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Classical bit is a system which exists in one of two stable states (0, 1).
Quantum bit (qubit) is a quantum system which exists in a superposition of two stable
states |0 > and |1 >: |ψ >= α|0 > +β|1 >. States are vectors in some Hilbert space.
If one performs a measurement, it obtains the system in the state |0 > with the probability
|α|2 and in the state |1 > with the probability |β|2. < ψ|ψ >= |α|2 + |β|2 = 1.
We use Dirac notation: |ψ > is a vector, < ψ| is an operator (in our space) of scalar
multiplication by vector |ψ >. Correspondingly, the scalar product looks like < ψ|φ >.
Matrix notation: |0 >=

(
1
0

)
and |1 >=

(
0
1

)
.

Correspondingly: |ψ >=
(
α
β

)
,

< ψ| = (α, β).
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If a quantum system consists of two subsystems, then the state space of the system H is a
tensor product H1 ⊗H2 of the state spaces H1, H2 of subsystems.
H1 ⊗H2 consists of linear combinations of all elements f1 ⊗ f2, where f1 ∈ H1, f2 ∈ H2.
< f1 ⊗ f2|g1 ⊗ g2 >=< f1|g1 >< f2|g2 >.
Tensor product of operators A1, A2:
A1 ⊗A2|f1 ⊗ f2 >= |A1f1 ⊗A2f2 > .
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Basis in one-qubit state space:
|0 >=

(
1
0

)
and |1 >=

(
0
1

)
.

Basis in two-qubit state space:

|0 > ⊗|0 >=
(
1

0

)
⊗
(
1

0

)

,

|0 > ⊗|1 >=
(
1

0

)
⊗
(
0

1

)

,

|1 > ⊗|0 >=
(
0

1

)
⊗
(
1

0

)

,

|1 > ⊗|1 >=
(
0

1

)
⊗
(
0

1

)

.
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Tensor product of matrices (Kronecker product):

A⊗B =




a11B a12B ... a1nB

a21B a22B ... a2nB

... ... ... ...

an1B an2B ... annB



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|0 > ⊗|0 >=
(
1
0

)
⊗
(
1
0

)
=




1
0
0
0


, |0 > ⊗|1 >=

(
1
0

)
⊗
(
0
1

)
=




0
1
0
0


,

|1 > ⊗|0 >=
(
0
1

)
⊗
(
1
0

)
=




0
0
1
0


,|1 > ⊗|1 >=

(
0
1

)
⊗
(
0
1

)
=




0
0
0
1


.

To operate with a qubit means to apply an unitary operator (in more general case, a trace
preserving operator) to the vector of this qubit. Tensor product of operators corresponds
to Kronecker (tensor) product of their matrices in chosen basis.



Entanglement

8 / 31

Consider the state of two qubits A and B. There is a natural basis
|0 > ⊗|0 >, |0 > ⊗|1 >, |1 > ⊗|0 >, |1 > ⊗|1 >,
(for simplicity, let us mark it |00 >, |01 >, |10 >, |11 >).
Any state can be presented in the form:
|ψ >= a|00 > +b|01 > +c|10 > +d|11 >.,
where |a|2 + |b|2 + |c|2 + |d|2 = 1.

Can one present this state in the form:

(α|0 > +β|1 >)⊗ (γ|0 > +δ|1 >)?

The necessary and sufficient condition for the factorization:

ad− bc = 0

. Definition. A multi-qubit state is called entangled if it can not be presented
as a tensor product of single-qubit states.
The value of |ad− bc| can be considered as a measure of entanglement.
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Pure quantum state is described by a vector in a Hilbert state. If the system interacts with
the surrounding systems it can be described only by a positive Hermitian operator with the
unit trace in the Hilbert space (density operator or density matrix): ρ =

