Asymptotics of Hankel determinants with a one-cut regular potential and Fisher-Hartwig singularities

Christophe Charlier

Université catholique de Louvain

August, 2017

Hankel matrices and determinants

If w is a function defined on the real line which possesses finite moments

$$
w_{k}=\int_{-\infty}^{+\infty} w(x) x^{k} d x, \quad k=0,1,2, \ldots
$$

then one can associate a Hankel matrix $H_{n}(w)$ to it:

$$
H_{n}(w)=\left(\begin{array}{cccc}
w_{0} & w_{1} & \ldots & w_{n-1} \\
w_{1} & w_{2} & \ldots & w_{n} \\
\vdots & \vdots & \ddots & \vdots \\
w_{n-1} & w_{n} & \ldots & w_{2 n-2}
\end{array}\right)
$$

Its associated Hankel determinant will be denoted by
$D_{n}(w)=\operatorname{det}\left(H_{n}(w)\right)$.

Weight of our interest

In this talk we focus on Hankel determinants associated to a weight w of the form

$$
w(x)=e^{-n V(x)} e^{W(x)} \omega(x), \quad \omega(x)=\prod_{j=1}^{m} \omega_{\alpha_{j}}(x) \omega_{\beta_{j}}(x), \quad m \in \mathbb{N}
$$

and for each $k \in\{1, \ldots, m\}$, we have

$$
\omega_{\alpha_{k}}(x)=\left|x-t_{k}\right|^{\alpha_{k}}, \quad \omega_{\beta_{k}}(x)= \begin{cases}e^{i \pi \beta_{k}}, & \text { if } x<t_{k}, \\ e^{-i \pi \beta_{k}}, & \text { if } x>t_{k},\end{cases}
$$

and $\Re \alpha_{k}>-1$.

Weight of our interest

The weight depends on

- $m \in \mathbb{N}$ and $n \in \mathbb{N}$,
- $t_{1}, \ldots, t_{m} \in \mathbb{R}$,
- $\alpha_{1}, \ldots, \alpha_{m} \in\{z \in \mathbb{C}: \Re z>-1\}$,
- $\beta_{1}, \ldots, \beta_{m} \in \mathbb{C}$,
- W continuous such that $W(x)=\mathcal{O}(V(x))$ as $|x| \rightarrow+\infty$,
- The potential V which satisfies $\lim _{x \rightarrow \pm \infty} V(x) / \log |x|=+\infty$.

Notation: we will omit the dependence in m and in t_{1}, \ldots, t_{m} and simply denote $D_{n}(\alpha, \beta, V, W)$ for the Hankel determinant.

Equilibrium measure

The potentials V we are interested in are described in terms of properties of the equilibrium measure μ_{V}, which is the unique minimizer of the functional

$$
\iint \log |x-y|^{-1} d \mu(x) d \mu(y)+\int V(x) d \mu(x)
$$

among all Borel probability measures μ on \mathbb{R}. This measure and its support (denoted \mathcal{S}) are completely characterized by the Euler-Lagrange variational conditions (Saff-Totik 1997)

$$
\begin{array}{lr}
2 \int_{\mathcal{S}} \log |x-s| d \mu v(s)=V(x)-\ell, & \text { for } x \in \mathcal{S}, \\
2 \int_{\mathcal{S}} \log |x-s| d \mu v(s) \leq V(x)-\ell, & \text { for } x \in \mathbb{R} \backslash \mathcal{S}
\end{array}
$$

One-cut regular potentials

A potential V is called one-cut regular if

- $V: \mathbb{R} \rightarrow \mathbb{R}$ is analytic.
- $\lim _{x \rightarrow \pm \infty} V(x) / \log |x|=+\infty$.
- The Euler-Lagrange inequality is strict.
- The equilibrium measure is supported on $\mathcal{S}=[a, b]$ and is of the form $d \mu v(x)=\psi(x) \sqrt{(b-x)(x-a)} d x$, where ψ is positive on $[a, b]$.

Without loss of generality, we restrict ourself to the class of one-cut regular potentials whose equilibrium measure is supported on $[-1,1]$ instead of $[a, b]$.

Example

Figure: If $V(x)=2 x^{2}$, the associated equilibrium measure is given by $d \mu V(x)=\frac{2}{\pi} \sqrt{1-x^{2}} d x$.

