Isomorphisms of $A C(\sigma)$ spaces

Ian Doust
UNSW Sydney
Joint with Michael Leinert and Shaymaa Shawkat

August 2017

To begin: a well-known relationship

Spectral Decompositions $\rightsquigarrow \rightsquigarrow$ Functional calculus

Spectral Decompositions:

$$
T=\int \lambda d E(\lambda) \text { or } T=\sum_{j=1}^{\infty} \lambda_{j} P_{j}
$$

'You can find a suitable family of projections commuting with T from which you can reconstruct the operator'.

Functional calculus:
$\|f(T)\| \leq K\|f\|_{\mathcal{A}}$ for all $f \in$ some algebra \mathcal{A}.
The bigger \mathcal{A} is, the better the spectral decomposition is.

Classical case

On a Hilbert space, if T is a normal operator then
(i) the map $f \mapsto f(T)$ extends from polynomials to all continuous functions on $\sigma(T)$;
(ii) $\|f(T)\|=\|f\|_{\infty}$ for $f \in C(\sigma(T))$;
(iii) $C^{*}(T) \cong C(\sigma(T))$.
(iv) $T=\int_{\sigma(T)} \lambda \mathcal{E}(d \lambda) \quad$ (with \mathcal{E} a spectral measure).

In particular, for normal operators T, T^{\prime}, if $\sigma(T)$ is homeomorphic to $\sigma\left(T^{\prime}\right)$ then:
(i) $C(\sigma(T)) \cong C\left(\sigma\left(T^{\prime}\right)\right)$;
(ii) hence $C^{*}(T) \cong C^{*}\left(T^{\prime}\right)$.

Our problem

- Replace Hilbert space H by a (reflexive) Banach space X.
- Work with a smaller functional calculus/weaker spectral decomposition.

Why?
Many important bases and decompositions of say $L^{2}(\mathbb{T})$ are only conditional on $L^{p}(\mathbb{T})(1<p<\infty)$ and are not associated with spectral measures of the type that appear in the spectral theorem for normal operators.
(eg Fourier series $\left\{e^{i k t}\right\}_{k \in \mathbb{Z}}$.)

Semi-classical case

Use the algebra $\mathcal{A}=A C[a, b]$ of absolutely continuous functions on $[a, b]$, with the norm

$$
\|f\|_{A C[a, b]}=|f(a)|+\operatorname{var}_{[a, b]} f
$$

Then

$$
\begin{aligned}
\|f(T)\| & \leq K\|f\|_{A C[a, b]} \text { for all } f \in A C[a, b] \\
& \Longleftrightarrow T=\int_{[a, b]} \lambda d E(\lambda)
\end{aligned}
$$

Here: $\{E(\lambda)\}_{\lambda \in \mathbb{R}}$ a uniformly bounded increasing 'spectral family' of projections.
Compact case: $\Longleftrightarrow T=\sum_{k=1}^{\infty} \lambda_{k} P_{k}$ where the sum may be only conditionally convergent.

Obvious Questions

1. Can you make sense of $A C(\sigma)$ when $\sigma=\sigma(T)$ is any compact subset of \mathbb{C} ?
2. If 'Yes', is there any sort of Banach-Stone Theorem?

The answer to (1) is complicated! Many versions of variation norms exist for functions defined on the plane:

- Vitali-Lebesgue-Fréchet-de la Vallée Poussin
- Hardy-Krause
- Arzelà
- Hahn
- Tonelli
- Berkson-Gillespie

But none was really suitable for spectral theory.

Design parameters

Brenden Ashton's thesis problem (2000):
Can you define Banach algebras $A C(\sigma) \subseteq B V(\sigma)$ for arbitrary compact $\sigma \subseteq \mathbb{C}$ in such a way that

1. it agrees with the usual definition if σ is an interval in \mathbb{R};
2. $A C(\sigma)$ contains all sufficiently well-behaved functions;
3. if $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq 0$, then the space $A C(\alpha \sigma+\beta)$ is isometrically isomorphic to $A C(\sigma)$. (and for $B V$)
(3) is because if we know the structure of T we also know the structure of $\alpha T+\beta l$.

Ashton's $B V(\sigma)$

Fix a compact set $\sigma \subseteq \mathbb{C}=\mathbb{R}^{2}$ and $f: \sigma \rightarrow \mathbb{C}$.
Suppose that $S=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is a finite list of elements of σ (repeats allowed!).
Definition. The curve variation of f on the set S is

$$
\operatorname{cvar}(f, S)=\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

Let γ_{S} be the piecewise linear curve joining the points of S.

