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Overview of Left-Definite Theory

� A general framework for Left-Definite Theory was developed
by Littlejohn and Wellman in their 2002 paper.

� The theory requires a self-adjoint operator which is bounded
below by some positive constant.

� It allows for the construction of a continuum of operators,
defined on subsets of the original Hilbert space.

� These operators can be thought of as simply composing the
original operator with itself, and restricting the Hilbert space.
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Definition

Suppose A is a self-adjoint operator in the Hilbert space
H = (V, 〈·, ·〉) that is bounded below by kI, where k > 0. Let
r > 0. Define Hr = (Vr, 〈·, ·〉r) with

Vr = D(Ar/2)

and
〈x, y〉r = 〈Ar/2x,Ar/2y〉 for (x, y ∈ Vr).

Then Hr is the rth left-definite space associated with the pair
(H,A).
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Notable Facts from Left-Definite Theory

� The theory is trivial for bounded operators.

� For unbounded operators, the left-definite spaces are nested in
one another; i.e.

H ⊃ H1 ⊃ H2 ⊃ H3 . . .

Theorem (Littlejohn, Wellman ’02)

If {ϕn}∞n=0 is a complete orthogonal set of eigenfunctions of A in
H, then for each r > 0, {ϕn}∞n=0 is a complete set of orthogonal
eigenfunctions of the rth left-definite operator Ar in the rth
left-definite space Hr.
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The Problem

The description of these left-definite spaces is regrettably very
complicated. For instance, for the Laguerre differential operator
with α > −1, j ∈ N0, let L2

α+j(0,∞) be the Hilbert space defined
by

L2
α+n(0,∞) :=

{
f : (0,∞)→ C |

∫ ∞
0
|f |2tα+ne−tdt <∞

}
.

Then, the nth left-definite space is defined as

Vn :=
{
f : (0,∞)→ C| f ∈ AC(n−1)

loc (0,∞); f (n) ∈ L2
α+n(0,∞)

}
.
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Main Goal

Question: In what ways can we describe these left-definite spaces
as boundary conditions imposed on the original Hilbert space,
rather than in terms of integrability conditions?
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Motivation

A simple analog of this problem is seen in Sobolev spaces:

W 1,2(Ω) = H1(Ω) =
{
u ∈ L2(Ω) : Dα(u) ∈ L2(Ω) ∀|α| < 1

}
has the important subspace

H1
0 (a, b) =

{
f ∈ C[a, b] : f ′ ∈ L2(a, b), f(a) = f(b) = 0

}
.

Our goal is to similarly describe the left-definite domains in terms
of boundary conditions.

Matthew Fleeman, Dale Frymark*, and Constanze Liaw Left-Definite Boundary Conditions



Overview of Extension Theory

� Let ` be a symmetric (differential) operator on a Hilbert space
H. We’ll assume that ` can be defined on some maximum
subspace of H called the maximal domain, D.

� The spaces
D+ = {f ∈ D | `∗f = if}

D− = {f ∈ D | `∗f = −if}

are called the defect spaces. The deficiency indices of ` are
(dim(D+),dim(D−)).
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Notable Facts from Extension Theory

� We define a sesquilinear form on the maximal domain by

[f, g]
∣∣b
a

:=

∫ b

a
`[f(x)]g(x)dx−

∫ b

a
`[g(x)]f(x)dx.

� The minimal domain is

D0 := {f ∈ D | [f, g]|ba = 0 ∀g ∈ D}

Theorem (Naimark)

The limits [f, g](b) := limx→b− [f, g](x) and
[f, g](a) := limx→a+ [f, g](x) both exist and are finite for all
f, g ∈ D(`).
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Notable Facts from Extension Theory

� The minimal and maximal operators are adjoints of one
another.

Theorem (von Neumann)

Let D and D0 be the maximal and minimal domains associated
with the differential operator T respectively.