Known results for $\alpha=\beta=0$

- If V is a polynomial, is one-cut regular and such that all zeros of $\psi(x)$ are nonreal, Johansson (1998) obtained rigorously large n asymptotics of $\frac{D_{n}(0,0, V, W)}{D_{n}(0,0, V, 0)}$.
- For a polynomial one-cut regular potential V, large n asymptotics for $D_{n}(0,0, V, 0)$ have been obtained via the Riemann-Hilbert method by Ercolani-McLaughlin (2003) (if the coefficients of V are sufficiently small), and via deformation equations by Bleher-Its (2005) (under further technical assumptions on V).

Known results for $\alpha \neq 0$

- Large n asymptotics of $D_{n}\left(\alpha, 0,2 x^{2}, 0\right)$ have been obtained by Krasovsky (2007).
- This result was recently generalized for the class of one-cut regular potentials by Berestycki, Webb and Wong (2017). They obtain large n asymptotics of $D_{n}(\alpha, 0, V, W)$.

Known results for $\beta \neq 0$

Only limited results are available concerning Hankel determinants with jump discontinuities.

- Large n asymptotics of $D_{n}\left(0, \beta_{1}, 2 x^{2}, 0\right)$ have been obtained by Its-Krasovsky (2008) with $m=1$.

Theorem (C '17)

Let $m \in \mathbb{N}$, and let t_{j}, α_{j} and β_{j} be such that

- $t_{j} \in(-1,1), t_{j} \neq t_{k}$ for $1 \leq j \neq k \leq m$,
- $\Re \alpha_{j}>-1$ and $\Re \beta_{j} \in\left(\frac{-1}{4}, \frac{1}{4}\right)$, for $j=1, \ldots, m$.

Let V and W be such that

- V is a one-cut regular potential whose equilibrium measure is supported on $[-1,1]$ with density $\psi(x) \sqrt{1-x^{2}}$,
- $W: \mathbb{R} \rightarrow \mathbb{R}$ is analytic in a neighbourhood of $[-1,1]$, locally Hölder-continuous on \mathbb{R} and such that

$$
W(x)=\mathcal{O}(V(x)), \text { as }|x| \rightarrow \infty
$$

As $n \rightarrow \infty$, we have

$$
\log D_{n}(\alpha, \beta, V, W)=C_{1} n^{2}+C_{2} n+C_{3} \log n+C_{4}+\mathcal{O}\left(\frac{\log n}{n^{1-4 \beta_{\max }}}\right)
$$

with $\beta_{\text {max }}=\max \left\{\left|\Re \beta_{1}\right|, \ldots,\left|\Re \beta_{m}\right|\right\}$ and

$$
C_{1}=-\log 2-\frac{3}{4}-\frac{1}{2} \int_{-1}^{1} \sqrt{1-x^{2}}\left(V(x)-2 x^{2}\right)\left(\frac{2}{\pi}+\psi(x)\right) d x
$$

Theorem

$$
\begin{aligned}
& C_{2}=\log (2 \pi)-\mathcal{A} \log 2-\frac{\mathcal{A}}{2 \pi} \int_{-1}^{1} \frac{V(x)-2 x^{2}}{\sqrt{1-x^{2}}} d x+\int_{-1}^{1} \psi(x) \sqrt{1-x^{2}} W(x) d x \\
&+\sum_{j=1}^{m}\left(\frac{\alpha_{j}}{2}\left(V\left(t_{j}\right)-1\right)+\pi i \beta_{j}\left(1-2 \int_{t_{j}}^{1} \psi(x) \sqrt{1-x^{2}} d x\right)\right), \\
& C_{3}=-\frac{1}{12}+\sum_{j=1}^{m}\left(\frac{\alpha_{j}^{2}}{4}-\beta_{j}^{2}\right), \\
& C_{4}=\zeta^{\prime}(-1)+\frac{\mathcal{A}}{2 \pi} \int_{-1}^{1} \frac{W(x)}{\sqrt{1-x^{2}}} d x-\frac{1}{4 \pi^{2}} \int_{-1}^{1} \frac{W(y)}{\sqrt{1-y^{2}}}\left(f_{-1}^{1} \frac{W^{\prime}(x) \sqrt{1-x^{2}}}{x-y} d x\right) d y \\
&-\frac{1}{24} \log \left(\frac{\pi^{2}}{4} \psi(1) \psi(-1)\right)+\sum_{1 \leq j<k \leq m} \log \left(\frac{\left(1-t_{j} t_{k}-\sqrt{\left.\left(1-t_{j}^{2}\right)\left(1-t_{k}^{2}\right)\right)^{2 \beta_{j} \beta k}}\right.}{2^{\frac{\alpha_{j} \alpha_{k}}{2}}\left|t_{j}-t_{k}\right| \frac{\alpha_{j} \alpha_{k}}{2}+2 \beta_{j} \beta_{k}}\right) \\
&+\sum_{j=1}^{m}\left(i \mathcal{A} \beta_{j} \arcsin t_{j}-\frac{i \pi}{2} \beta_{j} \mathcal{A}_{j}+\log \frac{G\left(1+\frac{\alpha_{j}}{2}+\beta_{j}\right) G\left(1+\frac{\alpha_{j}}{2}-\beta_{j}\right)}{G\left(1+\alpha_{j}\right)}\right) \\
&+\sum_{j=1}^{m}\left(\left(\frac{\alpha_{j}^{2}}{4}-\beta_{j}^{2}\right) \log \left(\frac{\pi}{2} \psi\left(t_{j}\right)\right)-\frac{\alpha_{j}}{2} W\left(t_{j}\right)+i \frac{\beta_{j}}{\pi} \sqrt{1-t_{j}^{2}} f_{-1}^{1} \frac{W(x)}{\sqrt{1-x^{2}}\left(t_{j}-x\right)} d x\right) \\
&+\sum_{j=1}^{m}\left(\frac{\alpha_{j}^{2}}{4}-3 \beta_{j}^{2}\right) \log \left(2 \sqrt{1-t_{j}^{2}}\right),
\end{aligned}
$$

