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To begin: a well-known relationship

Spectral Decompositions ! Functional calculus

Spectral Decompositions:

T =

∫
λdE(λ) or T =

∞∑
j=1

λjPj .

‘You can find a suitable family of projections
commuting with T from which you can reconstruct
the operator’.

Functional calculus:
‖f (T )‖ ≤ K ‖f‖A for all f ∈ some algebra A.
The bigger A is, the better the spectral
decomposition is.



Classical case

On a Hilbert space, if T is a normal operator then
(i) the map f 7→ f (T ) extends from polynomials to all

continuous functions on σ(T );
(ii) ‖f (T )‖ = ‖f‖∞ for f ∈ C(σ(T ));
(iii) C∗(T ) ∼= C(σ(T )).

(iv) T =

∫
σ(T )

λ E(dλ) (with E a spectral measure).

In particular, for normal operators T ,T ′,
if σ(T ) is homeomorphic to σ(T ′) then:

(i) C(σ(T )) ∼= C(σ(T ′));
(ii) hence C∗(T ) ∼= C∗(T ′).



Our problem

• Replace Hilbert space H by a (reflexive) Banach space X .
• Work with a smaller functional calculus/weaker spectral

decomposition.

Why?
Many important bases and decompositions of say L2(T) are
only conditional on Lp(T) (1 < p <∞) and are not associated
with spectral measures of the type that appear in the spectral
theorem for normal operators.

(eg Fourier series {eikt}k∈Z.)



Semi-classical case

Use the algebra A = AC[a,b] of absolutely continuous
functions on [a,b], with the norm

‖f‖AC[a,b] = |f (a)|+ var[a,b] f .

Then

‖f (T )‖ ≤ K ‖f‖AC[a,b] for all f ∈ AC[a,b]

⇐⇒ T =

∫
[a,b]

λdE(λ)

Here: {E(λ)}λ∈R a uniformly bounded increasing ‘spectral
family’ of projections.

Compact case: ⇐⇒ T =
∑∞

k=1 λkPk where the sum may be
only conditionally convergent.



Obvious Questions

1. Can you make sense of AC(σ) when σ = σ(T ) is any
compact subset of C?

2. If ‘Yes’, is there any sort of Banach–Stone Theorem?

The answer to (1) is complicated! Many versions of variation
norms exist for functions defined on the plane:
• Vitali–Lebesgue–Fréchet–de la Vallée Poussin
• Hardy–Krause
• Arzelà
• Hahn
• Tonelli
• Berkson–Gillespie

But none was really suitable for spectral theory.



Design parameters

Brenden Ashton’s thesis problem (2000):
Can you define Banach algebras AC(σ) ⊆ BV (σ) for arbitrary
compact σ ⊆ C in such a way that

1. it agrees with the usual definition if σ is an interval in R;
2. AC(σ) contains all sufficiently well-behaved functions;
3. if α, β ∈ C with α 6= 0, then the space AC(ασ + β) is

isometrically isomorphic to AC(σ). (and for BV )

(3) is because if we know the structure of T we also know the
structure of αT + βI.



Ashton’s BV (σ)
Fix a compact set σ ⊆ C = R2 and f : σ → C.
Suppose that S = [x0, x1, . . . , xn] is a finite list of elements of σ
(repeats allowed!).
Definition. The curve variation of f on the set S is

cvar(f ,S) =
n∑

i=1

|f (xi)− f (xi−1)|.

Let γS be the piecewise linear curve joining the points of S.

σ

x1

xn

The variation factor of S, vf(S), is (roughly) the greatest
number of times that γS crosses any line.



BV (σ)
Fix a compact set σ ⊆ C = R2 and f : σ → C.
Suppose that S = [x0, x1, . . . , xn] is a finite list of elements of σ
(repeats allowed!).
Definition. The curve variation of f on the set S is

cvar(f ,S) =
n∑

i=1

|f (xi)− f (xi−1)|.

Let γS be the piecewise linear curve joining the points of S.

σ

x1

xn

The variation factor of S, vf(S), is (roughly) the greatest
number of times that γS crosses any line.



BV (σ)

The two-dimensional variation of f : σ → C is

var(f , σ) = sup
S

cvar(f ,S)

vf(S)
,

where the supremum is taken over all finite ordered lists of
elements of σ.

The variation norm is

‖f‖BV = ‖f‖∞ + var(f , σ)

and the set of functions of bounded variation on σ is

BV (σ) = {f : σ → C : ‖f‖BV <∞}.

Theorem. BV (σ) is a Banach algebra.



AC(σ)

BV (σ) always contains P2, the set of polynomials in two
variables.

Definition. AC(σ) is the closure of P2 in BV (σ).

Theorem. If σ = [a,b] then BV (σ) and AC(σ) give the usual
algebras!