∑
k pk|ψk >< ψk|,

where |ψk > is an orthogonal and normalized basis, pk ≥ 0 and
∑

k pk = 1. pk is the
probability to observe the system in the state |ψk > under measurement.
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Does a gate produce an entanglement? In which case is it important? If different qubits
transform independently by the quantum gate or quantum channel then there is no
entanglement producing. This takes place if the transformation matrix is a tensor product
of matrices corresponding to different qubits.
Yang Xiang and Shi-Jie Xiong. Entanglement fidelity and measurement of entanglement
preservation in quantum processes. Phys. Rev. A 76, (2007) 014301.
The problem of qubits’ independent transformation is especially important in connection
with recent results concerning free space teleportation.
Herbst, T., Scheidl, T., Fink, M., Handsteiner, J., Wittmann, B., Ursin, R., Zeilinger, A.:
Teleportation of entanglement over 143 km. PNAS, 112 (2015) 1420214205.
In this case, the transmission matrix plays the role of a quantum gate matrix
(transformation matrix). If there is qubit dependence during the transformation then the
entanglement perturbation takes place (an additional entanglement can appear or,
conversely, the entanglement can be destroyed). This leads to the destruction of the
teleportation.
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The degree of independence for the qubit’s transformation can be estimated using a
distance from the transformation matrix to the subspace of matrices which are tensor
products.
It is related to well known Eckart-Young-Mirsky theorem dealing with approximation of a
matrix by low-rank matrices.
I. Markovsky, Low-Rank Approximation: Algorithms, Implementation, Applications,
Springer, 2012
A. O. Pittenger, M. H. Rubin. Convexity and the separability problem of quantum
mechanical density matrices. Linear Algebra and its Applications 346 (2002) 4771
G. Dahl, J.M. Leinaas, J.Myrheim, E.Ovrum. A tensor product matrix approximation
problem in quantum physics. Linear Algebra and its Applications 420 (2007) 711725.
Our theorem is a modification of EYM theorem. We suggest another proof and,
correspondingly, a way for the distance calculations. Examples of quantum computing
applications are given.
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Definition. Vectorization operator vec is the operator which transforms a matrix M into
vector vecM by the following way:

vecM =
(
m′

1, ...,m
′
p

)′
,

where vectors m1, ...,mp are the columns of the matrix M , prime marks the transposition
operation.
Let us take two matrices Bm×m, Cn×n and their tensor (Kronecker) product
Rmn×mn = B ⊗ C.

Definition. R̃ is the matrix obtained from the matrix R by the following manner:

R̃m2×n2 = vecB(vecC)′.

Remark. Matrix R̃ consists of the same entries as the matrix Rmn×mn = B ⊗C, arranged
in another order. As for arbitrary matrix Amn×mn, one divides it into blocks of sizes n× n

and obtains the matrix Ãm2×n2 , following the same procedure as for R.
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Theorem 1.

For given real matrix Amn×mn the norm

‖A−B ⊗ C‖

is minimal if the matrices Bm×m and Cn×n are such that

vecB(vecC)′ = kbc′.

Here k = σ1 is the maximal singular value of the matrix Ã (Ãm2×n2), b = u1 and c = v1

are the right and the left singular vectors of the matrix Ã corresponding to singular value
σ1.
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Proof.

Rmn×mn = Bm×m ⊗ Cn×n =




b11C b12C .... b1mC

b21C b22C .... b2mC

..................

bm1C bm2C .... bmmC



.
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R̃m2×n2 = vecB(vecC)′ =




b11c11 ... b11cn1 b11c12 ... b11cn2 ... b11cn1 b11c1n ... b11cnn
b21c11 ... b21cn1 b21c12 ... b21cn2 ... b21cn1 b21c1n ... b21cnn

...
bm1c11 ... bm1cn1 bm1c12 ... bm1cn2 ... bm1cn1 bm1c1n ... bm1cnn
b12c11 ... b12cn1 b12c12 ... b12cn2 ... b12cn1 b12c1n ... b12cnn
b22c11 ... b22cn1 b22c12 ... b22cn2 ... b22cn1 b22c1n ... b22cnn

...
bm2c11 ... bm2cn1 bm2c12 ... bm2cn2 ... bm2cn1 bm2c1n ... bm2cnn

...
b1mc11 ... b1mcn1 b1mc12 ... b1mcn2 ... b1mcn1 b1mc1n ... b1mcnn
b2mc11 ... b2mcn1 b2mc12 ... b2mcn2 ... b2mcn1 b2mc1n ... b2mcnn

