Isomorphisms of $AC(\sigma)$ spaces

Ian Doust

UNSW Sydney

Joint with Michael Leinert and Shaymaa Shawkat

August 2017

To begin: a well-known relationship

Spectral Decompositions ++++ Functional calculus

Spectral Decompositions:

$$T = \int \lambda \, dE(\lambda)$$
 or $T = \sum_{j=1}^{\infty} \lambda_j P_j$.

'You can find a suitable family of projections commuting with T from which you can reconstruct the operator'.

Functional calculus:

 $||f(T)|| \le K ||f||_{\mathcal{A}}$ for all $f \in$ some algebra \mathcal{A} . The bigger \mathcal{A} is, the better the spectral decomposition is.

Classical case

On a Hilbert space, if T is a normal operator then

(i) the map $f \mapsto f(T)$ extends from polynomials to all continuous functions on $\sigma(T)$;

(ii)
$$||f(T)|| = ||f||_{\infty}$$
 for $f \in C(\sigma(T))$;

(iii)
$$C^*(T) \cong C(\sigma(T)).$$

(iv)
$$T = \int_{\sigma(T)} \lambda \mathcal{E}(d\lambda)$$
 (with \mathcal{E} a spectral measure).

In particular, for normal operators T, T', if $\sigma(T)$ is homeomorphic to $\sigma(T')$ then:

(i)
$$C(\sigma(T)) \cong C(\sigma(T'));$$

(ii) hence $C^*(T) \cong C^*(T')$.

- Replace Hilbert space *H* by a (reflexive) Banach space *X*.
- Work with a smaller functional calculus/weaker spectral decomposition.

Why?

Many important bases and decompositions of say $L^2(\mathbb{T})$ are only conditional on $L^p(\mathbb{T})$ (1) and are not associatedwith spectral measures of the type that appear in the spectraltheorem for normal operators.

(eg Fourier series $\{e^{ikt}\}_{k\in\mathbb{Z}}$.)

Semi-classical case

Use the algebra $\mathcal{A} = AC[a, b]$ of absolutely continuous functions on [a, b], with the norm

$$||f||_{AC[a,b]} = |f(a)| + \operatorname{var}_{[a,b]} f.$$

Then

$$\|f(T)\| \le K \|f\|_{AC[a,b]}$$
 for all $f \in AC[a,b]$
 $\iff T = \int_{[a,b]} \lambda \, dE(\lambda)$

Here: $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ a uniformly bounded increasing 'spectral family' of projections.

Compact case: $\iff T = \sum_{k=1}^{\infty} \lambda_k P_k$ where the sum may be only conditionally convergent.

Obvious Questions

- 1. Can you make sense of $AC(\sigma)$ when $\sigma = \sigma(T)$ is any compact subset of \mathbb{C} ?
- 2. If 'Yes', is there any sort of Banach–Stone Theorem?

The answer to (1) is complicated! Many versions of variation norms exist for functions defined on the plane:

- Vitali–Lebesgue–Fréchet–de la Vallée Poussin
- Hardy-Krause
- Arzelà
- Hahn
- Tonelli
- Berkson–Gillespie

But none was really suitable for spectral theory.

Design parameters

Brenden Ashton's thesis problem (2000):

Can you define Banach algebras $AC(\sigma) \subseteq BV(\sigma)$ for arbitrary compact $\sigma \subseteq \mathbb{C}$ in such a way that

- 1. it agrees with the usual definition if σ is an interval in \mathbb{R} ;
- 2. $AC(\sigma)$ contains all sufficiently well-behaved functions;
- 3. if $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq 0$, then the space $AC(\alpha \sigma + \beta)$ is isometrically isomorphic to $AC(\sigma)$. (and for BV)

(3) is because if we know the structure of T we also know the structure of $\alpha T + \beta I$.

Ashton's $BV(\sigma)$

Fix a compact set $\sigma \subseteq \mathbb{C} = \mathbb{R}^2$ and $f : \sigma \to \mathbb{C}$. Suppose that $S = [x_0, x_1, \dots, x_n]$ is a finite list of elements of σ (repeats allowed!).