Suitably interpreted

C1(σ) ⊆ AC(σ) ⊆ C(σ).



AC(σ) operators

Definition. T ∈ B(X ) is an AC(σ) operator if T admits an
AC(σ) functional calculus.

Historically, the operators with an AC[a,b] functional calculus
were called well-bounded operators. Theorem.

1. T is well-bounded ⇐⇒ it is an AC(σ) operator with σ ⊆ R.
2. T is trigonometrically well-bounded

⇐⇒∗ it is an AC(σ) operator with σ ⊆ T.
3. If T is an AC(σ) operator, then T = A + iB where A and B

are commuting well-bounded operators
(but not conversely!).

∗T&C apply



Banach-Stone type theorems

BS: C(σ1) ' C(σ2) ⇐⇒ σ1 ∼ σ2. (⇐ easy;⇒ harder!)

Theorem (D-Leinert 2015)
Suppose that Φ : AC(σ1)→ AC(σ2) is an algebra isomorphism.
Then

1. ‖f‖∞ = ‖Φ(f )‖∞ for all f ∈ AC(σ1).
2. there exists a homeomorphism h : σ1 → σ2 such that

Φ(f ) = f ◦ h−1 for all f ∈ AC(σ1).
3. Φ is continuous.

Here the⇒ direction more or less comes from the BS Theorem.

The⇐ direction isn’t true!



A counterexample

Let D be the closed unit disk and Q = [0,1]× [0,1] be the
closed unit square.

Theorem (D-Leinert 2015)
AC(D) 6' AC(Q).



A positive result
Definition. A compact set σ is a polygonal region of genus n
if there exists a simple polygon P with n nonoverlapping
polygonal ‘windows’ W1, . . . ,Wn such that

σ = P \ (W1 ∪ · · · ∪Wn).

A polygonal region of genus 3.



A positive result
Theorem (D-Leinert)
Suppose that σ1 and σ2 are polygonal regions of genus n1 and
n2. Then
AC(σ1) is isomorphic to AC(σ2)

iff n1 = n2
iff σ1 is homeomorphic to σ2.

σ1 σ2

AC(σ1) ' AC(σ2).



The Proof: Locally piecewise affine maps

Let C be a convex n-gon in R2.
Suppose that v ,v ′ lie in the interior of C.

v
C

h

v ′
C

There is a homeomorphism h : R2 → R2 such that
(i) h is the identity outside C, and piecewise affine inside C;
(ii) h(v) = v ′, i = 1, . . . ,n;
(iii) ‘h preserves the AC isomorphism class’.



Chopping off ears!

An ear in a polygon P is a vertex so that the line joining the
neighbouring vertices lies entirely inside P.

v

P

Two Ears Theorem (Meisters). Every polygon with 4 or more
vertices has at least two ears.



Chopping off ears!

If you have an ear, such as v , you can always find a convex
quadrilateral C and a locally piecewise affine map h which
flattens out the ear, and hence reduces the number of sides.

v

P

C

j
v ′

h(P)

Eventually you reduce to a triangle.



Compact operators and countable sets

Trivially, if σ1 and σ2 are finite sets then AC(σ1) ' AC(σ2)
⇐⇒ σ1 and σ2 have the same number of elements.

For countably infinite sets, things are more complicated.

Definition. We shall say that a set σ ⊆ C is a C-set if it is a
countably infinite set with unique limit point zero.

All such sets are homeomorphic, but there they produce many
non-isomorphic AC(σ) spaces.



k -ray sets

Definition. We shall say that a C-set σ ⊆ C is a k -ray set if
there are k rays from the origin r1, . . . , rk such that
• σj = σ ∩ rj is infinite for j = 1, . . . , k and
• σ0 = σ \ (σ1 ∪ · · · ∪ σk ) is finite.

Theorem. Suppose that σ is a k -ray set and that τ is an `-ray
set. Then AC(σ) ' AC(τ) ⇐⇒ k = `.

Thus
• there are infinitely many non-isomorphic AC(σ) spaces

even among the C-sets,
• up to isomorphism there are precisely two AC(σ) spaces

for C-sets σ ⊆ R.



Some examples

σ2 = {0} ∪
{ 1

k + i
k2

}∞
k=1

σ1 = {0} ∪
{ 1

k

}∞
k=1

σ3 = {0} ∪
{ i

k

}∞
k=1

σ4 = {0} ∪
{−1

k

}∞
k=1

• AC(σn) ' AC(σm) for all n,m.
• AC(σ1) 6' AC(σ1 ∪ σ4).
• AC(σ1 ∪ {−1}) ' AC(σ1).
• AC(σ1 ∪ σ3) ' AC(σ1 ∪ σ4) 6' AC(σ1 ∪ σ3 ∪ σ4).
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