The variation factor of $S, \operatorname{vf}(S)$, is (roughly) the greatest number of times that γ_{S} crosses any line.

$B V(\sigma)$

Fix a compact set $\sigma \subseteq \mathbb{C}=\mathbb{R}^{2}$ and $f: \sigma \rightarrow \mathbb{C}$.
Suppose that $S=\left[x_{0}, x_{1}, \ldots, x_{n}\right]$ is a finite list of elements of σ (repeats allowed!).
Definition. The curve variation of f on the set S is

$$
\operatorname{cvar}(f, S)=\sum_{i=1}^{n}\left|f\left(x_{i}\right)-f\left(x_{i-1}\right)\right|
$$

Let γ_{S} be the piecewise linear curve joining the points of S.

The variation factor of $S, \mathrm{vf}(S)$, is (roughly) the greatest number of times that γ_{S} crosses any line.

$B V(\sigma)$

The two-dimensional variation of $f: \sigma \rightarrow \mathbb{C}$ is

$$
\operatorname{var}(f, \sigma)=\sup _{S} \frac{\operatorname{cvar}(f, S)}{\operatorname{vf}(S)}
$$

where the supremum is taken over all finite ordered lists of elements of σ.

The variation norm is

$$
\|f\|_{B V}=\|f\|_{\infty}+\operatorname{var}(f, \sigma)
$$

and the set of functions of bounded variation on σ is

$$
B V(\sigma)=\left\{f: \sigma \rightarrow \mathbb{C}:\|f\|_{B V}<\infty\right\}
$$

Theorem. $B V(\sigma)$ is a Banach algebra.

$A C(\sigma)$

$B V(\sigma)$ always contains \mathcal{P}_{2}, the set of polynomials in two variables.
Definition. $A C(\sigma)$ is the closure of \mathcal{P}_{2} in $B V(\sigma)$.
Theorem. If $\sigma=[a, b]$ then $B V(\sigma)$ and $A C(\sigma)$ give the usual algebras!
Suitably interpreted

$$
C^{1}(\sigma) \subseteq A C(\sigma) \subseteq C(\sigma) .
$$

$A C(\sigma)$ operators

Definition. $T \in B(X)$ is an $A C(\sigma)$ operator if T admits an $A C(\sigma)$ functional calculus.

Historically, the operators with an $A C[a, b]$ functional calculus were called well-bounded operators. Theorem.

1. T is well-bounded \Longleftrightarrow it is an $A C(\sigma)$ operator with $\sigma \subseteq \mathbb{R}$.
2. T is trigonometrically well-bounded
$\Longleftrightarrow *$ it is an $A C(\sigma)$ operator with $\sigma \subseteq \mathbb{T}$.
3. If T is an $A C(\sigma)$ operator, then $T=A+i B$ where A and B are commuting well-bounded operators (but not conversely!).

Banach-Stone type theorems

BS: $C\left(\sigma_{1}\right) \simeq C\left(\sigma_{2}\right) \Longleftrightarrow \sigma_{1} \sim \sigma_{2} .(\Leftarrow$ easy; \Rightarrow harder! $)$
Theorem (D-Leinert 2015)
Suppose that $\Phi: A C\left(\sigma_{1}\right) \rightarrow \boldsymbol{A C}\left(\sigma_{2}\right)$ is an algebra isomorphism. Then

1. $\|f\|_{\infty}=\|\Phi(f)\|_{\infty}$ for all $f \in A C\left(\sigma_{1}\right)$.
2. there exists a homeomorphism $h: \sigma_{1} \rightarrow \sigma_{2}$ such that $\Phi(f)=f \circ h^{-1}$ for all $f \in A C\left(\sigma_{1}\right)$.
3. Φ is continuous.

Here the \Rightarrow direction more or less comes from the BS Theorem.
The \Leftarrow direction isn't true!

A counterexample

Let D be the closed unit disk and $Q=[0,1] \times[0,1]$ be the closed unit square.
Theorem (D-Leinert 2015)
$A C(D) \not 千 A C(Q)$.

A positive result

Definition. A compact set σ is a polygonal region of genus n if there exists a simple polygon P with n nonoverlapping polygonal 'windows' W_{1}, \ldots, W_{n} such that

$$
\sigma=P \backslash\left(W_{1} \cup \cdots \cup W_{n}\right)
$$

A polygonal region of genus 3 .

