One-sided invertibility of infinite band-dominated matrices

Yuri Karlovich
Universidad Autónoma del Estado de Morelos, Cuernavaca, México
mini-symposium "Structured matrices and operators

- in memory of Georg Heinig", IWOTA 2017, TU Chemnitz,

Chemnitz, Germany, August 14-18, 2017

One-sided and two-sided invertible operators

Let $\mathcal{B}(X, Y)$ be the Banach space of all bounded linear operators acting from a Banach space X to a Banach space Y. We abbreviate $\mathcal{B}(X, X)$ to $\mathcal{B}(X)$. An operator $A \in \mathcal{B}(X, Y)$ is called left invertible (resp. right invertible) if there exists an operator $B \in \mathcal{B}(Y, X)$ such that $B A=I_{X}\left(\right.$ resp. $\left.A B=I_{Y}\right)$ where $I_{X} \in \mathcal{B}(X)$ and $I_{Y} \in \mathcal{B}(Y)$ are the identity operators on X and Y, respectively. The operator B is called a left (resp. right) inverse of A. An operator $A \in \mathcal{B}(X, Y)$ is said to be invertible if it is left invertible and right invertible simultaneously. We say that A is strictly left (resp. right) invertible if it is left (resp. right) invertible, but not invertible. If the operator A is invertible only from one side, then the corresponding inverse is not uniquely defined.
A function $a: \mathbf{Z} \rightarrow \mathbf{C}$ with uniformly bounded values $a(n)$ is called slowly oscillating, $a \in S O(\mathbf{Z})$, if

$$
\lim _{n \rightarrow \pm \infty}|a(n+1)-a(n)|=0 .
$$

One-sided invertibility

Discrete operators on the spaces $I^{p}, p \in[1, \infty]$

Given $p \in[1, \infty]$, we consider the Banach space $I^{p}=I^{p}(\mathbf{Z})$ consisting of all functions $f: \mathbf{Z} \rightarrow \mathbf{C}$ equipped with the norm

$$
\|f\|_{\mid \rho}= \begin{cases}\left(\sum_{n \in \mathbf{Z}}|f(n)|^{p}\right)^{1 / p} & \text { if } p \in[1, \infty), \\ \sup _{n \in \mathbf{Z}}|f(n)| & \text { if } p=\infty .\end{cases}
$$

We establish criteria of the one-sided invertibility of discrete operators of the Wiener type

$$
\begin{equation*}
\mathcal{A}:=\sum_{k \in \mathbf{Z}} a_{k} V^{k}, \quad\|\mathcal{A}\| w:=\sum_{k \in \mathbf{Z}}\left\|a_{k}\right\|_{\infty}<\infty, \tag{1}
\end{equation*}
$$

on the spaces ${ }^{1 p}$ with $p \in[1, \infty]$, where $a_{k} \in S O(\mathbf{Z}) \subset 1^{\infty}$ for all $k \in \mathbf{Z}$, and the isometric shift operator V is given on functions $f \in I^{p}$ by $(V f)(n)=f(n+1)$ for all $n \in \mathbf{Z}$. Clearly, V is invertible on each space \mathscr{I}^{p}. Thus, for every $f \in \mathbb{I}^{p}$, we have

$$
(\mathcal{A} f)(n)=\sum_{k \in \mathbf{Z}} a_{k}(n) f(n+k) \text { for all } n \in \mathbf{Z} .
$$

Let \mathcal{W} be the Banach algebra of operators (1) with norm $\|\cdot\|_{w}$.

Maximal ideal space of the unital commutative C^{*}-algebra SO(Z)

The set $S O(\mathbf{Z})$ of all slowly oscillating (at $\pm \infty$) functions in I^{∞} is a unital commutative C^{*}-algebra properly containing the C^{*}-algebra $C(\overline{\mathbf{Z}})$, where $\overline{\mathbf{Z}}:=\mathbf{Z} \cup\{ \pm \infty\}$. Let $M(S O(\mathbf{Z}))$ be the maximal ideal space of the algebra $S O(\mathbf{Z})$. Identifying the points $n \in \overline{\mathbf{Z}}$ with the evaluation functionals $n(f)=f(n)$ for $f \in C(\overline{\mathbf{Z}})$, we get $M(C(\overline{\mathbf{Z}}))=\overline{\mathbf{Z}}$. Consider the fibers

