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Hankel matrices and determinants

If w is a function defined on the real line which possesses finite moments

wk =

∫ +∞

−∞
w(x)xkdx , k = 0, 1, 2, ...,

then one can associate a Hankel matrix Hn(w) to it:

Hn(w) =


w0 w1 . . . wn−1

w1 w2 . . . wn
...

...
. . .

...
wn−1 wn . . . w2n−2

 .

Its associated Hankel determinant will be denoted by
Dn(w) = det(Hn(w)).
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Weight of our interest

In this talk we focus on Hankel determinants associated to a weight w of
the form

w(x) = e−nV (x)eW (x)ω(x), ω(x) =
m∏
j=1

ωαj (x)ωβj (x), m ∈ N,

and for each k ∈ {1, ...,m}, we have

ωαk
(x) = |x − tk |αk , ωβk (x) =

{
e iπβk , if x < tk ,
e−iπβk , if x > tk ,

and <αk > −1.

3 / 32



Weight of our interest

The weight depends on

• m ∈ N and n ∈ N,

• t1, ..., tm ∈ R,

• α1, ..., αm ∈ {z ∈ C : <z > −1},
• β1, ..., βm ∈ C,

• W continuous such that W (x) = O(V (x)) as |x | → +∞,

• The potential V which satisfies limx→±∞ V (x)/ log |x | = +∞.

Notation: we will omit the dependence in m and in t1, ..., tm and simply
denote Dn(α, β,V ,W ) for the Hankel determinant.
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Equilibrium measure

The potentials V we are interested in are described in terms of properties
of the equilibrium measure µV , which is the unique minimizer of the
functional ∫∫

log |x − y |−1dµ(x)dµ(y) +

∫
V (x)dµ(x)

among all Borel probability measures µ on R. This measure and its
support (denoted S) are completely characterized by the Euler-Lagrange
variational conditions (Saff-Totik 1997)

2

∫
S

log |x − s|dµV (s) = V (x)− `, for x ∈ S,

2

∫
S

log |x − s|dµV (s) ≤ V (x)− `, for x ∈ R \ S.
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One-cut regular potentials

A potential V is called one-cut regular if

• V : R→ R is analytic.

• limx→±∞ V (x)/ log |x | = +∞.

• The Euler-Lagrange inequality is strict.

• The equilibrium measure is supported on S = [a, b] and is of the form
dµV (x) = ψ(x)

√
(b − x)(x − a)dx , where ψ is positive on [a, b].

Without loss of generality, we restrict ourself to the class of one-cut
regular potentials whose equilibrium measure is supported on [−1, 1]
instead of [a, b].
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Example

Figure: If V (x) = 2x2, the associated equilibrium measure is given by
dµV (x) = 2

π

√
1− x2dx .
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Known results for α = β = 0

• If V is a polynomial, is one-cut regular and such that all zeros of
ψ(x) are nonreal, Johansson (1998) obtained rigorously large n

asymptotics of Dn(0,0,V ,W )
Dn(0,0,V ,0) .

• For a polynomial one-cut regular potential V , large n asymptotics for
Dn(0, 0,V , 0) have been obtained via the Riemann-Hilbert method by
Ercolani-McLaughlin (2003) (if the coefficients of V are sufficiently
small), and via deformation equations by Bleher-Its (2005) (under
further technical assumptions on V ).
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Known results for α 6= 0

• Large n asymptotics of Dn(α, 0, 2x2, 0) have been obtained by
Krasovsky (2007).

• This result was recently generalized for the class of one-cut regular
potentials by Berestycki, Webb and Wong (2017). They obtain large
n asymptotics of Dn(α, 0,V ,W ).
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Known results for β 6= 0

Only limited results are available concerning Hankel determinants with
jump discontinuities.

• Large n asymptotics of Dn(0, β1, 2x
2, 0) have been obtained by

Its-Krasovsky (2008) with m = 1.
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Theorem (C ’17)

Let m ∈ N, and let tj , αj and βj be such that

• tj ∈ (−1, 1), tj 6= tk for 1 ≤ j 6= k ≤ m,

• <αj > −1 and <βj ∈ (−1
4 ,

1
4 ), for j = 1, ...,m.

Let V and W be such that

• V is a one-cut regular potential whose equilibrium measure is
supported on [−1, 1] with density ψ(x)

√
1− x2,

• W : R→ R is analytic in a neighbourhood of [−1, 1], locally
Hölder-continuous on R and such that
W (x) = O(V (x)), as |x | → ∞.