Definition. The curve variation of f on the set S is

$$\operatorname{cvar}(f, S) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|.$$

Let γ_{S} be the piecewise linear curve joining the points of *S*.

The *variation factor* of *S*, vf(*S*), is (roughly) the greatest number of times that γ_S crosses any line.

$BV(\sigma)$

Fix a compact set $\sigma \subseteq \mathbb{C} = \mathbb{R}^2$ and $f : \sigma \to \mathbb{C}$. Suppose that $S = [x_0, x_1, \dots, x_n]$ is a finite list of elements of σ

(repeats allowed!).

Definition. The curve variation of f on the set S is

$$\operatorname{cvar}(f, S) = \sum_{i=1}^{n} |f(x_i) - f(x_{i-1})|.$$

Let γ_{S} be the piecewise linear curve joining the points of *S*.

The *variation factor* of *S*, vf(*S*), is (roughly) the greatest number of times that γ_S crosses any line.

$BV(\sigma)$

The *two-dimensional variation* of $f : \sigma \to \mathbb{C}$ is

$$\operatorname{var}(f,\sigma) = \sup_{S} \frac{\operatorname{cvar}(f,S)}{\operatorname{vf}(S)},$$

where the supremum is taken over all finite ordered lists of elements of $\boldsymbol{\sigma}.$

The variation norm is

$$\|f\|_{BV} = \|f\|_{\infty} + \operatorname{var}(f, \sigma)$$

and the set of functions of bounded variation on σ is

$$\mathsf{BV}(\sigma) = \{f : \sigma \to \mathbb{C} : \|f\|_{\mathsf{BV}} < \infty\}.$$

Theorem. $BV(\sigma)$ is a Banach algebra.

 $AC(\sigma)$

 $BV(\sigma)$ always contains \mathcal{P}_2 , the set of polynomials in two variables.

Definition. $AC(\sigma)$ is the closure of \mathcal{P}_2 in $BV(\sigma)$.

Theorem. If $\sigma = [a, b]$ then $BV(\sigma)$ and $AC(\sigma)$ give the usual algebras!

Suitably interpreted

$$C^{1}(\sigma) \subseteq AC(\sigma) \subseteq C(\sigma).$$

$AC(\sigma)$ operators

Definition. $T \in B(X)$ is an $AC(\sigma)$ operator if T admits an $AC(\sigma)$ functional calculus.

Historically, the operators with an AC[a, b] functional calculus were called well-bounded operators. **Theorem.**

- 1. *T* is well-bounded \iff it is an $AC(\sigma)$ operator with $\sigma \subseteq \mathbb{R}$.
- 2. *T* is trigonometrically well-bounded \iff^* it is an $AC(\sigma)$ operator with $\sigma \subseteq \mathbb{T}$.
- If *T* is an AC(σ) operator, then T = A + iB where A and B are commuting well-bounded operators (but not conversely!).

Banach-Stone type theorems

BS:
$$C(\sigma_1) \simeq C(\sigma_2) \iff \sigma_1 \sim \sigma_2$$
. (\Leftarrow easy; \Rightarrow harder!)

Theorem (D-Leinert 2015)

Suppose that $\Phi : AC(\sigma_1) \to AC(\sigma_2)$ is an algebra isomorphism. Then

1.
$$\|f\|_{\infty} = \|\Phi(f)\|_{\infty}$$
 for all $f \in AC(\sigma_1)$.

- 2. there exists a homeomorphism $h : \sigma_1 \to \sigma_2$ such that $\Phi(f) = f \circ h^{-1}$ for all $f \in AC(\sigma_1)$.
- 3. Φ is continuous.

Here the \Rightarrow direction more or less comes from the BS Theorem. The \Leftarrow direction isn't true!

A counterexample

Let *D* be the closed unit disk and $Q = [0, 1] \times [0, 1]$ be the closed unit square.

