:

D(D) = {ψ =

(

ψ1

ψ2

)

, ψ1, ψ2 ∈ C1(E), ψ1 ∈ C(Γ),
∑

j

±ψj
2(v) =

ıα

c
ψ
j
1(v)},

where the summation is over all edges including vertex v, sign "plus"is chosen for outgoing
edge, sign "minus"for incoming edge, α characterizes the strength of point-like potential at
the vertex.
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The spectral problem reduces to the equation

Dψ = λψ, ψ =

(

ψ1

ψ2

)

.

The system has the form

(

mc2 −i~c d
dx

−i~c d
dx

−mc2
)(

ψ1

ψ2

)

= λ

(

ψ1

ψ2

)

,

The system gives us:

ψ2 = − i~c

λ+mc2
· ∂ψ1

∂x

− ~
2c2

λ+mc2
· ∂

2ψ1

∂x2
+ (mc2 − λ)ψ1 = 0
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The characteristic equation has the form

− ~
2c2

λ+mc2
· k2 + (mc2 − λ) = 0.

Let

k1,2 = ±ı
√
λ2 −m2c4

~c
.

Here k =
√
λ2−m2c4

~c
is a wave number, k1 = ık, k2 = −ık. Finally, one comes to the

solution:
{

ψ1 = C1e
ikx + C2e

−ikx

ψ2 =
√

λ−mc2

λ+mc2
(C1e

ikx − C2e
−ikx)

(1)
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Consider the Cauchy problem for the wave equation

{

u′′tt = Hu,

u(x, 0) = u0(x), u
′
t(x, 0) = u1(x), x ∈ Γ.

(2)

Let E be the Hilbert space of two-component functions (u0, u1) on the graph Γ with finite
energy

‖(u0, u1)‖2E = 2−1

∫

Γ

(|u′0|2 + |u1|2)dx.

The pair (u0, u1) is called the Cauchy data. Operator giving the solution for problem (2),
U(t), U(t)(u0, u1) = (u(x, t), u′t(x, t)), is unitary in E . Unitary group U(t)|t∈R has two
orthogonal (in E) subspaces, D− and D+, called, correspondingly, incoming and outgoing
subspaces, which are defined as follows.
Definition. Outgoing subspace D+ is a subspace of E having the following properties:
(a) U(t)D+ ⊂ D+, t > 0;
(b) ∩t>0U(t)D+ = {0},
(c) ∪t<0U(t)D+ = E .
D− is defined analogously (with the natural replacement t > 0 ↔ t < 0).
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Lemma 1. Unitary group U(t)|t∈R has a pair of subspaces D±. Particularly, one can
choose D± by the following way:

D+ = {(u0, u1) : −u1 = u′0, x ∈ ΩL;u1 = u′0, x ∈ ΩR;

u1 = u0 = 0, x ∈ Ω},
D− = {(u0, u1) : u1 = u′0, x ∈ ΩL;−u1 = u′0, x ∈ ΩR;

u1 = u0 = 0, x ∈ Ω}.
For the proof, one should directly check properties a,b,c (see [?]).
Lemma 2. There is a pair of isometric maps T± : E → L2(R,C

2) having the following
properties:

T±U(t) = exp iktT±, T+D+ = H2
+(C

2),

T−D− = H2
−(C

2),

where H2
± is the Hardy space in upper (lower) half-plane.
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It is said that T+(T−) gives one the outgoing (incoming) spectral representation of the
unitary group U(t), U(t) = exp iAt. Let K = E 	 (D+ ⊕D−). Consider a semigroup
Z(t) = PKU(t)|K , t > 0, PK is a projector to K. Let B be the generator of the
semigroup Z(t) : Z(t) = exp iBt, t > 0. Data which are eigenvectors of B are called
resonance states. Operator T−T

−1
+ is called the scattering operator. It acts as a

multiplication by a matrix-function S(k) which is the boundary value at the real axis of
analytic matrix-function in the upper half-plane k such that ‖S(k)‖ ≤ 1 for =k > 0 and
S∗S = I almost everywhere on the real axis. This analytic matrix-function S(k) is called
the scattering matrix.
Lemma 3. Map T− gives one a spectral representation for the unitary group U(t). The
following relations take place.

T−D− = H2
−(C

2), T−D+ = SH2
+(C

2),

T−U(t) = exp (ikt)T−.