As n→∞, we have

logDn(α, β,V ,W ) = C1n
2 + C2n + C3 log n + C4 +O

( log n

n1−4βmax

)
,

with βmax = max{|<β1|, ..., |<βm|} and

C1 = − log 2− 3

4
− 1

2

∫ 1

−1

√
1− x2(V (x)− 2x2)

(
2

π
+ ψ(x)

)
dx ,

...
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Theorem

C2 = log(2π)−A log 2−
A
2π

∫ 1

−1

V (x)− 2x2√
1− x2

dx +

∫ 1

−1
ψ(x)

√
1− x2W (x)dx

+
m∑
j=1

(
αj

2
(V (tj )− 1) + πiβj

(
1− 2

∫ 1

tj

ψ(x)
√

1− x2dx

))
,

C3 = −
1

12
+

m∑
j=1

(α2
j

4
− β2

j

)
,

C4 = ζ
′(−1) +

A
2π

∫ 1

−1

W (x)√
1− x2

dx −
1

4π2

∫ 1

−1

W (y)√
1− y2

(
−
∫ 1

−1

W ′(x)
√

1− x2

x − y
dx

)
dy

−
1

24
log

(
π2

4
ψ(1)ψ(−1)

)
+

∑
1≤j<k≤m

log

((
1− tj tk −

√
(1− t2

j )(1− t2
k

)
)2βjβk

2

αjαk
2 |tj − tk |

αjαk
2

+2βjβk

)

+
m∑
j=1

(
iAβj arcsin tj −

iπ

2
βjAj + log

G(1 +
αj
2

+ βj )G(1 +
αj
2
− βj )

G(1 + αj )

)

+
m∑
j=1

((α2
j

4
− β2

j

)
log

(
π

2
ψ(tj )

)
−
αj

2
W (tj ) + i

βj

π

√
1− t2

j −
∫ 1

−1

W (x)√
1− x2(tj − x)

dx

)

+
m∑
j=1

(α2
j

4
− 3β2

j

)
log
(

2
√

1− t2
j

)
,

where G is Barnes’ G -function, ζ is Riemann’s zeta-function and where we use the notations

A =
m∑
j=1

αj , Aj =

j−1∑
l=1

αl −
m∑

l=j+1

αl .
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Applications in random matrix theory
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Random matrix ensembles

Consider the set of n × n Hermitian matrices M endowed with the
probability distribution

1

Ẑn

e−nTrV (M)dM, dM =
n∏

i=1

dMii

∏
1≤i<j≤n

d<Mijd=Mij ,

where Ẑn is the normalisation constant. This distribution of matrices is
invariant under unitary conjugations and induces a probability distribution
on the eigenvalues x1, ..., xn of M which is of the form

1

n!Zn

∏
1≤j<k≤n

(xk − xj)
2

n∏
j=1

e−nV (xj )dxj , (x1, ..., xn) ∈ Rn,

where Zn is the partition function.
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Applications in random matrix theory if α = β = 0

• Central limit theorem for the linear statistics:

E
(
e
∑m

i=1 W (xi )
)

=
Dn(0, 0,V ,W )

Dn(0, 0,V , 0)

• The partition function is given by Zn = Dn(0, 0,V , 0).
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Applications in random matrix theory if α 6= 0

• Hankel determinants with root-type singularities are related to the
statistical properties of the characteristic polynomial
pn(t) =

∏n
j=1(t − xj).

EGUE

( m∏
j=1

|pn(tj)|αj

)
=

Dn(α, 0, 2x2, 0)

Dn(0, 0, 2x2, 0)
.

• B-W-W proved that a sufficiently small power of the absolute value of
the characteristic polynomial pn(t) of a one-cut regular ensemble
converges in distribution to a Gaussian multiplicative chaos measure.
It was crucial in their analysis to obtain the large n asymptotics of

EV

( n∏
j=1

eW (xj )
m∏
j=1

|pn(tj)|αj

)
=

Dn(α, 0,V ,W )

Dn(0, 0,V , 0)
.
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Applications in random matrix theory if β 6= 0

Such determinants appear when we thin the eigenvalues of a random
matrix.
We start from the complete spectrum of a matrix:

{x1, x2, . . . , xn}

We thin the spectrum by deleting each eigenvalue with a given probability
s ∈ [0, 1].

We are left with an incomplete spectrum

{y1, y2, . . . , ym},

where m is now itself a random variable following the Binomial distribution
B(n, 1− s).

