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SO data Limit Operators Necessity Criteria Binomial Application to FO’s

One-sided invertibility

One-sided and two-sided invertible operators

Let B(X ,Y ) be the Banach space of all bounded linear
operators acting from a Banach space X to a Banach space Y .
We abbreviate B(X ,X ) to B(X ). An operator A ∈ B(X ,Y ) is
called left invertible (resp. right invertible) if there exists an
operator B ∈ B(Y ,X ) such that BA = IX (resp. AB = IY ) where
IX ∈ B(X ) and IY ∈ B(Y ) are the identity operators on X and Y ,
respectively. The operator B is called a left (resp. right) inverse
of A. An operator A ∈ B(X ,Y ) is said to be invertible if it is left
invertible and right invertible simultaneously. We say that A is
strictly left (resp. right) invertible if it is left (resp. right) invertible,
but not invertible. If the operator A is invertible only from one
side, then the corresponding inverse is not uniquely defined.

A function a : Z→ C with uniformly bounded values a(n) is
called slowly oscillating, a ∈ SO(Z), if

lim
n→±∞

|a(n + 1)− a(n)| = 0.
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One-sided invertibility

Discrete operators on the spaces lp, p ∈ [1,∞]

Given p ∈ [1,∞], we consider the Banach space lp = lp(Z)
consisting of all functions f : Z→ C equipped with the norm

‖f‖lp =

{(∑
n∈Z |f (n)|p

)1/p if p ∈ [1,∞),

supn∈Z |f (n)| if p =∞.

We establish criteria of the one-sided invertibility of discrete
operators of the Wiener type

A :=
∑

k∈Z
akV k , ‖A‖W :=

∑
k∈Z
‖ak‖l∞ <∞, (1)

on the spaces lp with p ∈ [1,∞], where ak ∈ SO(Z) ⊂ l∞ for all
k ∈ Z, and the isometric shift operator V is given on functions
f ∈ lp by (Vf )(n) = f (n + 1) for all n ∈ Z. Clearly, V is invertible
on each space lp. Thus, for every f ∈ lp, we have

(Af )(n) =
∑

k∈Z
ak (n)f (n + k) for all n ∈ Z.

LetW be the Banach algebra of operators (1) with norm ‖ · ‖W .
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One-sided invertibility

Maximal ideal space of the unital commutative C∗-algebra SO(Z)

The set SO(Z) of all slowly oscillating (at ±∞) functions in l∞ is
a unital commutative C∗-algebra properly containing the
C∗-algebra C(Z), where Z := Z ∪ {±∞}. Let M(SO(Z)) be the
maximal ideal space of the algebra SO(Z). Identifying the
points n ∈ Z with the evaluation functionals n(f ) = f (n) for
f ∈ C(Z), we get M(C(Z)) = Z. Consider the fibers

Ms(SO(Z)) :=
{
ξ ∈ M(SO(Z)) : ξ|C(Z) = s

}
of the maximal ideal space M(SO(Z)) over points s ∈ {±∞}.
The fibers M±∞(SO(Z)) are connected compact Hausdorff
spaces. The set

∆ := M−∞(SO(Z)) ∪M+∞(SO(Z)) = closSO∗ Z \ Z,

where closSO(Z)∗ Z is the weak-star closure of Z in the dual
space of SO(Z). Then M(SO(Z)) = ∆ ∪ Z. We write
a(ξ) := ξ(a) for every a ∈ SO(Z) and every ξ ∈ ∆.



SO data Limit Operators Necessity Criteria Binomial Application to FO’s

Limit Operators

Application of limit operators

Discrete operators A ∈ W are operators of multiplication by
infinite band-dominated matrices

(
ak−n(n)

)
n,k∈Z.

Lemma

Let p ∈ [1,∞) and let A =
∑

k∈Z akV k ∈ W ⊂ B(lp), where
ak ∈ SO(Z) for all k ∈ Z. Then for every ξ ∈ ∆ there exists a
sequence {kn}n∈N of numbers kn ∈ N such that kn →∞ as
n→∞, and
s-lim
n→∞

(
V±knAV∓kn

)
= Aξ :=

∑
k∈Z

ak (ξ)V k ∈ W if s = ±∞.

Corollary

If p ∈ [1,∞) and A =
∑

k∈Z akV k ∈ W is left invertible on lp,
then for every ξ ∈ ∆ the operators Aξ =

∑
k∈Z ak (ξ)V k ∈ W

possess the properties: Ker Aξ = {0}, Im Aξ is a closed
subspace of lp, and Aξ are invertible from lp onto Im Aξ.
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Limit Operators

Invertibility of limit operators

Corollary

If p ∈ (1,∞) and the operator A =
∑

k∈Z akV k ∈ W is invertible
on the space lp, then for every ξ ∈ ∆ the limit operators
Aξ =

∑
k∈Z ak (ξ)V k are also invertible on lp.