Matrix-function S is an inner function in C+ and

K− = T−K = H2
+ 	 SH2

+, T−Z(t)|K = PK−
e(ikt)T−.
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Sz.-Nagy, B., Foias, C., Bercovici, H., Kerchy, L.: Harmonic Analysis of Operators on
Hilbert Space, 2nd edition. Springer, Berlin (2010)
Nikol’skii, N.: Treatise on the shift operator: spectral function theory. Springer Science &
Business Media, Berlin (2012).
Khrushchev, S.V., Nikol’skii, N.K., Pavlov, B.S.: Unconditional bases of exponentials and
of reproducing kernels, Complex Analysis and Spectral Theory (Leningrad, 1979/1980).
Lecture Notes in Math. 864, 214Џ-335 (1981)
As an inner function, S can be represented in the form S = ΠΘ, where Π is the
Blaschke-Potapov product and Θ is a singular inner function. We are interesting in the
completeness of the system of resonance states. It is related to the factorization of the
scattering matrix.
Theorem 1 (Completeness criterion) [Nikol’skii]. Let S be an inner function,
H2

+(N)	 SH2
+(N), B = PKA|K . The following statements are equivalent:

1. Operator B is complete;
2. Operator B∗ is complete;
3. S is a Blaschke-Potapov product.
Here N is an auxiliary space (in our case it is C

2).
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There is simple criterion for absence of the singular inner factor for the case dimN <∞
(for general operator case there is no simple criterion):
Theorem 2 [Nikol’skii]. Let dimN <∞. The following statements are equivalent:
1. S is a Blaschke-Potapov product;
2.

lim
r→1

∫

Cr

ln |detS(k)| 2i

(k + i)2
dk = 0, (3)

where Cr is an image of |ζ| = r under the inverse Cayley transform.
The integration curve can be parameterized as Cr = {R(r)eit + iC(r) | t ∈ [0, 2π)} (see
(5)). Let s(k) = |detS(k)|. Then (R→ ∞ corresponds to r → 0):

lim
r→1

2π
∫

0

R ln s(R(r)eit + iC(r))

(R(r)eit + iC(r) + i)2
dt = 0. (4)

C(r) =
1 + r2

1− r2
, R(r) =

2r

1− r2
. (5)
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Consider a system consisting of a subgraph playing the role of resonator and two

semi-infinite wires Ω1, Ω4. The wave functions for Ω1 is marked as ψ
(1)
1 and ψ

(1)
2 with the

corresponding coefficients A and B. The wave functions for Ω4 is marked as ψ
(4)
1 and ψ

(4)
2

with the corresponding coefficients C and D. S-matrix states the relation between A, B,
C, D:

(

B

C

)

= S

(

A

D

)

.

The scattering matrix has the form:

S =

(

R T

T R

)

Let A = 1, D = 0, Then
(

B

C

)

=

(

R T

T R

)(

1
0

)

=

(

R

T

)

Hence, A = 1, B = R, C = T , D = 0.
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Рис. 2: Line with attached segment

Consider a segment as a model of resonator (Fig. ??). Wave function at each edge has the
form:























































ψ
(1)
1 = Aeikx +Be−ikx,

ψ
(1)
2 =

√

λ−mc2

λ+mc2
(Aeikx −Be−ikx),

ψ
(2)
1 = iM sin kx

ψ
(2)
2 =

√

λ−mc2

λ+mc2
M cos kx,

ψ
(3)
1 = Ceikx +De−ikx

ψ
(3)
2 =

√

λ−mc2

λ+mc2
(Ceikx −De−ikx),

k =
√
λ2−m2c4

~c
.

(6)
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The boundary condition at the vertex is as follows:

{

ψ
(1)
1 (0) = ψ

(2)
1 (L) = ψ

(3)
1 (0),

−ψ(1)
2 (0)− ψ

(2)
2 (L) + ψ

(3)
2 (0) = iα

c
ψ
(1)
1 (0).

(7)

Let γ =
√

λ+mc2

λ−mc2
iα
c

, A = 1, B = R,C = T,D = 0, then

s(k) = |R2 − T 2| = |2 + γ − i cot kL

2− γ + i cot kL
|.

If γ = 0, then s(k) = |−2 sin kL+i cos kL
2 sin kL+i cos kL |.
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Using the criterion (4). We should estimate the following integral

2π
∫

0

F (t)dt =

2π
∫

0

R ln s(R(r)eit + iC(r))

(R(r)eit + iC(r) + i)2
dt.

Here C,R is given by (5), s is as follows

s(k) = | (3 + γ)eıxe−y − (1 + γ)e−ıxey

(3− γ)eıxe−y − (1− γ)e−ıxey
|,

where k = x+ ıy, x = R cos t, y = R sin t+ C. The integral curve is divided into several
parts. The first part is that inside a strip 0 < y < δ. Taking into account that at the real
axis (y = 0) one has s(k) = 1. Correspondingly, | ln s(Reıt + Cı)| < δ. The length of the
corresponding part of the circle is of order

√
2Rδ. As a result, the integral over this part of

the curve is o( 1√
R
) and tends to zero if R→ ∞.



Proof of completeness
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The second part of the integral is related to singularities of F , i.e., roots of s(k)
(resonances). These values are roots of an analytic function. Correspondingly, the number
of roots at the integration curve is finite. Let t0 be the value of the parameter
corresponding to a resonance. Let one take a neighbourhood (t0 − δ′1, t0 + δ1 such that
outside it one has

| ln s(Reıt + Cı)| < c1. (8)

One can find such δ′1, δ1, because if e2y > 3+γ
1+γ

then s(k) has no roots. Let us take δ′1, δ1

such that e2y > 4 3+γ
1+γ

outside the interval, correspondingly, |s(k)| ≤ c3.

