Boundary Conditions associated with the Left-Definite Theory for Differential Operators

Matthew Fleeman, Dale Frymark*, and Constanze Liaw

Baylor University

IWOTA

August 15th, 2017

Overview of Left-Definite Theory

- A general framework for Left-Definite Theory was developed by Littlejohn and Wellman in their 2002 paper.
\square The theory requires a self-adjoint operator which is bounded below by some positive constant.

Overview of Left-Definite Theory

- A general framework for Left-Definite Theory was developed by Littlejohn and Wellman in their 2002 paper.
\square The theory requires a self-adjoint operator which is bounded below by some positive constant.
\square It allows for the construction of a continuum of operators, defined on subsets of the original Hilbert space.
- These operators can be thought of as simply composing the original operator with itself, and restricting the Hilbert space.

Definition

Suppose A is a self-adjoint operator in the Hilbert space $H=(V,\langle\cdot, \cdot\rangle)$ that is bounded below by $k I$, where $k>0$. Let $r>0$. Define $H_{r}=\left(V_{r},\langle\cdot, \cdot\rangle_{r}\right)$ with

$$
V_{r}=\mathcal{D}\left(A^{r / 2}\right)
$$

and

$$
\langle x, y\rangle_{r}=\left\langle A^{r / 2} x, A^{r / 2} y\right\rangle \text { for }\left(x, y \in V_{r}\right)
$$

Then H_{r} is the r th left-definite space associated with the pair (H, A).

Notable Facts from Left-Definite Theory

\square The theory is trivial for bounded operators.

- For unbounded operators, the left-definite spaces are nested in one another; i.e.

$$
H \supset H_{1} \supset H_{2} \supset H_{3} \ldots
$$

Notable Facts from Left-Definite Theory

\square The theory is trivial for bounded operators.

- For unbounded operators, the left-definite spaces are nested in one another; i.e.

$$
H \supset H_{1} \supset H_{2} \supset H_{3} \ldots
$$

Theorem (Littlejohn, Wellman '02)

If $\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ is a complete orthogonal set of eigenfunctions of A in H, then for each $r>0,\left\{\varphi_{n}\right\}_{n=0}^{\infty}$ is a complete set of orthogonal eigenfunctions of the r th left-definite operator A_{r} in the r th left-definite space H_{r}.

The Problem

The description of these left-definite spaces is regrettably very complicated. For instance, for the Laguerre differential operator with $\alpha>-1, j \in \mathbb{N}_{0}$, let $L_{\alpha+j}^{2}(0, \infty)$ be the Hilbert space defined by

$$
L_{\alpha+n}^{2}(0, \infty):=\left\{f:\left.(0, \infty) \rightarrow \mathbb{C}\left|\int_{0}^{\infty}\right| f\right|^{2} t^{\alpha+n} e^{-t} d t<\infty\right\}
$$

Then, the nth left-definite space is defined as

$$
V_{n}:=\left\{f:(0, \infty) \rightarrow \mathbb{C} \mid f \in A C_{\mathrm{loc}}^{(n-1)}(0, \infty) ; f^{(n)} \in L_{\alpha+n}^{2}(0, \infty)\right\}
$$

Main Goal

Question: In what ways can we describe these left-definite spaces as boundary conditions imposed on the original Hilbert space, rather than in terms of integrability conditions?

Motivation

A simple analog of this problem is seen in Sobolev spaces:

$$
W^{1,2}(\Omega)=H^{1}(\Omega)=\left\{u \in L^{2}(\Omega): D^{\alpha}(u) \in L^{2}(\Omega) \quad \forall|\alpha|<1\right\}
$$

has the important subspace

$$
H_{0}^{1}(a, b)=\left\{f \in C[a, b]: f^{\prime} \in L^{2}(a, b), f(a)=f(b)=0\right\}
$$

Our goal is to similarly describe the left-definite domains in terms of boundary conditions.

Overview of Extension Theory

Let ℓ be a symmetric (differential) operator on a Hilbert space \mathcal{H}. We'll assume that ℓ can be defined on some maximum subspace of \mathcal{H} called the maximal domain, \mathcal{D}.