Lemma
The spectrum of the isometric operator V coincides with the
unit circle T = {z ∈ C : |z| = 1}.

Consider the unital commutative Banach algebraWC consisting
of all operators A =

∑
k∈Z akV k ∈ W with constant coefficients

ak ∈ C on lp. The maximal ideal space ofWC can be identified
with T, and the Gelfand transform of A =

∑
k∈Z akV k ∈ WC is

given by A(z) :=
∑

k∈Z akzk for all z ∈ T, where A(·) belongs to
the algebra W of absolutely convergent Fourier series on T.
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Limit Operators

The Gelfand transform and the Cauchy index

Hence, for each ξ ∈ ∆ the operator Aξ =
∑

k∈Z ak (ξ)V k ∈ WC
is invertible on the space lp with p ∈ [1,∞) if and only if

Aξ(z) :=
∑

k∈Z
ak (ξ)zk 6= 0 for all z ∈ T.

Since this is true for all ξ ∈ ∆, we infer, by the continuity of the
function ξ 7→ Aξ(·) ∈W on the connected Hausdorff compact
Ms(SO(Z)) for every s ∈ {±∞}, that the numbers

ind Aξ(·) :=
1

2π
{

arg Aξ(z)
}

z∈T

do not depend on ξ ∈ Ms(SO(Z)) and can only depend on
s ∈ {±∞}. Put

N± := ind Aξ(·) for all ξ ∈ M±∞(SO(Z)).

While all limit operators Aξ are invertible for each invertible
operator A ∈ W by the last corollary, this fact for strictly
one-sided invertible operators A ∈ W we still need to prove.
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Necessary Conditions

Necessary conditions at fixed points

Theorem

Let p ∈ (1,∞). If the discrete operator A =
∑

k∈Z akV k ∈ W
with coefficients ak ∈ SO(Z) is left or right invertible on the
space lp, then

Aξ(z) =
∑

k∈Z
ak (ξ)zk 6= 0 for all ξ ∈ ∆ and all z ∈ T,

and the Cauchy indices ind Aξ(·) coincide, respectively, for
every ξ ∈ M−∞(SO(Z)) and for every ξ ∈ M+∞(SO(Z)).

Thus, for the one-sided invertible operators A ∈ W ⊂ B(lp), we
again can uniquely define the numbers N± := ind Aξ(·).
Let A ∈ W. Take in B(lp) the projections P±n := diag{P±s,n}s∈Z,
P0

n−N−,n+N+
:= I − P−n−N− − P+

n+N+
, P0

n := I − P−n − P+
n , where

P+
s,n =

{
1 if s ≥ n,
0 if s < n,

P−s,n =

{
1 if s ≤ −n,
0 if s > −n.
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Discrete Version

Invertibility of outermost blocks for discrete operators

Consider the operators A+
n := P+

n AP+
n+N+

, A−n := P−n AP−n−N− .

Theorem

If the discrete operator A =
∑

k∈Z akV k ∈ W is left or right
invertible on the space lp with p ∈ (1,∞), then there exists a
number n0 ∈ N such that for all n ≥ n0 the operators

A+
n : P+

n+N+
lp → P+

n lp, A−n : P−n−N− lp → P−n lp

are invertible.

LetW± denote the unital Banach subalgebras ofW given by

W± :=
{∑

k∈Z+
a±k V±k ∈ W : a±k ∈ SO(Z)

}
,

where Z+ := N ∪ {0}. Let W± be the unital Banach
subalgebras of the algebra W of absolutely convergent Fourier
series on T,

W± :=
{

f =
∑

k∈Z+
a±k z±k ∈W : a±k ∈ C, z ∈ T

}
.
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Discrete Version

Invertibility of outermost blocks: a scheme of the proof

It suffices to prove the invertibility of the operator A+
n , assuming

that N+ = 0. Since Aξ(z) 6= 0 for all ξ ∈ M+∞(SO(Z)) and all
z ∈ T, and since ind Aξ(·) = 0 for these ξ, we conclude that for
every ξ ∈ M+∞(SO(Z)) the function z 7→ Aξ(z) admits a unique
canonical factorization

Aξ(z) = A+
ξ (z) A−ξ (z) for all z ∈ T,

where A±ξ (·),
(
A±ξ (·)

)−1 ∈W± and
∫

T A+
ξ (z)|dz| = 2π.