...
bmmc11 ... bmmcn1 bmmc12 ... bmmcn2 ... bmmcn1 bmmc1n ... bmmcnn




.
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Ã =



a1,1 ... am,1 ... a1,m ... am,m

a(m+1),1 ... a2m,1 ... a(m+1),n ... a2m,n

... ... ... ... ... ... ...

amn−m+1,1 ... amn,1 ... amn−m+1,m ... amn,m

a1,m+1 ... am,m+1 ... a1,2m ... am,2m

... ... ... ... ... ... ...

amn−m+1,m+1 ... amn,m+1 ... amn−m+1,2m ... amn,2m

... ... ... ... ... ... ...

a1,mn−m+1 ... am,mn−m+1 ... a1,mn ... am,mn

... ... ... ... ... ... ...

amn−m+1,mn−m+1 ... amn,mn−m+1 ... amn−m+1,mn ... amn,mn




.
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One can see that
‖A−B ⊗ C‖ =

∥∥∥Ã− vecB(vecC)′
∥∥∥ .

Let vecB(vecC)′ = kbc′, where ‖bm2×1‖ = ‖cn2×1‖ = 1, k is a normalizing factor.

Consider the singular value decomposition for the matrix Ã:

Ã =
s∑

i=1

σiuiv
′
i,

where s = rankÃ, σ1 ≥ σ2 ≥ .... ≥ σs > 0 are the matrix singular values arranged in
decreasing order, ui are orthogonal and normalized vectors of size m2, ‖ui‖ = 1, vi are
orthogonal and normalized vectors of size n2, ‖vi‖ = 1.



Theorem

18 / 31

Definition. The Frobenius norm of a matrix M is as follows:

‖M‖F =

√√√√
m∑

i=1

n∑

j=1

a2ij .

Consider

∥∥∥∥
s∑

i=1

σiuiv
′
i − kbc′

∥∥∥∥
2

= tr

((
s∑

i=1

σiuiv
′
i − kbc′

)′( s∑
i=1

σiuiv
′
i − kbc′

))
=

= tr

(
s∑

i=1

s∑
j=1

σiσjviu
′
iujv

′
j −kcb′

s∑
i=1

σiuiv
′
i −
(

s∑
i=1

σiviu
′
i

)
kbc′ + k2cb′bc′

)
=

= tr

(
s∑

i=1

σ2
i −kcb′

s∑
i=1

σiuiv
′
i −
(

s∑
i=1

σiviu
′
i

)
kbc′ + k2

)
.
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∥∥∥∥
s∑

i=1

σiuiv
′
i − kbc′

∥∥∥∥
2

=

=
s∑

i=1

tr
(
σ2
i

)
− k

s∑
i=1

σitr (cb
′uiv

′
i)− k

s∑
i=1

σitr (viu
′
ibc

′) + tr
(
k2
)
=

=
s∑

i=1

σ2
i−k

s∑
i=1

σitr (cb
′uiv

′
i)− k

s∑
i=1

σitr (viu
′
ibc

′) + k2.
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Consider the expression:

tr (viu
′
ibc

′) = tr (viu
′
ibc

′)
′
= tr

(
(bc′)

′
(viu

′
i)

′
)
= tr (cb′uiv

′
i) .

One has:

∥∥∥∥
s∑

i=1

σiuiv
′
i − kbc′

∥∥∥∥
2

=

s∑
i=1

σ2
i−k

s∑
i=1

σitr (cb
′uiv

′
i)− k

s∑
i=1

σitr (viu
′
ibc

′) + k2 =
s∑

i=1

σ2
i−

−2k
s∑

i=1

σitr (cb
′uiv

′
i) + k2.
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One comes to the following expression

s∑
i=1

σ2
i − 2k

s∑
i=1

σitr (cb
′uiv

′
i) + k2 =

s∑
i=1

σ2
i − 2k

s∑
i=1

(
σi

n2∑
l=1

(
vilcl

) m2∑
j=1

(
bju

i
j

)
)

+ k2 =

s∑
i=1

σ2
i − 2k

s∑
i=1

(σiv
′
icb

′ui) + k2.

(1)

Consider the obtained expression as a function of k other arguments being fixed. The
function has a minimal value for

k =

s∑

i=1

(σiv
′
icb

′ui).
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Inserting this value of k into (1), one obtains:

s∑

i=1

σ2
i −

(
s∑

i=1

(σiv
′
icb

′ui)

)2

.