Overview of Extension Theory

Let ℓ be a symmetric (differential) operator on a Hilbert space \mathcal{H}. We'll assume that ℓ can be defined on some maximum subspace of \mathcal{H} called the maximal domain, \mathcal{D}.
\square The spaces

$$
\begin{gathered}
\mathcal{D}_{+}=\left\{f \in \mathcal{D} \quad \mid \quad \ell^{*} f=i f\right\} \\
\mathcal{D}_{-}=\left\{f \in \mathcal{D} \quad \mid \quad \ell^{*} f=-i f\right\}
\end{gathered}
$$

are called the defect spaces. The deficiency indices of ℓ are $\left(\operatorname{dim}\left(\mathcal{D}_{+}\right), \operatorname{dim}\left(\mathcal{D}_{-}\right)\right)$.

Notable Facts from Extension Theory

We define a sesquilinear form on the maximal domain by

$$
\left.[f, g]\right|_{a} ^{b}:=\int_{a}^{b} \ell[f(x)] \overline{g(x)} d x-\int_{a}^{b} \ell[\overline{g(x)}] f(x) d x
$$

\square The minimal domain is

$$
\mathcal{D}_{0}:=\left\{f \in \mathcal{D}|[f, g]|_{a}^{b}=0 \forall g \in \mathcal{D}\right\}
$$

Notable Facts from Extension Theory

We define a sesquilinear form on the maximal domain by

$$
\left.[f, g]\right|_{a} ^{b}:=\int_{a}^{b} \ell[f(x)] \overline{g(x)} d x-\int_{a}^{b} \ell[\overline{g(x)}] f(x) d x
$$

\square The minimal domain is

$$
\mathcal{D}_{0}:=\left\{f \in \mathcal{D}|[f, g]|_{a}^{b}=0 \forall g \in \mathcal{D}\right\}
$$

Theorem (Naimark)

The limits $[f, g](b):=\lim _{x \rightarrow b^{-}}[f, g](x)$ and $[f, g](a):=\lim _{x \rightarrow a^{+}}[f, g](x)$ both exist and are finite for all $f, g \in \mathcal{D}(\ell)$.

Notable Facts from Extension Theory

- The minimal and maximal operators are adjoints of one another.

Theorem (von Neumann)

Let \mathcal{D} and \mathcal{D}_{0} be the maximal and minimal domains associated with the differential operator T respectively.

$$
\mathcal{D}=\mathcal{D}_{0} \dot{+} \mathcal{D}_{+} \dot{+} \mathcal{D}_{-}
$$

Linear Independence Modulo a Vector Space

Definition

Let X_{1} and X_{2} be subspaces of a vector space X such that $X_{1} \subset X_{2}$. Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \subseteq X_{2}$. We say that $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is linearly independent modulo X_{1} if

$$
\sum_{i=1}^{n} \alpha_{i} x_{i} \in X_{1} \text { implies } \alpha_{i}=0, i=1,2, \ldots n
$$

Glazman-Krein-Naimark Theory

Theorem (GKN)

The domain of definition \mathcal{D}_{L} of an arbitrary self-adjoint extension L of the operator L_{0} with the deficiency indices (m, m) consists of the set of all functions $y(x) \in \mathcal{D}$ which satisfy the conditions

$$
\begin{equation*}
\left.\left[y, w_{k}\right]\right|_{a} ^{b}=0, k=1,2, \ldots, m \tag{1}
\end{equation*}
$$

where w_{1}, \ldots, w_{m} are certain functions belonging to \mathcal{D} and determined by L which are linearly independent modulo \mathcal{D}_{0} and for which the relations

$$
\begin{equation*}
\left.\left[w_{j}, w_{k}\right]\right|_{a} ^{b}=0, j, k=1,2, \ldots, m \tag{2}
\end{equation*}
$$

hold.

More Intuition

- Self-adjoint extensions of the minimal operator with deficiency indices (m, m) can be put into one-to-one correspondence with the unitary $m \times m$ matrices.
\square These unitary matrices act via $u=\left[u_{j k}\right]: \mathcal{D}_{+} \rightarrow \mathcal{D}_{-}$.
\square This defines a self-adjoint extension that includes all functions of the type

$$
y(x)=y_{0}(x)+\sum_{k=1}^{m} u_{k j} \overline{\varphi_{k}(x)}, \mu=1, \ldots, m
$$

where $y_{0}(x) \in \mathcal{D}_{0}$, and $\overline{\varphi_{k}}$ is a basis vector of \mathcal{D}_{-}.