A positive result

Theorem (D-Leinert)

Suppose that σ_{1} and σ_{2} are polygonal regions of genus n_{1} and n_{2}. Then
$A C\left(\sigma_{1}\right)$ is isomorphic to $A C\left(\sigma_{2}\right)$
iff $n_{1}=n_{2}$
iff σ_{1} is homeomorphic to σ_{2}.

$A C\left(\sigma_{1}\right) \simeq A C\left(\sigma_{2}\right)$.

The Proof: Locally piecewise affine maps

Let C be a convex n-gon in \mathbb{R}^{2}.
Suppose that $\boldsymbol{v}, \boldsymbol{v}^{\prime}$ lie in the interior of C.

There is a homeomorphism $h: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that
(i) h is the identity outside C, and piecewise affine inside C;
(ii) $h(\boldsymbol{v})=\boldsymbol{v}^{\prime}, \quad i=1, \ldots, n$;
(iii) ' h preserves the $A C$ isomorphism class'.

Chopping off ears!

An ear in a polygon P is a vertex so that the line joining the neighbouring vertices lies entirely inside P.

Two Ears Theorem (Meisters). Every polygon with 4 or more vertices has at least two ears.

Chopping off ears!

If you have an ear, such as \boldsymbol{v}, you can always find a convex quadrilateral C and a locally piecewise affine map h which flattens out the ear, and hence reduces the number of sides.

Eventually you reduce to a triangle.

Compact operators and countable sets

Trivially, if σ_{1} and σ_{2} are finite sets then $A C\left(\sigma_{1}\right) \simeq A C\left(\sigma_{2}\right)$ $\Longleftrightarrow \sigma_{1}$ and σ_{2} have the same number of elements.

For countably infinite sets, things are more complicated.
Definition. We shall say that a set $\sigma \subseteq \mathbb{C}$ is a C-set if it is a countably infinite set with unique limit point zero.

All such sets are homeomorphic, but there they produce many non-isomorphic $A C(\sigma)$ spaces.

k-ray sets

Definition. We shall say that a C-set $\sigma \subseteq \mathbb{C}$ is a k-ray set if there are k rays from the origin r_{1}, \ldots, r_{k} such that

- $\sigma_{j}=\sigma \cap r_{j}$ is infinite for $j=1, \ldots, k$ and
- $\sigma_{0}=\sigma \backslash\left(\sigma_{1} \cup \cdots \cup \sigma_{k}\right)$ is finite.

Theorem. Suppose that σ is a k-ray set and that τ is an ℓ-ray set. Then $A C(\sigma) \simeq A C(\tau) \Longleftrightarrow k=\ell$.

Thus

- there are infinitely many non-isomorphic $A C(\sigma)$ spaces even among the C-sets,
- up to isomorphism there are precisely two $A C(\sigma)$ spaces for C-sets $\sigma \subseteq \mathbb{R}$.

Some examples

- $A C\left(\sigma_{n}\right) \simeq A C\left(\sigma_{m}\right)$ for all n, m.
- $A C\left(\sigma_{1}\right) \not 千 A C\left(\sigma_{1} \cup \sigma_{4}\right)$.
- $A C\left(\sigma_{1} \cup\{-1\}\right) \simeq A C\left(\sigma_{1}\right)$.
- $\boldsymbol{A C}\left(\sigma_{1} \cup \sigma_{3}\right) \simeq \operatorname{AC}\left(\sigma_{1} \cup \sigma_{4}\right) \not 千 \boldsymbol{A C}\left(\sigma_{1} \cup \sigma_{3} \cup \sigma_{4}\right)$.

References

- B. Ashton and I. Doust, Functions of bounded variation on compact subsets of the plane, Studia Math. 169 (2005), 163-188.
E. B. Ashton and I. Doust, A comparison of algebras of functions of bounded variation, Proc. Edinb. Math. Soc. (2) 49 (2006), 575-591.
B. Ashton and I. Doust, $A C(\sigma)$ operators, J. Operator Theory 65 (2011), 255-279.
埥 I. Doust and M. Leinert, Approximation in $A C(\sigma)$, arXiv:1312.1806v1, 2013.
R. I. Doust and M. Leinert, Isomorphisms of $A C(\sigma)$ spaces, Studia Math. 228 (2015), 7-31.