D = D0 uD+ uD−
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Linear Independence Modulo a Vector Space

Definition

Let X1 and X2 be subspaces of a vector space X such that
X1 ⊂ X2. Let {x1, x2, . . . , xn} ⊆ X2. We say that
{x1, x2, . . . , xn} is linearly independent modulo X1 if

n∑
i=1

αixi ∈ X1 implies αi = 0, i = 1, 2, . . . n.
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Glazman–Krein–Naimark Theory

Theorem (GKN)

The domain of definition DL of an arbitrary self-adjoint extension
L of the operator L0 with the deficiency indices (m,m) consists of
the set of all functions y(x) ∈ D which satisfy the conditions

[y, wk]
∣∣b
a

= 0, k = 1, 2, . . . ,m (1)

where w1, . . . , wm are certain functions belonging to D and
determined by L which are linearly independent modulo D0 and for
which the relations

[wj , wk]
∣∣b
a

= 0, j, k = 1, 2, . . . ,m (2)

hold.
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More Intuition

� Self-adjoint extensions of the minimal operator with deficiency
indices (m,m) can be put into one-to-one correspondence
with the unitary m×m matrices.

� These unitary matrices act via u = [ujk] : D+ → D−.

� This defines a self-adjoint extension that includes all functions
of the type

y(x) = y0(x) +

m∑
k=1

ukjϕk(x), µ = 1, . . . ,m,

where y0(x) ∈ D0, and ϕk is a basis vector of D−.
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History

� Left-definite theory has been used to analyze a wide range of
classical differential operators, including Hermite, Laguerre,
Legendre, Fourier, etc.

� GKN boundary conditions for the case n = 1 are available for
several of these, including Legendre.

� The square of the Legendre operator was recently studied and
published by Littlejohn and Wicks.

� Cases involving higher values of n are unknown for any
classical differential operator.
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The Legendre Differential Operator

� Consider the Legendre differential operator on the Hilbert
space L2(−1, 1), given by

`[y](x) = −((1− x2)y′(x))′,

which possesses the Legendre polynomials Pm(x), m ∈ N0, as
eigenfunctions.

� The polynomial Pm is a solution of the eigenvalue equation

`[y](x) = m(m+ 1)y(x).

� Let n = 3. The deficiency indices of `3[·] are (3, 3).
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Linear Independence Modulo D0

� To show that the set w1, w2, . . . , w6 is linearly independent
modulo the minimal domain D0, suppose that

6∑
k=1

αkwk ∈ D0.

� By definition, y ∈ D0 if and only if [y, w]3|1−1 = 0 for all
w ∈ D. Hence

6∑
k=1

αk[wi, wk]3|1−1 = 0 for i = 1, . . . , 6.

The goal is to show that the only way this can happen is if
αk = 0, k = 1, . . . , 6.
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Glazman–Krein–Naimark Theory

Theorem (GKN)

The domain of definition DL of an arbitrary self-adjoint extension
L of the operator L0 with the deficiency indices (m,m) consists of
the set of all functions y(x) ∈ D which satisfy the conditions

[y, wk]
∣∣b
a

= 0, k = 1, 2, . . . ,m (3)

where w1, . . . , wm are certain functions belonging to D and
determined by L which are linearly independent modulo D0 and for
which the relations

[wj , wk]
∣∣b
a

= 0, j, k = 1, 2, . . . ,m (4)

hold.
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The problem of showing that αk = 0, k = 1, . . . , 6, is then
equivalent to showing the following matrix, M3, has full rank.



[w1, w1]3 [w1, w2]3 [w1, w3]3
[w2, w1]3 [w2, w2]3 [w2, w3]3
[w3, w1]3 [w3, w2]3 [w3, w3]3

[w1, w4]3 [w1, w5]3 [w1, w6]3
[w2, w4]3 [w2, w5]3 [w2, w6]3
[w3, w4]3 [w3, w5]3 [w3, w6]3

[w4, w1]3 [w4, w2]3 [w4, w3]3
[w5, w1]3 [w5, w2]3 [w5, w3]3
[w6, w1]3 [w6, w2]3 [w6, w3]3

[w4, w4]3 [w4, w5]3 [w4, w6]3
[w5, w4]3 [w5, w5]3 [w5, w6]3
[w6, w4]3 [w6, w5]3 [w6, w6]3
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Candidates for Basis Functions

� There are solutions to the Legendre eigenvalue equation that
aren’t the Legendre polynomials.