History

- Left-definite theory has been used to analyze a wide range of classical differential operators, including Hermite, Laguerre, Legendre, Fourier, etc.
\square GKN boundary conditions for the case $n=1$ are available for several of these, including Legendre.

History

- Left-definite theory has been used to analyze a wide range of classical differential operators, including Hermite, Laguerre, Legendre, Fourier, etc.
- GKN boundary conditions for the case $n=1$ are available for several of these, including Legendre.
\square The square of the Legendre operator was recently studied and published by Littlejohn and Wicks.
- Cases involving higher values of n are unknown for any classical differential operator.

The Legendre Differential Operator

- Consider the Legendre differential operator on the Hilbert space $L^{2}(-1,1)$, given by

$$
\ell[y](x)=-\left(\left(1-x^{2}\right) y^{\prime}(x)\right)^{\prime}
$$

which possesses the Legendre polynomials $P_{m}(x), m \in \mathbb{N}_{0}$, as eigenfunctions.

The Legendre Differential Operator

- Consider the Legendre differential operator on the Hilbert space $L^{2}(-1,1)$, given by

$$
\ell[y](x)=-\left(\left(1-x^{2}\right) y^{\prime}(x)\right)^{\prime}
$$

which possesses the Legendre polynomials $P_{m}(x), m \in \mathbb{N}_{0}$, as eigenfunctions.
The polynomial P_{m} is a solution of the eigenvalue equation

$$
\ell[y](x)=m(m+1) y(x) .
$$

\square Let $n=3$. The deficiency indices of $\ell^{3}[\cdot]$ are $(3,3)$.

Linear Independence Modulo \mathcal{D}_{0}

\square To show that the set $w_{1}, w_{2}, \ldots, w_{6}$ is linearly independent modulo the minimal domain \mathcal{D}_{0}, suppose that

$$
\sum_{k=1}^{6} \alpha_{k} w_{k} \in \mathcal{D}_{0}
$$

Linear Independence Modulo \mathcal{D}_{0}

To show that the set $w_{1}, w_{2}, \ldots, w_{6}$ is linearly independent modulo the minimal domain \mathcal{D}_{0}, suppose that

$$
\sum_{k=1}^{6} \alpha_{k} w_{k} \in \mathcal{D}_{0}
$$

By definition, $y \in \mathcal{D}_{0}$ if and only if $\left.[y, w]_{3}\right|_{{ }_{-1}} ^{1}=0$ for all $w \in \mathcal{D}$. Hence

$$
\left.\sum_{k=1}^{6} \alpha_{k}\left[w_{i}, w_{k}\right]_{3}\right|_{-1} ^{1}=0 \text { for } i=1, \ldots, 6 .
$$

The goal is to show that the only way this can happen is if $\alpha_{k}=0, k=1, \ldots, 6$.

Glazman-Krein-Naimark Theory

Theorem (GKN)

The domain of definition \mathcal{D}_{L} of an arbitrary self-adjoint extension L of the operator L_{0} with the deficiency indices (m, m) consists of the set of all functions $y(x) \in \mathcal{D}$ which satisfy the conditions

$$
\begin{equation*}
\left.\left[y, w_{k}\right]\right|_{a} ^{b}=0, k=1,2, \ldots, m \tag{3}
\end{equation*}
$$

where w_{1}, \ldots, w_{m} are certain functions belonging to \mathcal{D} and determined by L which are linearly independent modulo \mathcal{D}_{0} and for which the relations

$$
\begin{equation*}
\left.\left[w_{j}, w_{k}\right]\right|_{a} ^{b}=0, j, k=1,2, \ldots, m \tag{4}
\end{equation*}
$$

hold.

The problem of showing that $\alpha_{k}=0, k=1, \ldots, 6$, is then equivalent to showing the following matrix, M_{3}, has full rank.