$$
M_{s}(S O(\mathbf{Z})):=\left\{\xi \in M(S O(\mathbf{Z})):\left.\xi\right|_{C(\overline{\mathbf{Z}})}=s\right\}
$$

of the maximal ideal space $M(S O(\mathbf{Z}))$ over points $s \in\{ \pm \infty\}$.
The fibers $M_{ \pm \infty}(S O(\mathbf{Z}))$ are connected compact Hausdorff spaces. The set

$$
\Delta:=M_{-\infty}(S O(\mathbf{Z})) \cup M_{+\infty}(S O(\mathbf{Z}))=\operatorname{clos}_{S O^{*}} \mathbf{Z} \backslash \mathbf{Z}
$$

where $\operatorname{clos}_{S O(\mathbf{Z}) *} \mathbf{Z}$ is the weak-star closure of \mathbf{Z} in the dual space of $S O(\mathbf{Z})$. Then $M(S O(\mathbf{Z}))=\Delta \cup \mathbf{Z}$. We write $a(\xi):=\xi(a)$ for every $a \in S O(\mathbf{Z})$ and every $\xi \in \Delta$.

Application of limit operators

Discrete operators $\mathcal{A} \in \mathcal{W}$ are operators of multiplication by infinite band-dominated matrices $\left(a_{k-n}(n)\right)_{n, k \in \mathbf{Z}}$.

Lemma

Let $p \in[1, \infty)$ and let $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W} \subset \mathcal{B}\left(I^{p}\right)$, where $a_{k} \in S O(\mathbf{Z})$ for all $k \in \mathbf{Z}$. Then for every $\xi \in \Delta$ there exists a sequence $\left\{k_{n}\right\}_{n \in \mathbf{N}}$ of numbers $k_{n} \in \mathbf{N}$ such that $k_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and

$$
\operatorname{s-lim}_{n \rightarrow \infty}\left(V^{ \pm k_{n}} \mathcal{A} V^{\mp k_{n}}\right)=A_{\xi}:=\sum_{k \in \mathbf{Z}} a_{k}(\xi) V^{k} \in \mathcal{W} \text { if } s= \pm \infty
$$

Corollary

If $p \in[1, \infty)$ and $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W}$ is left invertible on I^{p}, then for every $\xi \in \Delta$ the operators $A_{\xi}=\sum_{k \in \mathbf{Z}} a_{k}(\xi) V^{k} \in \mathcal{W}$ possess the properties: $\operatorname{Ker} A_{\xi}=\{0\}, \operatorname{Im} A_{\xi}$ is a closed subspace of I^{p}, and A_{ξ} are invertible from I^{p} onto $\operatorname{Im} A_{\xi}$.

Limit Operators

Invertibility of limit operators

Corollary

If $p \in(1, \infty)$ and the operator $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W}$ is invertible on the space I^{p}, then for every $\xi \in \Delta$ the limit operators
$A_{\xi}=\sum_{k \in \mathbf{Z}} a_{k}(\xi) V^{k}$ are also invertible on Ip.

Lemma

The spectrum of the isometric operator V coincides with the unit circle $\mathbf{T}=\{z \in \mathbf{C}:|z|=1\}$.

Consider the unital commutative Banach algebra $\mathcal{W}_{\mathbf{C}}$ consisting of all operators $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W}$ with constant coefficients $a_{k} \in \mathbf{C}$ on I^{D}. The maximal ideal space of $\mathcal{W}_{\mathbf{C}}$ can be identified with \mathbf{T}, and the Gelfand transform of $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W}_{\mathbf{C}}$ is given by $A(z):=\sum_{k \in \mathbf{Z}} a_{k} z^{k}$ for all $z \in \mathbf{T}$, where $A(\cdot)$ belongs to the algebra W of absolutely convergent Fourier series on \mathbf{T}.

