Asymptotics of Hankel determinants with a one-cut

regular potential and Fisher-Hartwig singularities

Christophe Charlier
Université catholique de Louvain

August, 2017

1/

32



Hankel matrices and determinants

If w is a function defined on the real line which possesses finite moments
“+oo
Wi = / W(X)XkdX, k=0,1,2,...,
—0o0

then one can associate a Hankel matrix Hp(w) to it:

wWo Wi ... Wp_1
w1 Wy ... Wh
Hn(w) =
Wpn—1 Wnp ... W2p_2

Its associated Hankel determinant will be denoted by
Dp(w) = det(Hn(w)).



Weight of our interest

In this talk we focus on Hankel determinants associated to a weight w of
the form

m
w(x) = e "W Xy(x), w(x) = Hwaj(x)ng(x), me N,
j=1

and for each k € {1,..., m}, we have

e/™Bk if x < ty
— _ (€72 = 2 ’
wak(X) ‘X tk| ’ ka(X) { e_”rlgk, if x > ti,

and Ray > —1.
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Weight of our interest

The weight depends on
e mcNandneN,
e fy,....tm €ER,
e aj,...,am€{zeC:Rz> -1},
B1,...,8m € C,
W continuous such that W(x) = O(V(x)) as |x| — +o0,
The potential V' which satisfies limy_, 1 V(x)/ log |x| = +o0.

Notation: we will omit the dependence in m and in ti, ..., t;, and simply
denote Dp(«, 8, V, W) for the Hankel determinant.



Equilibrium measure

The potentials V' we are interested in are described in terms of properties
of the equilibrium measure py, which is the unique minimizer of the
functional

[ 108 b=y andutn) + [ Vit

among all Borel probability measures p on R. This measure and its
support (denoted S) are completely characterized by the Euler-Lagrange
variational conditions (Saff-Totik 1997)

2/ log [x — s|duy(s) = V(x) — ¢, for x € S,
S

2/Iog|x—s]d,uv(s) < V(x)—¢, for x e R\ S.
S



One-cut regular potentials

A potential V is called one-cut regular if
e V :R — R is analytic.

limyx— 400 V(x)/log|x| = +00.
The Euler-Lagrange inequality is strict.

The equilibrium measure is supported on S = [a, b] and is of the form

duy(x x)y/(b — x)(x — a)dx, where 1 is positive on [a, b].

Without loss of generality, we restrict ourself to the class of one-cut
regular potentials whose equilibrium measure is supported on [—1, 1]
instead of [a, b].



Figure: If V(x) = 2x2, the associated equilibrium measure is given by

duy(x) = 2V/1 — x2dx.

s
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Known results for « = 5 =10

e If V is a polynomial, is one-cut regular and such that all zeros of
1(x) are nonreal, Johansson (1998) obtained rigorously large n

asymptotics of %.

e For a polynomial one-cut regular potential V, large n asymptotics for
D,(0,0, V,0) have been obtained via the Riemann-Hilbert method by
Ercolani-McLaughlin (2003) (if the coefficients of V are sufficiently
small), and via deformation equations by Bleher-Its (2005) (under
further technical assumptions on V).



Known results for a £ 0

e Large n asymptotics of D,(c,0,2x2,0) have been obtained by
Krasovsky (2007).

e This result was recently generalized for the class of one-cut regular
potentials by Berestycki, Webb and Wong (2017). They obtain large
n asymptotics of D,(«, 0, V, W).
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Known results for 5 # 0

Only limited results are available concerning Hankel determinants with
jump discontinuities.

e Large n asymptotics of D,(0, 31,2x2,0) have been obtained by
Its-Krasovsky (2008) with m = 1.



Theorem (C '17)

Let m € N, and let t;, aj and (3; be such that
o tic(—1,1), tj#ty for 1 <j#k <m,
e Raj > —1 and Np; € (4 ,4) forj=1,..

Let V and W be such that
e V is a one-cut regular potential whose equilibrium measure is

supported on [—1, 1] with density 1)(x)v/1 — x2,
e W :R — R is analytic in a neighbourhood of [—1,1], locally
Holder-continuous on R and such that
W(x) = O(V(x)), as |x| — co.
As n — oo, we have
log Dp(ax, B, V, W) = C1n® + Gon+ Gzlogn+ C4 + (’)(

with fmax = max{|RpG1|, ..., |RBm|} and
3 11 2
G=—log2—7 -3 /_1 V1= x2(V(x) —2x?) (F +¢(x)> dx,
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A 1 V(x) —2x2
szlog(27'r)7./4|og27—7r » m ———dx +/ P(x)V1 — x2W(x)d;
+Z<%( (tj) = 1) + wiB; <172/ P(x)V1 — x dx>>,
j=1
1 &G
. A 1 W(x) 1 1 W(y) 1 W/ (x)V1—x2
G=CCD+ o \/17x2 T an2 ) \/1_y2(][

s
72 1 -tz —
_ i log <7w(1)¢(—1)> + > g ( «

- r?)(l —))PiPk
o
1<j<k<m

2 Itj — t | +2/315k )
@R
G+ + +8)6[+ - —
<I.Aﬁj arcsin t; — —ﬁJ.A + log ( 2 BJ) ( BJ)
J=1

G 2 i )
G(1+ «j)

B (A2 2T,
=

W(x) dX)
1-— xz(tj — x)
3[3]?) log (2./1 _ th) ,

where G is Barnes’ G-function, ¢ is Riemann's zeta-function and where we use the notations

m j—1 m
A:ZO‘J’ Aj:Za/*Za/-
j=1 =

=1 I=j+1
v
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Applications in random matrix theory
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Random matrix ensembles

Consider the set of n x n Hermitian matrices M endowed with the
probability distribution

efnTrV(M)dM’ dM = H dM;; H ngMUdSMU’
i=1 1<i<j<n

:I‘\l)‘ —

where 2,1 is the normalisation constant. This distribution of matrices is
invariant under unitary conjugations and induces a probability distribution
on the eigenvalues x, ..., x, of M which is of the form

1 n
ﬁ H (Xk —Xj)2He_nv(Xj)de, (X]_,...,Xn) & Rn,
TN 1<j<k<n j=1

where Z,, is the partition function.