� They are often referred to as Legendre functions of the second
kind, and are in the maximal domain. They are not
orthogonal to each other, and become infinite at the
endpoints. For instance,

Q0 =
1

2
ln

(
1 + x

1− x

)
,

Q1 =
x

2
ln

(
1 + x

1− x

)
− 1.
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Simplification of Entries

� There is an easy way to simplify these matrix entries using
Green’s Formula:

[Pj , Qk]3

∣∣∣∣1
−1

=

∫ 1

−1
`3[Pj ]Qkdx−

∫ 1

−1
`3[Qk]Pjdx

= j3(j + 1)3
∫ 1

−1
PjQkdx− k3(k + 1)3

∫ 1

−1
QkPjdx

= [j3(j + 1)3 − k3(k + 1)3]〈Pj , Qk〉.

� Formulas for 〈Pj , Qk〉 are known for j, k ∈ N.
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Structure of Mn

Proposition (FFL)

The matrix Mn is antisymmetric and takes the form

Mn =

[
0 Bn

−BT
n Cn

]
so that the det (Mn) = det (BT

nBn) = [det (Bn)]2.
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The case n = 3

� The following matrix is the result of setting w1 = P0,
w2 = P1, w3 = P2, w4 = Q1, w5 = Q2, and w6 = Q3:

M3 =


0

8 0 288
0 104 0

104 0 504

−8 0 −104
0 −104 0
−288 0 −504

0 0 860
3

0 0 0
−860
3 0 0

 .

� The functions P0, P1, and P2 can hence be used as GKN
conditions to generate the left-definite space V6.
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The case n = 4

� Choose the basis functions to be P0, . . . , P3 and Q0, . . . , Q3.

B4 =


0 16 0 3456
16 0 640 0
0 640 0 6480

3456 0 6480 0

 .

� The matrix Bn is symmetric when n is even, so showing it has
full rank is even easier.
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General Basis Functions

Theorem (FFL)

Let Mn define a basis of functions for the space Dn+ ⊕Dn−,
containing n Legendre polynomials and n Legendre functions of
the second kind, all distinct.
Then the total number of even indices for the collection of
functions is equal to the number of odd indices.
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How far can we go?

Example

Let n = 4 and choose the functions P17, P42, P49, P125 and
Q24, Q82, Q97, Q178 as candidates for the basis vectors. The
relevant matrix can be computed to be:

B4 =


8e8 6602e8 0 653190e8
0 0 21181e8 0

388e8 9686e8 0 700781e8
81234e8 132802e8 0 1202916e8

 .

It can be shown that even this matrix possesses full rank.
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Abstract Approach

Theorem (FFL)

Let L be a self-adjoint operator defined by left-definite theory on
L2[(a, b),W (x)] with domain that includes a complete orthogonal
system of eigenfunctions, {Pk}∞n=0. Furthermore, let L0 have
deficiency indices (m,m).
Then, the Glazman–Krein–Naimark boundary conditions for the
self-adjoint operator L are given by some {Pk1 , . . . , Pkm}.
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The Four Domains

An :=
{
f : (a, b)→ C

∣∣∣ f, f ′, . . . , f (2n−1) ∈ ACloc(a, b);

(p(x))nf (2n) ∈ L2[(a, b), w]
}
,

Bn :=

{
f ∈ Dnmax

∣∣∣ [f, Pj ]n

∣∣∣b
a

= 0 for j = 0, 1, . . . , n− 1

}
,

Cn :=

{
f ∈ Dnmax

∣∣∣ [f, Pj ]n

∣∣∣b
a

= 0 for any n distinct j ∈ N
}
, and

Fn :=

{
f ∈ Dnmax

∣∣∣ (aj(x)y(j)(x))(j−1)
∣∣∣b
a

= 0 for j = 1, 2, . . . , n

}
.

Matthew Fleeman, Dale Frymark*, and Constanze Liaw Left-Definite Boundary Conditions



Main Result

Theorem (FFL)

Let Ln be a self-adjoint operator defined by left-definite theory on
L2[(a, b), w]. Let Ln operate on its domain, DnL, via `n[ · ]. Let `
be a classical Jacobi or Laguerre differential expression. Assume
An = Bn and that f ∈ Fn implies that
f ′′, . . . , f (2n−2) ∈ L2[(a, b), dx].
Then An = Bn = Cn = Fn = DnL ∀n ∈ N.
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Thank you!
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