Theorem (D-Leinert 2015) $AC(D) \not\simeq AC(Q).$

A positive result

Definition. A compact set σ is a **polygonal region of genus** *n* if there exists a simple polygon *P* with *n* nonoverlapping polygonal 'windows' W_1, \ldots, W_n such that

$$\sigma = \boldsymbol{P} \setminus (\boldsymbol{W}_1 \cup \cdots \cup \boldsymbol{W}_n).$$

A positive result

Theorem (D-Leinert)

Suppose that σ_1 and σ_2 are polygonal regions of genus n_1 and n_2 . Then $AC(\sigma_1)$ is isomorphic to $AC(\sigma_2)$ iff $n_1 = n_2$ iff $n_1 = n_2$

iff σ_1 is homeomorphic to σ_2 .

 $AC(\sigma_1) \simeq AC(\sigma_2).$

The Proof: Locally piecewise affine maps

Let *C* be a convex *n*-gon in \mathbb{R}^2 . Suppose that \mathbf{v}, \mathbf{v}' lie in the interior of *C*.

There is a homeomorphism $h : \mathbb{R}^2 \to \mathbb{R}^2$ such that

(i) *h* is the identity outside *C*, and piecewise affine inside *C*;
(ii) *h*(**v**) = **v**', *i* = 1,..., *n*;

(iii) 'h preserves the AC isomorphism class'.

Chopping off ears!

An ear in a polygon *P* is a vertex so that the line joining the neighbouring vertices lies entirely inside *P*.

Two Ears Theorem (Meisters). Every polygon with 4 or more vertices has at least two ears.

Chopping off ears!

If you have an ear, such as v, you can always find a convex quadrilateral *C* and a locally piecewise affine map *h* which flattens out the ear, and hence reduces the number of sides.

Eventually you reduce to a triangle.

Compact operators and countable sets

Trivially, if σ_1 and σ_2 are finite sets then $AC(\sigma_1) \simeq AC(\sigma_2)$ $\iff \sigma_1$ and σ_2 have the same number of elements.

For countably infinite sets, things are more complicated.

Definition. We shall say that a set $\sigma \subseteq \mathbb{C}$ is a *C*-set if it is a countably infinite set with unique limit point zero.

All such sets are homeomorphic, but there they produce many non-isomorphic $AC(\sigma)$ spaces.

k-ray sets

Definition. We shall say that a *C*-set $\sigma \subseteq \mathbb{C}$ is a *k*-ray set if there are *k* rays from the origin r_1, \ldots, r_k such that

- $\sigma_j = \sigma \cap r_j$ is infinite for $j = 1, \ldots, k$ and
- $\sigma_0 = \sigma \setminus (\sigma_1 \cup \cdots \cup \sigma_k)$ is finite.

Theorem. Suppose that σ is a *k*-ray set and that τ is an ℓ -ray set. Then $AC(\sigma) \simeq AC(\tau) \iff k = \ell$.

Thus

- there are infinitely many non-isomorphic AC(σ) spaces even among the C-sets,
- up to isomorphism there are precisely two AC(σ) spaces for C-sets σ ⊆ ℝ.

Some examples

- $AC(\sigma_n) \simeq AC(\sigma_m)$ for all n, m.
- $AC(\sigma_1) \not\simeq AC(\sigma_1 \cup \sigma_4).$
- $AC(\sigma_1 \cup \{-1\}) \simeq AC(\sigma_1).$
- $AC(\sigma_1 \cup \sigma_3) \simeq AC(\sigma_1 \cup \sigma_4) \not\simeq AC(\sigma_1 \cup \sigma_3 \cup \sigma_4).$

References

- B. Ashton and I. Doust, Functions of bounded variation on compact subsets of the plane, Studia Math. 169 (2005), 163–188.
- B. Ashton and I. Doust, A comparison of algebras of functions of bounded variation, Proc. Edinb. Math. Soc. (2)
 49 (2006), 575–591.
- B. Ashton and I. Doust, $AC(\sigma)$ operators, J. Operator Theory **65** (2011), 255–279.
- I. Doust and M. Leinert, *Approximation in AC*(σ), arXiv:1312.1806v1, 2013.
- I. Doust and M. Leinert, *Isomorphisms of AC*(σ) *spaces*, *Studia Math.* **228** (2015), 7–31.