where G is Barnes' G-function, ζ is Riemann's zeta-function and where we use the notations

$$
\mathcal{A}=\sum_{j=1}^{m} \alpha_{j}, \quad \mathcal{A}_{j}=\sum_{l=1}^{j-1} \alpha_{l}-\sum_{l=j+1}^{m} \alpha_{l} .
$$

Applications in random matrix theory

Random matrix ensembles

Consider the set of $n \times n$ Hermitian matrices M endowed with the probability distribution

$$
\frac{1}{\hat{Z}_{n}} e^{-n \operatorname{Tr} V(M)} d M, \quad d M=\prod_{i=1}^{n} d M_{i i} \prod_{1 \leq i<j \leq n} d \Re M_{i j} d \Im M_{i j}
$$

where \widehat{Z}_{n} is the normalisation constant. This distribution of matrices is invariant under unitary conjugations and induces a probability distribution on the eigenvalues x_{1}, \ldots, x_{n} of M which is of the form

$$
\frac{1}{n!Z_{n}} \prod_{1 \leq j<k \leq n}\left(x_{k}-x_{j}\right)^{2} \prod_{j=1}^{n} e^{-n V\left(x_{j}\right)} d x_{j}, \quad\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}
$$

where Z_{n} is the partition function.

Applications in random matrix theory if $\alpha=\beta=0$

- Central limit theorem for the linear statistics:

$$
\mathbb{E}\left(e^{\sum_{i=1}^{m} W\left(x_{i}\right)}\right)=\frac{D_{n}(0,0, V, W)}{D_{n}(0,0, V, 0)}
$$

- The partition function is given by $Z_{n}=D_{n}(0,0, V, 0)$.

Applications in random matrix theory if $\alpha \neq 0$

- Hankel determinants with root-type singularities are related to the statistical properties of the characteristic polynomial

$$
p_{n}(t)=\prod_{j=1}^{n}\left(t-x_{j}\right) .
$$

$$
\mathbb{E}_{\mathrm{GUE}}\left(\prod_{j=1}^{m}\left|p_{n}\left(t_{j}\right)\right|^{\alpha_{j}}\right)=\frac{D_{n}\left(\alpha, 0,2 x^{2}, 0\right)}{D_{n}\left(0,0,2 x^{2}, 0\right)}
$$

- B-W-W proved that a sufficiently small power of the absolute value of the characteristic polynomial $p_{n}(t)$ of a one-cut regular ensemble converges in distribution to a Gaussian multiplicative chaos measure. It was crucial in their analysis to obtain the large n asymptotics of

$$
\mathbb{E}_{V}\left(\prod_{j=1}^{n} e^{W\left(x_{j}\right)} \prod_{j=1}^{m}\left|p_{n}\left(t_{j}\right)\right|^{\alpha_{j}}\right)=\frac{D_{n}(\alpha, 0, V, W)}{D_{n}(0,0, V, 0)}
$$

Applications in random matrix theory if $\beta \neq 0$

Such determinants appear when we thin the eigenvalues of a random matrix.
We start from the complete spectrum of a matrix:

$$
\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}
$$

We thin the spectrum by deleting each eigenvalue with a given probability $s \in[0,1]$.

We are left with an incomplete spectrum

$$
\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}
$$

where m is now itself a random variable following the Binomial distribution $B(n, 1-s)$.