$$
\left[\begin{array}{ccc|ccc}
{\left[w_{1}, w_{1}\right]_{3}} & {\left[w_{1}, w_{2}\right]_{3}} & {\left[w_{1}, w_{3}\right]_{3}} & {\left[w_{1}, w_{4}\right]_{3}} & {\left[w_{1}, w_{5}\right]_{3}} & {\left[w_{1}, w_{6}\right]_{3}} \\
{\left[w_{2}, w_{1}\right]_{3}} & {\left[w_{2}, w_{2}\right]_{3}} & {\left[w_{2}, w_{3}\right]_{3}} & {\left[w_{2}, w_{4}\right]_{3}} & {\left[w_{2}, w_{5}\right]_{3}} & {\left[w_{2}, w_{6}\right]_{3}} \\
{\left[w_{3}, w_{1}\right]_{3}} & {\left[w_{3}, w_{2}\right]_{3}} & {\left[w_{3}, w_{3}\right]_{3}} & {\left[w_{3}, w_{4}\right]_{3}} & {\left[w_{3}, w_{5}\right]_{3}} & {\left[w_{3}, w_{6}\right]_{3}} \\
\hline\left[w_{4}, w_{1}\right]_{3} & {\left[w_{4}, w_{2}\right]_{3}} & {\left[w_{4}, w_{3}\right]_{3}} & {\left[w_{4}, w_{4}\right]_{3}} & {\left[w_{4}, w_{5}\right]_{3}} & {\left[w_{4}, w_{6}\right]_{3}} \\
{\left[w_{5}, w_{1}\right]_{3}} & {\left[w_{5}, w_{2}\right]_{3}} & {\left[w_{5}, w_{3}\right]_{3}} & {\left[w_{5}, w_{4}\right]_{3}} & {\left[w_{5}, w_{5}\right]_{3}} & {\left[w_{5}, w_{6}\right]_{3}} \\
{\left[w_{6}, w_{1}\right]_{3}} & {\left[w_{6}, w_{2}\right]_{3}} & {\left[w_{6}, w_{3}\right]_{3}} & {\left[w_{6}, w_{4}\right]_{3}} & {\left[w_{6}, w_{5}\right]_{3}} & {\left[w_{6}, w_{6}\right]_{3}}
\end{array}\right]
$$

Candidates for Basis Functions

- There are solutions to the Legendre eigenvalue equation that aren't the Legendre polynomials.
They are often referred to as Legendre functions of the second kind, and are in the maximal domain. They are not orthogonal to each other, and become infinite at the endpoints. For instance,

$$
\begin{aligned}
Q_{0} & =\frac{1}{2} \ln \left(\frac{1+x}{1-x}\right) \\
Q_{1} & =\frac{x}{2} \ln \left(\frac{1+x}{1-x}\right)-1
\end{aligned}
$$

Simplification of Entries

There is an easy way to simplify these matrix entries using Green's Formula:

$$
\begin{aligned}
{\left.\left[P_{j}, Q_{k}\right]_{3}\right|_{-1} ^{1} } & =\int_{-1}^{1} \ell^{3}\left[P_{j}\right] Q_{k} d x-\int_{-1}^{1} \ell^{3}\left[Q_{k}\right] P_{j} d x \\
& =j^{3}(j+1)^{3} \int_{-1}^{1} P_{j} Q_{k} d x-k^{3}(k+1)^{3} \int_{-1}^{1} Q_{k} P_{j} d x \\
& =\left[j^{3}(j+1)^{3}-k^{3}(k+1)^{3}\right]\left\langle P_{j}, Q_{k}\right\rangle
\end{aligned}
$$

Formulas for $\left\langle P_{j}, Q_{k}\right\rangle$ are known for $j, k \in \mathbb{N}$.

Structure of M_{n}

Proposition (FFL)

The matrix M_{n} is antisymmetric and takes the form

$$
M_{n}=\left[\begin{array}{c|c}
\mathbf{0} & B_{n} \\
\hline-B_{n}^{T} & C_{n}
\end{array}\right]
$$

so that the $\operatorname{det}\left(M_{n}\right)=\operatorname{det}\left(B_{n}^{T} B_{n}\right)=\left[\operatorname{det}\left(B_{n}\right)\right]^{2}$.

The case $n=3$

\square The following matrix is the result of setting $w_{1}=P_{0}$, $w_{2}=P_{1}, w_{3}=P_{2}, w_{4}=Q_{1}, w_{5}=Q_{2}$, and $w_{6}=Q_{3}:$

$$
M_{3}=\left[\begin{array}{ccc|ccc}
& & & 8 & 0 & 288 \\
& \mathbf{0} & & 0 & 104 & 0 \\
& & & 104 & 0 & 504 \\
\hline-8 & 0 & -104 & 0 & 0 & \frac{860}{3} \\
0 & -104 & 0 & 0 & 0 & 0 \\
-288 & 0 & -504 & \frac{-860}{3} & 0 & 0
\end{array}\right] .
$$

\square The functions P_{0}, P_{1}, and P_{2} can hence be used as GKN conditions to generate the left-definite space V_{6}.