Thinning was introduced in random matrice theory by Bohigas-Pato ’04.
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Constant thinning

r−1 r1{x1, x2, ..., x9}u u u u u u u u u
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Constant thinning

r−1 r1{x1, x2, ..., x9}u u u u u u u u u

r−1 r1{y1, y2, ..., y5}u u u u u
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Constant thinning

r−1 r1{x1, x2, ..., x9}u u u u u u u u u

r−1 r1{y1, y2, ..., y5}rt1 u u u u u
6

What is P
(
]{yi : yi < t1} = 0

)
?
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Constant thinning

r−1 r1{x1, x2, ..., x9}u u u u u u u u u

r−1 r1{y1, y2, ..., y5}rt1 u u u u u
6

P
(
]{yi : yi < t1} = 0

)
= e inπβ1 Dn(0,β1,2x2,0)

Dn(0,0,2x2,0)
, with β1 = log s

2πi ∈ iR+.
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Piecewise constant thinning

s1 s2

r−1 r1{x1, x2, ..., x9}u u u u u u u u u
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Piecewise constant thinning

s1 s2

r−1 r1{x1, x2, ..., x9}u u u u u u u u u

r−1 r1{y1, y2, ..., y5}u u u u u
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Piecewise constant thinning

s1 s2

r−1 r1{x1, x2, ..., x9}u u u u u u u u u

r−1 r1{y1, y2, ..., y5}u u u u urt1 rt2 rt3

6 6

What is P
(
]{yi : yi ∈ (−∞, t1) ∪ (t2, t3)} = 0

)
?
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Piecewise constant thinning

s1 s2

r−1 r1{x1, x2, ..., x9}u u u u u u u u u

r−1 r1{y1, y2, ..., y5}u u u u urt1 rt2 rt3

6 6

P
(
]{yi : yi ∈ (−∞, t1) ∪ (t2, t3)} = 0

)
=
√
s1s2

Dn(0,β,V ,0)
Dn(0,0,V ,0) ,

where β1 = log s1
2πi , β2 = − log s2

2πi and β3 = log s2
2πi .
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Conditioning on a gap in the thinned spectrum

s1 s2{x1, x2, ..., x9}
? ? ? ? ? ? ? ?

r−1 r1{y1, y2, ..., y5}u u u u urt1 rt2 rt3

6 6

Suppose that ]{yi : yi ∈ (−∞, t1) ∪ (t2, t3)} = 0,

what can you say on {x1, ..., xn} ?

26 / 32



Conditional point process

From Bayes’ formula for conditional probabilities, the conditional point
process follows the distribution

1

n!Z̃n

∏
1≤i<j≤n

(xj − xi )
2

n∏
j=1

w̃(xj)dxj , Z̃n = Dn(0, β,V , 0),

where w̃(x) = e−nV (x)
∏m

j=1 ωβj (x). Thus, the generalized correlations of
the characteristic polynomial of the conditional point process is expressed
as

E

(
n∏

i=1

eW (xi )
m∏
j=1

|p(tj)|αj

)
=

Dn(α, β,V ,W )

Dn(0, β,V , 0)
.
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Outline of the proof

We compute the asymptotics for Dn(α, β,V ,W ) in three steps which can
be schematized as

Dn(α, 0, 2x2, 0) 7→ Dn(α, β, 2x2, 0) 7→ Dn(α, β,V , 0) 7→ Dn(α, β,V ,W ).

Each of these steps is subdivised into three parts:

• a differential identity for logDn(α, β,V ,W ),

• an asymptotic analysis of a Riemann-Hilbert(RH) problem,

• the integration of the differential identity.
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Proof based on orthogonal polynomials

It is known (Szegő 1959) that Dn(α, β,V ,W ) can be expressed in terms
of orthogonal polynomials pk , defined through∫

R
pk(x)pj(x)w(x)dx = δjk , j = 0, 1, ..., k ,

and κk > 0 is the leading coefficient of pk .
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Proof based on a Riemann-Hilbert problem

Consider the matrix valued function Y , defined by

Y (z) =

(
κ−1
n pn(z) κ−1

n
2πi

∫
R

pn(x)w(x)
x−z dx

−2πiκn−1pn−1(z) −κn−1

∫
R

pn−1(x)w(x)
x−z dx

)
.

It is known (Fokas-Its-Kitaev) that Y can be characterized as the unique
solution of a boundary value problem for analytic functions, called RH
problem for Y .
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Steepest descent method on Y
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Thank you for your attention
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