This expression takes its minimal value if

s∑

i=1

σi |v′icb′ui|

is maximal. Due to the ordering of the singular values, one has

s∑

i=1

σi |v′icb′ui| ≤
s∑

i=1

σ1 |v′icb′ui|.
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The Hölder inequality leads to the following inequalities

|v′ic|
2 ≤ ‖v′i‖

2 ‖c‖2 = 1. |b′ui|2 ≤ ‖b′‖2 ‖ui‖2 = 1.

Hence, |v′icb′ui| = 1 for c = vi,b = ui. σ1 is the maximal singular value, consequently,
s∑

i=1

σi |v′icb′ui| is maximal for k = σ1, c = v1,b = u1.

Thus, for given matrix Amn×mn, the norm ‖A−B ⊗ C‖ is minimal if the matrices Bm×m

and Cn×n are such that
vecB(vecC)′ = σ1u1v

′
1.

This norm is as follows

‖A−B ⊗ C‖ =
∥∥∥Ã− vecB(vecC)′

∥∥∥ =
∥∥∥Ã− σ1u1v

′
1

∥∥∥ .

It is the norm that gives us the distance from Amn×mn to the subspace of matrices that
are tensor products of matrices having sizes m×m and n× n.
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CNOT gate is controlled NOT. The first qubit is control qubit, the second one is target
qubit. The operator does not change the state of the control qubit |a > and transform the
target qubit: if |a >= |1 > then |0 > is replaced by |1 > and |1 > is replaced by |0 >. If
|a >= |0 > then |b > does not change. Here ⊕ means modulo 2 (0⊕ 0 = 1⊕ 1 = 0 and
0⊕ 1 = 1⊕ 0 = 1). CNOT is an analog of classical XOR.

Figure 1: CNOT gate for basic vectors
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UCNOT =




1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


 .

Correspondingly,

ŨCNOT =




1 0 0 1
0 0 0 0
0 0 0 0
0 1 1 0


 .
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Ũ ′
CNOT ŨCNOT =




1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1


 .

Correspondingly, the eigenvalues are as follows: y1 = y2 = σ2
1 = σ2

2 = 2,
y3 = y4 = σ2

3 = σ2
4 = 0. The corresponding normalized eigenvectors are:

v1 =




1√
2

0
0
1√
2


 , v2 =




0
1√
2
1√
2

0


 , v3 =




− 1√
2

0
0
1√
2


 , v4 =




0
− 1√

2
1√
2

0


 .

∥∥∥ŨCNOT − σ1u1v
′
1

∥∥∥ =
√
2.
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Figure 2: Action of SWAP operator on basic vectors

USWAP =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , ŨSWAP =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 .

σ1 = σ2 = σ3 = σ4 = 1. ∥∥∥ŨSWAP − σ1u1v
′
1

∥∥∥ =
√
3.
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Figure 3: SWAP operator as three CNOT operator

The SWAP operator does not produce an entanglement, but it is not a tensor product of
2× 2 matrices.
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Any two-qubit pure state can be presented in the form:

|ψ >= a|00 > +b|01 > +c|10 > +d|11 >,

where |a|2 + |b|2 + |c|2 + |d|2 = 1. The necessary and sufficient condition for the
factorization:

ad− bc = 0.

The value of |ad− bc| can be considered as a measure of entanglement.
Consider the density matrix S

S =




a

b

c

d


 .
[
a b c d

]
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Following the described procedure, one obtains

S̃S̃∗ =



A

[
A B

B C

]
B

[
A B

B C

]

B

[
A B

B C

]
C

[
A B

B C

]


 =

[
A B

B C

]
⊗
[
A B

B C

]
,

where
A = |a|2 + |b|2, C = |c|2 + |d|2, B = ac+ bd, B = ca+ db.

Correspondingly, the eigenvalues σi of the 4× 4- matrix are products of eigenvalues λj of
2× 2-matrices, the eigenvectors are tensor products of the corresponding eigenvectors.
One can see that

λ1,2 = 2−1 ±
√

4−1 −AC + |B|2 = 2−1 ±
√

4−1 − |ad− bc|2,

i.e. our measure is correlated with the measure mentioned above.
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Thank you for your attention