The Gelfand transform and the Cauchy index

Hence, for each $\xi \in \Delta$ the operator $A_{\xi}=\sum_{k \in \mathbf{Z}} a_{k}(\xi) V^{k} \in \mathcal{W}_{\mathbf{C}}$ is invertible on the space l^{p} with $p \in[1, \infty)$ if and only if

$$
A_{\xi}(z):=\sum_{k \in \mathbf{Z}} a_{k}(\xi) z^{k} \neq 0 \text { for all } z \in \mathbf{T} .
$$

Since this is true for all $\xi \in \Delta$, we infer, by the continuity of the function $\xi \mapsto A_{\xi}(\cdot) \in W$ on the connected Hausdorff compact $M_{s}(S O(\mathbf{Z}))$ for every $s \in\{ \pm \infty\}$, that the numbers

$$
\text { ind } A_{\xi}(\cdot):=\frac{1}{2 \pi}\left\{\arg A_{\xi}(z)\right\}_{z \in \mathbf{T}}
$$

do not depend on $\xi \in M_{s}(S O(\mathbf{Z})$) and can only depend on $s \in\{ \pm \infty\}$. Put

$$
N_{ \pm}:=\operatorname{ind} A_{\xi}(\cdot) \text { for all } \xi \in M_{ \pm \infty}(S O(\mathbf{Z})) .
$$

While all limit operators A_{ξ} are invertible for each invertible operator $\mathcal{A} \in \mathcal{W}$ by the last corollary, this fact for strictly one-sided invertible operators $\mathcal{A} \in \mathcal{W}$ we still need to prove.

Necessary Conditions

Necessary conditions at fixed points

Theorem

Let $p \in(1, \infty)$. If the discrete operator $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W}$ with coefficients $a_{k} \in S O(\mathbf{Z})$ is left or right invertible on the space I^{p}, then

$$
A_{\xi}(z)=\sum_{k \in \mathbf{Z}} a_{k}(\xi) z^{k} \neq 0 \text { for all } \xi \in \Delta \text { and all } z \in \mathbf{T}
$$

and the Cauchy indices ind $A_{\xi}(\cdot)$ coincide, respectively, for every $\xi \in M_{-\infty}(S O(\mathbf{Z}))$ and for every $\xi \in M_{+\infty}(S O(\mathbf{Z}))$.

Thus, for the one-sided invertible operators $\mathcal{A} \in \mathcal{W} \subset \mathcal{B}\left(I^{P}\right)$, we again can uniquely define the numbers $N_{ \pm}:=$ind $A_{\xi}(\cdot)$.
Let $\mathcal{A} \in \mathcal{W}$. Take in $\mathcal{B}\left(I^{P}\right)$ the projections $P_{n}^{ \pm}:=\operatorname{diag}\left\{P_{s, n}^{ \pm}\right\}_{s \in \mathbf{Z}}$, $P_{n-N_{-}, n+N_{+}}^{0}:=I-P_{n-N_{-}}^{-}-P_{n+N_{+}}^{+}, P_{n}^{0}:=I-P_{n}^{-}-P_{n}^{+}$, where

$$
P_{s, n}^{+}=\left\{\begin{array}{ll}
1 & \text { if } s \geq n, \\
0 & \text { if } s<n,
\end{array} \quad P_{s, n}^{-}= \begin{cases}1 & \text { if } s \leq-n \\
0 & \text { if } s>-n\end{cases}\right.
$$

Discrete Version

Invertibility of outermost blocks for discrete operators

Consider the operators $\mathcal{A}_{n}^{+}:=P_{n}^{+} \mathcal{A} P_{n+N_{+}}^{+}, \mathcal{A}_{n}^{-}:=P_{n}^{-} \mathcal{A} P_{n-N_{-}}^{-}$.

Theorem

If the discrete operator $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W}$ is left or right invertible on the space I^{p} with $p \in(1, \infty)$, then there exists a number $n_{0} \in \mathbf{N}$ such that for all $n \geq n_{0}$ the operators

$$
\mathcal{A}_{n}^{+}: P_{n+N_{+}}^{+} I^{p} \rightarrow P_{n}^{+} I^{p}, \quad \mathcal{A}_{n}^{-}: P_{n-N_{-}}^{-} I^{p} \rightarrow P_{n}^{-} I^{p}
$$

are invertible.
Let $\mathcal{W}^{ \pm}$denote the unital Banach subalgebras of \mathcal{W} given by

$$
\mathcal{W}^{ \pm}:=\left\{\sum_{k \in \mathbf{Z}_{+}} a_{k}^{ \pm} V^{ \pm k} \in \mathcal{W}: a_{k}^{ \pm} \in S O(\mathbf{Z})\right\}
$$

where $\mathbf{Z}_{+}:=\mathbf{N} \cup\{0\}$. Let $W^{ \pm}$be the unital Banach subalgebras of the algebra W of absolutely convergent Fourier series on T,

$$
W^{ \pm}:=\left\{f=\sum_{k \in \mathbf{Z}_{+}} a_{k}^{ \pm} z^{ \pm k} \in W: a_{k}^{ \pm} \in \mathbf{C}, z \in \mathbf{T}\right\}
$$