Thinning was introduced in random matrice theory by Bohigas-Pato '04.

Constant thinning

Constant thinning

Constant thinning

What is $\mathbb{P}\left(\sharp\left\{y_{i}: y_{i}<t_{1}\right\}=0\right)$?

Constant thinning

$$
\begin{aligned}
& \left\{x_{1}, x_{2}, \ldots, x_{9}\right\} \\
& \left\{y_{1}, y_{2}, \ldots, y_{5}\right\} \\
& \mathbb{P}\left(\sharp\left\{y_{i}: y_{i}<t_{1}\right\}=0\right)=e^{i n \pi \beta_{1}} \frac{D_{n}\left(0, \beta_{1}, 2 x^{2}, 0\right)}{D_{n}\left(0,0,2 x^{2}, 0\right)} \text {, with } \beta_{1}=\frac{\log s}{2 \pi i} \in i \mathbb{R}^{+} .
\end{aligned}
$$

Piecewise constant thinning

Piecewise constant thinning

Piecewise constant thinning

What is $\mathbb{P}\left(\sharp\left\{y_{i}: y_{i} \in\left(-\infty, t_{1}\right) \cup\left(t_{2}, t_{3}\right)\right\}=0\right)$?

Piecewise constant thinning

Conditioning on a gap in the thinned spectrum

Suppose that $\sharp\left\{y_{i}: y_{i} \in\left(-\infty, t_{1}\right) \cup\left(t_{2}, t_{3}\right)\right\}=0$,
what can you say on $\left\{x_{1}, \ldots, x_{n}\right\}$?

Conditional point process

From Bayes' formula for conditional probabilities, the conditional point process follows the distribution

$$
\frac{1}{n!\widetilde{Z}_{n}} \prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)^{2} \prod_{j=1}^{n} \widetilde{w}\left(x_{j}\right) d x_{j}, \quad \widetilde{Z}_{n}=D_{n}(0, \beta, v, 0)
$$

where $\widetilde{w}(x)=e^{-n V(x)} \prod_{j=1}^{m} \omega_{\beta_{j}}(x)$. Thus, the generalized correlations of the characteristic polynomial of the conditional point process is expressed as

$$
\mathbb{E}\left(\prod_{i=1}^{n} e^{W\left(x_{i}\right)} \prod_{j=1}^{m}\left|p\left(t_{j}\right)\right|^{\alpha_{j}}\right)=\frac{D_{n}(\alpha, \beta, V, W)}{D_{n}(0, \beta, V, 0)}
$$

Outline of the proof

We compute the asymptotics for $D_{n}(\alpha, \beta, V, W)$ in three steps which can be schematized as

$$
D_{n}\left(\alpha, 0,2 x^{2}, 0\right) \mapsto D_{n}\left(\alpha, \beta, 2 x^{2}, 0\right) \mapsto D_{n}(\alpha, \beta, V, 0) \mapsto D_{n}(\alpha, \beta, V, W)
$$

Each of these steps is subdivised into three parts:

- a differential identity for $\log D_{n}(\alpha, \beta, V, W)$,
- an asymptotic analysis of a Riemann-Hilbert(RH) problem,
- the integration of the differential identity.

Proof based on orthogonal polynomials

It is known (Szegő 1959) that $D_{n}(\alpha, \beta, V, W)$ can be expressed in terms of orthogonal polynomials p_{k}, defined through

$$
\int_{\mathbb{R}} p_{k}(x) p_{j}(x) w(x) d x=\delta_{j k}, \quad j=0,1, \ldots, k
$$

and $\kappa_{k}>0$ is the leading coefficient of p_{k}.

Proof based on a Riemann-Hilbert problem

Consider the matrix valued function Y, defined by

$$
Y(z)=\left(\begin{array}{cc}
\kappa_{n}^{-1} p_{n}(z) & \frac{\kappa_{n}^{-1}}{2 \pi i} \int_{\mathbb{R}} \frac{p_{n}(x) w(x)}{x-z} d x \\
-2 \pi i \kappa_{n-1} p_{n-1}(z) & -\kappa_{n-1} \int_{\mathbb{R}} \frac{p_{n-1}(x) w(x)}{x-z} d x
\end{array}\right) .
$$

It is known (Fokas-Its-Kitaev) that Y can be characterized as the unique solution of a boundary value problem for analytic functions, called RH problem for Y.

Steepest descent method on Y

$$
\left(\begin{array}{cc}
1 & w(x) \\
0 & 1
\end{array}\right)
$$

Thank you for your attention