Applications in random matrix theory if o = 8 =0

e Central limit theorem for the linear statistics:

n wiy Da(0,0,V, W)
s, wix)) — Pa(0,0,V,
E (e ) D,(0,0, V. 0)

e The partition function is given by Z, = D,(0,0, V,0).



Applications in random matrix theory if a # 0

e Hankel determinants with root-type singularities are related to the
statistical properties of the characteristic polynomial

pn(t) = [Tj21(t — %)
i N Dn(a,0,2x2,0)
EGUE(H|Pn(tj)| ’) = D,(0,0,252,0)°
j:l n ) ) )

e B-W-W proved that a sufficiently small power of the absolute value of
the characteristic polynomial p,(t) of a one-cut regular ensemble
converges in distribution to a Gaussian multiplicative chaos measure.
It was crucial in their analysis to obtain the large n asymptotics of

0 Dn(c, 0, V, W)
E % (t)¥) = 2222
V(Ue J 1;[“3” ’ > Dn(070> V70)



Applications in random matrix theory if 5 £ 0

Such determinants appear when we thin the eigenvalues of a random
matrix.
We start from the complete spectrum of a matrix:

{x1,%2,...,Xn}

We thin the spectrum by deleting each eigenvalue with a given probability
s € [0,1].

We are left with an incomplete spectrum

{_yla.y2a “e 7ym}7

where m is now itself a random variable following the Binomial distribution
B(n,1—5).

Thinning was introduced in random matrice theory by Bohigas-Pato '04.



Constant thinning

{x1,x2,....,x0}
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Constant thinning
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Constant thinning

{x1,x2,....,x0}
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What is P(#{y; : yi < 1} =0) ?



Constant thinning

{x1,x2,....,x0}

-1 1
—@—= o —© *—0 @ *—@ @
{}’17)/27 "'7_y5}
-1 t1 1
S —Q—@ o—@ @

1 T Dn 9 ) 27 H .
P(#{yi : yi < t1} = 0) = "™ 7Dn(8)%722;2700)), with B = ‘%82 ¢ iR*.



Piecewise constant thinning

S1 52
{x1,x0, ..., x0}
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Piecewise constant thinning
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Piecewise constant thinning
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Piecewise constant thinning

S1 52
{X1,X2,...,X9}
-1 1
—@— —© *—0 @ *—© @
{}’17}/27"-7}/5}
-1 t1 th 13 1
. -9 @0+ -0 O O
Dn(0,8,V,0
P(#{yi : yi € (—o0, t1) U (t2, t3)} = 0) = /515, D,,(Og VO))
where 31 = ";%51, B2 = 7;552 and (3 = I‘;%f.



Conditioning on a gap in the thinned spectrum

S1

{X1,X2,..

52
'7X9}

? ? ? ? ? ? ? ?

{}’17)/27 ..

-1 t1 th 13 1
@ @ @ O O

Suppose that #{y; : y; € (—00, t1) U (t2, t3)} = 0,

what can you say on {xi,...,xp} ?



Conditional point process

From Bayes' formula for conditional probabilities, the conditional point
process follows the distribution

n

LT - xR #0)dx,  Ze = Da(0,5, V,0),

=
nlZ, 1<i<j<n j=1

where w(x) = e "V [T, wg.(x). Thus, the generalized correlations of
L J=170 o . .
the characteristic polynomial of the conditional point process is expressed

as

2 X; o o Dn Oé,,B, V7W
E(HGW( 11 Ie(s) ) =G
i1 j=1 n\Y, M V



Outline of the proof

We compute the asymptotics for Dy(c, 8, V, W) in three steps which can
be schematized as

Dn(a,0,2x%,0) = D,(c, 8,2x2,0) — Dp(a, 3, V,0) = Dy(av, 8, V, W).

Each of these steps is subdivised into three parts:
e a differential identity for log Dy(«, 3, V, W),
e an asymptotic analysis of a Riemann-Hilbert(RH) problem,
e the integration of the differential identity.



Proof based on orthogonal polynomials

It is known (Szegb 1959) that Dp(c, 3, V, W) can be expressed in terms
of orthogonal polynomials py, defined through

/ pr(x)pj(x)w(x)dx = dj, J=0,1,.. k,
R

and xx > 0 is the leading coefficient of py.



Proof based on a Riemann-Hilbert problem

Consider the matrix valued function Y, defined by

1 pa(x)w(x)
Y(z) = ( Fn Pn(Z) 27r1 fR X—2z > )

—27ikn-1Pn-1(2) —Kn-1 fR%dx
It is known (Fokas-Its-Kitaev) that Y can be characterized as the unique

solution of a boundary value problem for analytic functions, called RH
problem for Y.



Steepest descent method on Y
1 w(x)
o ")

>
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Thank you for your attention