Invertibility of outermost blocks: a scheme of the proof

It suffices to prove the invertibility of the operator \mathcal{A}_{n}^{+}, assuming that $N_{+}=0$. Since $A_{\xi}(z) \neq 0$ for all $\xi \in M_{+\infty}(S O(\mathbf{Z}))$ and all $z \in \mathbf{T}$, and since ind $A_{\xi}(\cdot)=0$ for these ξ, we conclude that for every $\xi \in M_{+\infty}(S O(\mathbf{Z}))$ the function $z \mapsto A_{\xi}(z)$ admits a unique canonical factorization

$$
A_{\xi}(z)=A_{\xi}^{+}(z) A_{\xi}^{-}(z) \text { for all } z \in \mathbf{T},
$$

where $A_{\xi}^{ \pm}(\cdot),\left(A_{\xi}^{ \pm}(\cdot)\right)^{-1} \in W^{ \pm}$and $\int_{T} A_{\xi}^{+}(z)|d z|=2 \pi$.
Using the functions $\left(A_{\xi}^{ \pm}(\cdot)\right)^{-1} \in W^{ \pm}$for all $\xi \in M_{+\infty}(S O(\mathbf{Z}))$, it is possible to construct discrete operators

$$
\mathcal{C}^{ \pm}=\sum_{k \in \mathbf{Z}_{+}} c_{k}^{ \pm} V^{ \pm k} \in \mathcal{W}^{ \pm}
$$

such that the operators $P_{n}^{+} \mathcal{C}^{ \pm} P_{n}^{+}$are invertible in the Banach algebras $P_{n}^{+} \mathcal{W}^{ \pm} P_{n}^{+}$for all sufficiently large $n \in \mathbf{N}$, and the operator $P_{n}^{+}\left(\mathcal{C}^{+} \mathcal{A} \mathcal{C}^{-}\right) P_{n}^{+}$is close to the identity operator on the space $P_{n}^{+} I^{D}$, which leads to the invertibility of the operators \mathcal{A}_{n}^{+}.

One-sided invertibility of modified central block

Representing the operator $\mathcal{A} \in \mathcal{W}$ acting from the direct sum of spaces $P_{n-N_{-}}^{-}{ }^{\rho p}+P_{n-N_{-}, n+N_{+}}{ }^{\rho p}+P_{n+N_{+}}^{+}{ }^{I p}$ to the direct sum of spaces $\left.P_{n}^{-}\right|^{p}+P_{n}^{0} \mid \rho+P_{n}^{+\mid p}$ as the operator matrix

$$
\mathcal{A}:=\left[\begin{array}{lll}
P_{n}^{-} \mathcal{A} P_{n-N_{-}}^{-} & P_{n}^{-} \mathcal{A} P_{n-N_{-}, n+N_{+}}^{0} & P_{n}^{-} \mathcal{A} P_{n+N_{+}}^{+} \tag{2}\\
P_{n}^{0} \mathcal{A} P_{n-N_{-}^{-}}^{-} & P_{n}^{0} \mathcal{A} P_{n-N_{-}, n+N_{+}} & P_{n}^{0} \mathcal{A} P_{n+N_{+}^{+}}^{+} \\
P_{n}^{+} \mathcal{A} P_{n-N_{-}}^{-} & P_{n}^{+} \mathcal{A} P_{n-N_{-}, n+N_{+}}^{0} & P_{n}^{+} \mathcal{A} P_{n+N_{+}}^{+}
\end{array}\right],
$$

we infer that the operator

$$
\mathcal{D}_{n, \infty}:=\left[\begin{array}{ll}
P_{n}^{-} \mathcal{A} P_{n-N_{-}}^{-} & P_{n}^{-} \mathcal{A} P_{n+N_{+}}^{+} \tag{3}\\
P_{n}^{+} \mathcal{A} P_{n-N_{-}}^{-} & P_{n}^{+} \mathcal{A} P_{n+N_{+}}^{+}
\end{array}\right]
$$

acting from the space $P_{n-N_{-}}^{-}{ }^{1 p}+P_{n+N_{+}}^{+}{ }^{1 p}$ onto the space $\left.P_{n}^{-}\right|^{D}+P_{n}^{+} \mathbb{P}^{p}$, is invertible along with operators $P_{n}^{-} \mathcal{A} P_{n-N_{-}}^{-}$and $P_{n}^{+} \mathcal{A} P_{n+N_{+}}^{+}$. As (3) is invertible, the one-sided invertibility of (2) is equivalent to the one-sided invertibility of a modified central block.