The case $n=4$

\square Choose the basis functions to be P_{0}, \ldots, P_{3} and Q_{0}, \ldots, Q_{3}.

$$
B_{4}=\left(\begin{array}{cccc}
0 & 16 & 0 & 3456 \\
16 & 0 & 640 & 0 \\
0 & 640 & 0 & 6480 \\
3456 & 0 & 6480 & 0
\end{array}\right)
$$

The matrix B_{n} is symmetric when n is even, so showing it has full rank is even easier.

General Basis Functions

Theorem (FFL)

Let M_{n} define a basis of functions for the space $\mathcal{D}_{+}^{n} \oplus \mathcal{D}_{-}^{n}$, containing n Legendre polynomials and n Legendre functions of the second kind, all distinct.
Then the total number of even indices for the collection of functions is equal to the number of odd indices.

How far can we go?

Example

Let $n=4$ and choose the functions $P_{17}, P_{42}, P_{49}, P_{125}$ and $Q_{24}, Q_{82}, Q_{97}, Q_{178}$ as candidates for the basis vectors. The relevant matrix can be computed to be:

$$
B_{4}=\left(\begin{array}{cccc}
8 e 8 & 6602 e 8 & 0 & 653190 e 8 \\
0 & 0 & 21181 e 8 & 0 \\
388 e 8 & 9686 e 8 & 0 & 700781 e 8 \\
81234 e 8 & 132802 e 8 & 0 & 1202916 e 8
\end{array}\right) .
$$

It can be shown that even this matrix possesses full rank.

Abstract Approach

Theorem (FFL)

Let \mathcal{L} be a self-adjoint operator defined by left-definite theory on $L^{2}[(a, b), W(x)]$ with domain that includes a complete orthogonal system of eigenfunctions, $\left\{P_{k}\right\}_{n=0}^{\infty}$. Furthermore, let \mathcal{L}_{0} have deficiency indices (m, m).
Then, the Glazman-Krein-Naimark boundary conditions for the self-adjoint operator \mathcal{L} are given by some $\left\{P_{k_{1}}, \ldots, P_{k_{m}}\right\}$.

The Four Domains

$$
\begin{aligned}
& \mathcal{A}_{n}:=\left\{f:(a, b) \rightarrow \mathbb{C} \mid f, f^{\prime}, \ldots, f^{(2 n-1)} \in A C_{\mathrm{loc}}(a, b) ;\right. \\
&\left.(p(x))^{n} f^{(2 n)} \in L^{2}[(a, b), w]\right\}, \\
& \mathcal{B}_{n}:=\left\{f \in \mathcal{D}_{\max }^{n}\left|\left[f, P_{j}\right]_{n}\right|_{a}^{b}=0 \text { for } j=0,1, \ldots, n-1\right\}, \\
& \mathcal{C}_{n}:=\left\{f \in \mathcal{D}_{\max }^{n}\left|\left[f, P_{j}\right]_{n}\right|_{a}^{b}=0 \text { for any } n \text { distinct } j \in \mathbb{N}\right\}, \text { and } \\
& \mathcal{F}_{n}:=\left\{f \in \mathcal{D}_{\max }^{n}\left|\left(a_{j}(x) y^{(j)}(x)\right)^{(j-1)}\right|_{a}^{b}=0 \text { for } j=1,2, \ldots, n\right\} .
\end{aligned}
$$

Main Result

Theorem (FFL)

Let \mathbf{L}^{n} be a self-adjoint operator defined by left-definite theory on $L^{2}[(a, b), w]$. Let \mathbf{L}^{n} operate on its domain, $\mathcal{D}_{\mathbf{L}}^{n}$, via $\ell^{n}[\cdot]$. Let ℓ be a classical Jacobi or Laguerre differential expression. Assume $\mathcal{A}_{n}=\mathcal{B}_{n}$ and that $f \in \mathcal{F}_{n}$ implies that $f^{\prime \prime}, \ldots, f^{(2 n-2)} \in L^{2}[(a, b), d x]$.
Then $\mathcal{A}_{n}=\mathcal{B}_{n}=\mathcal{C}_{n}=\mathcal{F}_{n}=\mathcal{D}_{\mathbf{L}}^{n} \forall n \in \mathbb{N}$.

Thank you!