Inside the interval, one has
|F | ≤ c2R

−1 ln t.

The corresponding integral is estimated as

I2 = |
∫ t0+δ1

t0−δ′
1

F (t)dt| ≤ c2R
−1δ1 ln δ1.

For the remain part of the integration curve one has |F | ≤ c1R
−1, and the length of

integration interval is not greater than 2π.



Proof of completeness
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Thus, the procedure of estimation is as follows. Choose δ′1, δ1 to separate the root (or
roots) of s(k). If t0 − δ1 > 0 then consider (0, t0 − δ1] separately (for the second
semi-circle π ≤ t < 2π the consideration is analogous). For this part of the curve with
small t (i.e. small y), the estimation of the integral is O( 1√

R
. For the part of the curve

outside these intervals, the estimation of the integral is O(R−1). Correspondingly, the full
integral is estimated as O( 1√

R
, i.e. the integral tends to zero if R→ ∞. In accordance

with the completeness criterion we come to the theorem
Theorem 3. The system of resonance states is complete in L2(Ω2).



A loop with two semi-infinite lines

attached

17 / 23

Рис. 3: Graph structure: A loop with two semi-infinite lines attached

Let L2 < L3, β1 = i cot kL2 + i cot kL3 + 1− γ, β2 = 1
i sin kL2

+ 1
i sin kL3

. Finally,

s(k) = |−2− (1 + γ)2 − tan kL2

2 cot kL3

2 − tan kL3

2 cot kL2

2 + 2i(1 + γ)(cot kL2 + cot kL3)

−2− (1− γ)2 − tan kL2

2 cot kL3

2 − tan kL3

2 cot kL2

2 − 2i(1− γ)(cot kL2 + cot kL3)
|.

If γ = 0, then

s(k) = |−3− tan kL2

2 cot kL3

2 − tan kL3

2 cot kL2

2 + 2i(cot kL2 + cot kL3)

−3− tan kL2

2 cot kL3

2 − tan kL3

2 cot kL2

2 − 2i(cot kL2 + cot kL3)
|.
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For equal edges L2 = L3 = L, one has

s(k) = |−5 + 4i cot kL

−5− 4i cot kL
| = | 4i cos kL− 5 sin kL

−4i cos kL− 5 sin kL
|.

The investigation of the integral from the completeness criterion is analogous to the
previous section. The result is in the following theorem.
Theorem 4. The system of resonance states is complete in L2(Ω2 ∪ Ω3).
Remark. The obtained result can be compared with the Schrödinger quantum graph. For
the Dirac and the Schrödinger operators on graphs of the identical structures, the
completeness takes place for the same subgraphs.
Gerasimov, D.A., Popov, I.Y.: Completeness of resonance states for quantum graph with
two semi-infinite edges. Complex Variables and Elliptic Equations. 62 (2017) DOI:
10.1080/17476933.2017.1289517.
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Рис. 4: Graph structure: Loop coupled to a line at one point.

The solution is:






R = 2eikL−2+γ(1+eikL)
4−γ(1+eikL)

,

T = 2(1+eikL)
4−γ(1+eikL)

.

The S−matrix determinant for this case takes the form:

s(k) = |4e
ikL + γ(1 + eikL)

4− γ(1 + eikL)
|.



Loop touched a line
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If γ 6= 0, then the integral estimation is similar to the previous section. If γ = 0, then
s(k) = |eikL|. In this case, the result differs from the the previous one. It is clear that
ln s(k) has a linear growth in upper half-plane, and the corresponding integral does not
tend to zero for R→ ∞. We come to the theorem.
Theorem 5. If γ 6= 0, then the system of resonance states is complete in L2(Ω2); If γ = 0,
then the system of resonance states is not complete in L2(Ω2).



Loop coupled to a line through a segment
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Рис. 5: Graph structure: A loop coupled to a line through a segment)

s(k) = |e
ikL2(γ + 3)

(

1− 3eikL3 − γ(1 + eikL3)
)

− e−ikL2(γ + 1)
(

3− eikL3 − γ(1 + eikL3)
)

eikL2(γ − 1) (1− 3eikL3 − γ(1 + eikL3)) + e−ikL2(3− γ) (3− eikL3 − γ(1 + eikL3))
|.

If γ = 0 then

s(k) = | 3eikL2(1− 3eikL3)− e−ikL2(3− eikL3)

−eikL2(1− 3eikL3) + 3e−ikL2(3− eikL3)
|.
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If L2 = 0 then one has a natural answer s(k) = |eikL3 |
The integral estimation is analogous to the previous cases. We have a completeness of the
resonance states in L2(Ω3) Thus, only the case L2 = 0 leads to incompleteness. Any
perturbation (small coupling segment or point-like potential at the vertex) restores the
completeness.
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Thank you for your attention