Using the functions
(
A±ξ (·)

)−1 ∈W± for all ξ ∈ M+∞(SO(Z)), it
is possible to construct discrete operators

C± =
∑

k∈Z+
c±k V±k ∈ W±

such that the operators P+
n C±P+

n are invertible in the Banach
algebras P+

n W±P+
n for all sufficiently large n ∈ N, and the

operator P+
n (C+AC−)P+

n is close to the identity operator on the
space P+

n lp, which leads to the invertibility of the operators A+
n .
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Discrete Version

One-sided invertibility of modified central block

Representing the operator A ∈ W acting from the direct sum of
spaces P−n−N− lp

.
+ P0

n−N−,n+N+
lp

.
+ P+

n+N+
lp to the direct sum of

spaces P−n lp
.

+ P0
n lp

.
+ P+

n lp as the operator matrix

A :=

P−n AP−n−N− P−n AP0
n−N−,n+N+

P−n AP+
n+N+

P0
nAP−n−N− P0

nAP0
n−N−,n+N+

P0
nAP+

n+N+

P+
n AP−n−N− P+

n AP0
n−N−,n+N+

P+
n AP+

n+N+

 , (2)

we infer that the operator

Dn,∞ :=

[
P−n AP−n−N− P−n AP+

n+N+

P+
n AP−n−N− P+

n AP+
n+N+

]
, (3)

acting from the space P−n−N− lp
.

+ P+
n+N+

lp onto the space

P−n lp
.

+ P+
n lp, is invertible along with operators P−n AP−n−N− and

P+
n AP+

n+N+
. As (3) is invertible, the one-sided invertibility of (2)

is equivalent to the one-sided invertibility of a modified central
block.
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Wiener type discrete operators

Two-sided invertibility of Wiener type discrete operators

Theorem

The operator A =
∑

k∈Z akV k ∈ W with coefficients ak ∈ SO(Z)
is invertible on the space lp with p ∈ [1,∞] if and only if

(i) Aξ(z) :=
∑

k∈Z ak (ξ)zk 6= 0 for all ξ ∈ ∆ and z ∈ T;
(ii) N− = N+, where N± := indAξ(·) for any ξ ∈ M±∞(SO(Z));

(iii) there exists an n0 ∈ N such that detDn,0 6= 0 for every
n > n0, where the (2n − 1)× (2n − 1) matrices Dn,0 are
identified with the operator
Dn,0 := P0

nAP0
n−N−,n+N+

−
[
P0

nAP−n−N− P0
nAP+

n+N+

]
×

[
P−n AP−n−N− P−n AP+

n+N+

P+
n AP−n−N− P+

n AP+
n+N+

]−1 [
P−n AP0

n−N−,n+N+

P+
n AP0

n−N−,n+N+

]
acting from the space P0

n−N−,n+N+
lp to the space P0

n lp.
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Wiener type discrete operators

Strict one-sided invertibility of Wiener-type discrete operators

Criteria of the strict one-sided invertibility of the operators
A ∈ W on the spaces lp for p ∈ (1,∞) have the following form.

Theorem

The discrete operator A =
∑

k∈Z akV k ∈ W with coefficients
ak ∈ SO(Z) is strictly left (resp., strictly right) invertible on the
space lp with p ∈ (1,∞) if and only if

(i) Aξ(z) :=
∑

k∈Z ak (ξ)zk 6= 0 for every ξ ∈ ∆ and every
z ∈ T;

(ii) N− > N+ (resp., N− < N+), where N± = indAξ(·) for any
ξ ∈ M±∞(SO(Z));

(iii) there exists an n0 ∈ N such that the rank of the
(2n − 1 + N+ − N−)× (2n − 1) matrices Dn,0 for all n ≥ n0
equal 2n − 1 + N+ − N− (resp., equal 2n − 1).
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One-sided invertibility of binomial discrete operators

Invertibility of binomial discrete operator: l∞ coefficients

Theorem
Let p ∈ [1,∞] and a,b ∈ l∞. The operator A := aI − bV is
invertible on the space lp if and only if one of the following two
alternative conditions holds:

(i) a ∈ Gl∞ and r(b/a) < 1, (ii) b ∈ Gl∞ and r(a/b) < 1,

where r(c) := lim
n→∞

(
supk∈Z

∣∣c(k + 1)c(k + 2) . . . c(k + n)
∣∣)1/n

for c ∈ l∞. If A is invertible, then its inverse is given by

A−1 =
∑∞

n=0

(
(b/a)V

)na−1I in case (i),

A−1 = −V−1
∑∞

n=0

(
(a/b)V−1)nb−1I in case (ii).

For every k ∈ Z, we introduce the functions χ±k ∈ l∞ by

χ+
k (n) =

{
1 if n > k ,
0 if n ≤ k ,

χ−k (n) =

{
0 if n > k ,
1 if n ≤ k .