Two-sided invertibility of Wiener type discrete operators

Theorem

The operator $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W}$ with coefficients $a_{k} \in S O(\mathbf{Z})$ is invertible on the space Ip with $p \in[1, \infty]$ if and only if
(i) $A_{\xi}(z):=\sum_{k \in \mathbf{Z}} a_{k}(\xi) z^{k} \neq 0$ for all $\xi \in \Delta$ and $z \in \mathbf{T}$;
(ii) $N_{-}=N_{+}$, where $N_{ \pm}:=$ind $\mathcal{A}_{\xi}(\cdot)$ for any $\xi \in M_{ \pm \infty}(S O(\mathbf{Z}))$;
(iii) there exists an $n_{0} \in \mathbf{N}$ such that det $\mathcal{D}_{n, 0} \neq 0$ for every $n>n_{0}$, where the $(2 n-1) \times(2 n-1)$ matrices $\mathcal{D}_{n, 0}$ are identified with the operator

$$
\left.\begin{array}{rl}
\mathcal{D}_{n, 0} & :=P_{n}^{0} \mathcal{A} P_{n-N_{-}, n+N_{+}}^{0}-\left[\begin{array}{ll}
P_{n}^{0} \mathcal{A} P_{n-N_{-}}^{-} & P_{n}^{0} \mathcal{A} P_{n+N_{+}}^{+}
\end{array}\right] \\
\times\left[\begin{array}{ll}
P_{n}^{-} \mathcal{A} P_{n-N_{-}^{-}}^{-} & P_{n}^{-} \mathcal{A} P_{n+N_{+}^{+}}^{+1} \\
P_{n}^{+} \mathcal{A} P_{n-N_{-}}^{-} & P_{n}^{+} \mathcal{A} P_{n+N_{+}}^{+}
\end{array}\right]^{P_{n}^{-} \mathcal{A} P_{n-N_{-}, n+N_{+}}^{0}} \\
P_{n}^{+} \mathcal{A} P_{n-N_{-}, n+N_{+}}^{0}
\end{array}\right] .
$$

acting from the space $P_{n-N_{-}, n+N_{+}}^{0}$ 作 to the space $P_{n}^{0 / p}$.

Strict one-sided invertibility of Wiener-type discrete operators

Criteria of the strict one-sided invertibility of the operators $\mathcal{A} \in \mathcal{W}$ on the spaces \mathbb{I}^{p} for $p \in(1, \infty)$ have the following form.

Theorem

The discrete operator $\mathcal{A}=\sum_{k \in \mathbf{Z}} a_{k} V^{k} \in \mathcal{W}$ with coefficients $a_{k} \in S O(\mathbf{Z})$ is strictly left (resp., strictly right) invertible on the space Ip with $p \in(1, \infty)$ if and only if
(i) $\boldsymbol{A}_{\xi}(z):=\sum_{k \in \mathbf{Z}} a_{k}(\xi) z^{k} \neq 0$ for every $\xi \in \Delta$ and every $z \in \mathbf{T}$;
(ii) $N_{-}>N_{+}\left(\right.$resp., $N_{-}<N_{+}$), where $N_{ \pm}=$ind $\mathcal{A}_{\xi}(\cdot)$ for any $\xi \in M_{ \pm \infty}(S O(\mathbf{Z}))$;
(iii) there exists an $n_{0} \in \mathbf{N}$ such that the rank of the $\left(2 n-1+N_{+}-N_{-}\right) \times(2 n-1)$ matrices $\mathcal{D}_{n, 0}$ for all $n \geq n_{0}$ equal $2 n-1+N_{+}-N_{-}$(resp., equal $2 n-1$).