(4)
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One-sided invertibility of binomial discrete operators

Strict left invertibility of binomial discrete operator

For every k ∈ N, we also define the functions βk : Z→ Z
(k ∈ N) by

βk (n) = n + k for all n ∈ Z. (5)

Theorem
The operator A = aI − bV is strictly left invertible on the space
lp with p ∈ [1,∞] if and only if the following two conditions hold:

(i) there exists a number k ∈ Z such that infn<k |b(n)| > 0 and
infn>k |a(n)| > 0;

(ii) r
(
χ−k

a◦β−1
b◦β−1

)
< 1 and r

(
χ+

k
b
a

)
< 1,

where the functions χ±k ∈ l∞ and βk are given by (4) and (5).

Under these conditions one of the left inverses have the form

AL := χ+
k

∞∑
n=0

((b/a)V )n(1/a)I − χ−k V−1
∞∑

n=0

((a/b)V−1)n(1/b)I.
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One-sided invertibility of binomial discrete operators

Strict right invertibility of binomial discrete operator

Theorem
The operator A = aI − bV is strictly right invertible on the space
lp with p ∈ [1,∞] if and only if the following two conditions hold:

(i) there exists a k ∈ Z such that infn≤k |a(n)| > 0 and
infn>k |b(n)| > 0;

(ii) r(χ−k (b ◦ β−1)/a) < 1 and r(χ+
k (a ◦ β1)/b) < 1,

where the functions χ±k ∈ l∞ and βk are given by (4) and (5).
Under these conditions one of the right inverses have the form

AR :=
∞∑

n=0

((b/a)V )n(χ−k /a)I − V−1
∞∑

n=0

((a/b)V−1)n(χ+
k /b)I.

Given R+ = (0,∞), let α denote an orientation-preserving
homeomorphism of [0,∞] onto itself, which has only two fixed
points 0 and∞, and its restriction to R+ is a diffeomorphism.
Let α0(t) := t and αn(t) := α[αn−1(t)] for all n ∈ Z and t ∈ R+.
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One-sided invertibility of functional operators

Slowly oscillating functions and shifts on R+

Let Cb(R+) denote the C∗-algebra of all bounded continuous
functions on R+ := (0,+∞). Following [Sarason], a function
f ∈ Cb(R+) is called slowly oscillating (at 0 and∞) if for each
(equivalently, for some) λ ∈ (0,1),

lim
r→s

sup
{
|f (t)− f (τ)| : t , τ ∈ [λr , r ]

}
= 0, s ∈ {0,∞}.

The set SO(R+) of all slowly oscillating (at 0 and∞) functions
in Cb(R+) is a unital commutative C∗-algebra.

A diffeomorphism α : R+ → R+ is called a slowly oscillating
shift if logα′ ∈ SO(R+). We associate with α the isometric shift
operator Uα ∈ B(Lp(R+)) given by Uαf = |α′|1/p(f ◦ α).

Let AW be the Banach algebra of Wiener’s functional operators

A =
∑

k∈Z
akUk

α ∈ B(Lp(R+)) with ‖A‖W :=
∑

k∈Z
‖ak‖Cb(R+)<∞,

where ak ∈ SO(R+) for all k ∈ Z and α is a slowly oscillating
shift on R+.
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One-sided invertibility of functional operators

Reduction to the one-sided invertibility of discrete operators

If p ∈ [1,∞] and A =
∑

k∈Z akUk
α ∈ AW ⊂ B(Lp(R+)), then for

every t ∈ R+, we define the discrete operator

At :=
∑

k∈Z
ak ,tV k ∈ W ⊂ B(lp),

where ak ,t (n) := ak [αn(t)] for all k ,n ∈ Z and all t ∈ R+, the
functions ak ,t belong to SO(Z), and

‖A‖B(Lp(R+)) = supt∈R+
‖At‖B(lp) ≤ ‖A‖W .

Theorem

If p ∈ [1,∞], then the functional operator A =
∑

k∈Z akUk
α ∈ AW

is invertible on the space Lp(R+) if and only if for all t ∈ R+ the
discrete operators At ∈ W are invertible on the space lp. If
p ∈ (1,∞), then the left (resp., right) invertibility of the operator
A on the space Lp(R+) is equivalent to the left (resp., right)
invertibility of the operators At ∈ W on the space lp for t ∈ R+.


	SO data
	One-sided invertibility

	Limit Operators
	Limit Operators

	Necessity
	Necessary Conditions
	Discrete Version

	Criteria
	Wiener type discrete operators

	Binomial
	One-sided invertibility of binomial discrete operators

	Application to FO's
	One-sided invertibility of functional operators