Invertibility of binomial discrete operator: ${ }^{\infty}$ coefficients

Theorem

Let $p \in[1, \infty]$ and $a, b \in l^{\infty}$. The operator $\mathcal{A}:=a l-b V$ is invertible on the space I^{p} if and only if one of the following two alternative conditions holds:
(i) $\left.a \in \mathcal{G}\right|^{\infty}$ and $r(b / a)<1$,
(ii) $\left.b \in \mathcal{G}\right|^{\infty}$ and $r(a / b)<1$,
where $r(c):=\lim _{n \rightarrow \infty}\left(\sup _{k \in \mathbb{Z}}|c(k+1) c(k+2) \ldots c(k+n)|\right)^{1 / n}$ for $c \in l^{\infty}$. If \mathcal{A} is invertible, then its inverse is given by

$$
\begin{aligned}
& \mathcal{A}^{-1}=\sum_{n=0}^{\infty}((b / a) V)^{n} a^{-1} / \text { in case (i), } \\
& \mathcal{A}^{-1}=-V^{-1} \sum_{n=0}^{\infty}\left((a / b) V^{-1}\right)^{n} b^{-1} / \text { in case (ii). }
\end{aligned}
$$

For every $k \in \mathbf{Z}$, we introduce the functions $\chi_{k}^{ \pm} \in I^{\infty}$ by

$$
\chi_{k}^{+}(n)=\left\{\begin{array}{ll}
1 & \text { if } n>k, \tag{4}\\
0 & \text { if } n \leq k,
\end{array} \quad \chi_{k}^{-}(n)= \begin{cases}0 & \text { if } n>k, \\
1 & \text { if } n \leq k .\end{cases}\right.
$$

Strict left invertibility of binomial discrete operator

For every $k \in \mathbf{N}$, we also define the functions $\beta_{k}: \mathbf{Z} \rightarrow \mathbf{Z}$
$(k \in \mathbf{N})$ by

$$
\begin{equation*}
\beta_{k}(n)=n+k \text { for all } n \in \mathbf{Z} \tag{5}
\end{equation*}
$$

Theorem

The operator $\mathcal{A}=a l-b V$ is strictly left invertible on the space ${ }^{p}$ with $p \in[1, \infty]$ if and only if the following two conditions hold:
(i) there exists a number $k \in \mathbf{Z}$ such that $\inf _{n<k}|b(n)|>0$ and $\inf _{n>k}|a(n)|>0$;
(ii) $r\left(\chi_{k}^{-} \frac{a \circ \beta_{-1}}{b \circ \beta_{-1}}\right)<1$ and $r\left(\chi_{k}^{+} \frac{b}{a}\right)<1$,
where the functions $\chi_{k}^{ \pm} \in I^{\infty}$ and β_{k} are given by (4) and (5).
Under these conditions one of the left inverses have the form

$$
\mathcal{A}^{L}:=\chi_{k}^{+} \sum_{n=0}^{\infty}((b / a) V)^{n}(1 / a) I-\chi_{k}^{-} V^{-1} \sum_{n=0}^{\infty}\left((a / b) V^{-1}\right)^{n}(1 / b) /
$$

Strict right invertibility of binomial discrete operator

Theorem

The operator $\mathcal{A}=a l-b V$ is strictly right invertible on the space I^{p} with $p \in[1, \infty]$ if and only if the following two conditions hold:
(i) there exists a $k \in \mathbf{Z}$ such that $\inf _{n \leq k}|a(n)|>0$ and $\inf _{n>k}|b(n)|>0$;
(ii) $r\left(\chi_{k}^{-}\left(b \circ \beta_{-1}\right) / a\right)<1$ and $r\left(\chi_{k}^{+}\left(a \circ \beta_{1}\right) / b\right)<1$, where the functions $\chi_{k}^{ \pm} \in I^{\infty}$ and β_{k} are given by (4) and (5). Under these conditions one of the right inverses have the form

$$
\mathcal{A}^{R}:=\sum_{n=0}^{\infty}((b / a) V)^{n}\left(\chi_{k}^{-} / a\right) I-V^{-1} \sum_{n=0}^{\infty}\left((a / b) V^{-1}\right)^{n}\left(\chi_{k}^{+} / b\right) I
$$

Given $\mathbf{R}_{+}=(0, \infty)$, let α denote an orientation-preserving homeomorphism of $[0, \infty]$ onto itself, which has only two fixed points 0 and ∞, and its restriction to \mathbf{R}_{+}is a diffeomorphism. Let $\alpha_{0}(t):=t$ and $\alpha_{n}(t):=\alpha\left[\alpha_{n-1}(t)\right]$ for all $n \in \mathbf{Z}$ and $t \in \mathbf{R}_{+}$.

Slowly oscillating functions and shifts on \mathbf{R}_{+}

Let $C_{b}\left(\mathbf{R}_{+}\right)$denote the C^{*}-algebra of all bounded continuous functions on $\mathbf{R}_{+}:=(0,+\infty)$. Following [Sarason], a function $f \in C_{b}\left(\mathbf{R}_{+}\right)$is called slowly oscillating (at 0 and ∞) if for each (equivalently, for some) $\lambda \in(0,1)$,

$$
\lim _{r \rightarrow s} \sup \{|f(t)-f(\tau)|: t, \tau \in[\lambda r, r]\}=0, \quad s \in\{0, \infty\} .
$$

The set $S O\left(\mathbf{R}_{+}\right)$of all slowly oscillating (at 0 and ∞) functions in $C_{b}\left(\mathbf{R}_{+}\right)$is a unital commutative C^{*}-algebra.
A diffeomorphism $\alpha: \mathbf{R}_{+} \rightarrow \mathbf{R}_{+}$is called a slowly oscillating shift if $\log \alpha^{\prime} \in S O\left(\mathbf{R}_{+}\right)$. We associate with α the isometric shift operator $U_{\alpha} \in \mathcal{B}\left(L^{p}\left(\mathbf{R}_{+}\right)\right)$given by $U_{\alpha} f=\left|\alpha^{\prime}\right|^{1 / p}(f \circ \alpha)$.
Let \mathfrak{A}_{w} be the Banach algebra of Wiener's functional operators
$A=\sum_{k \in \mathbf{Z}} a_{k} U_{\alpha}^{k} \in \mathcal{B}\left(L^{p}\left(\mathbf{R}_{+}\right)\right)$with $\|A\|_{w}:=\sum_{k \in \mathbf{Z}}\left\|a_{k}\right\| C_{C_{b}\left(\mathbf{R}_{+}\right)}<\infty$,
where $a_{k} \in S O\left(\mathbf{R}_{+}\right)$for all $k \in \mathbf{Z}$ and α is a slowly oscillating shift on \mathbf{R}_{+}.

Reduction to the one-sided invertibility of discrete operators

If $p \in[1, \infty]$ and $A=\sum_{k \in \mathbf{Z}} a_{k} U_{\alpha}^{k} \in \mathfrak{A}_{w} \subset \mathcal{B}\left(L^{p}\left(\mathbf{R}_{+}\right)\right)$, then for every $t \in \mathbf{R}_{+}$, we define the discrete operator

$$
\mathcal{A}_{t}:=\sum_{k \in \mathbf{Z}} a_{k, t} v^{k} \in \mathcal{W} \subset \mathcal{B}\left(\left.\right|^{p}\right),
$$

where $a_{k, t}(n):=a_{k}\left[\alpha_{n}(t)\right]$ for all $k, n \in \mathbf{Z}$ and all $t \in \mathbf{R}_{+}$, the functions $a_{k, t}$ belong to $S O(\mathbf{Z})$, and

$$
\|A\|_{\mathcal{B}\left(L \mathcal{P}\left(\mathbf{R}_{+}\right)\right)}=\sup _{t \in \mathbf{R}_{+}}\left\|\mathcal{A}_{t}\right\|_{\mathcal{B}(P \mathcal{P})} \leq\|\boldsymbol{A}\|_{w} .
$$

Theorem

If $p \in[1, \infty]$, then the functional operator $A=\sum_{k \in \mathbf{Z}} a_{k} U_{\alpha}^{k} \in \mathfrak{A}_{w}$ is invertible on the space $L^{p}\left(\mathbf{R}_{+}\right)$if and only if for all $t \in \mathbf{R}_{+}$the discrete operators $\mathcal{A}_{t} \in \mathcal{W}$ are invertible on the space I^{p}. If $p \in(1, \infty)$, then the left (resp., right) invertibility of the operator A on the space $L^{p}\left(\mathbf{R}_{+}\right)$is equivalent to the left (resp., right) invertibility of the operators $\mathcal{A}_{t} \in \mathcal{W}$ on the space Ip for $t \in \mathbf{R}_{+}$.

