On lower bounds for C_0 -semigroups

Yuri Tomilov

IM PAN, Warsaw

Chemnitz, August, 2017

Yuri Tomilov (IM PAN, Warsaw)

On lower bounds for C₀-semigroups

Chemnitz, August, 2017 1 / 17

Э

・ロ・・ (日・・ ヨ・・ (日・)

Trivial bounds For $f \in L^1(\mathbb{R})$ define its Fourier transform by

$$\hat{f}(\xi) := rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-it\xi} f(t) dt,$$

and for $f \in L^1(0, 2\pi)$ define its Fourier coefficients (transform) by

$$\widehat{f}(n)=rac{1}{2\pi}\int_{0}^{2\pi}e^{-int}f(t)\,dt,\qquad n\in\mathbb{Z}.$$

Trivial bounds For $f \in L^1(\mathbb{R})$ define its Fourier transform by

$$\hat{f}(\xi) := rac{1}{\sqrt{2\pi}} \int_{\mathbb{R}} e^{-it\xi} f(t) dt,$$

and for $f \in L^1(0, 2\pi)$ define its Fourier coefficients (transform) by

$$\widehat{f}(n) = rac{1}{2\pi} \int_0^{2\pi} e^{-int} f(t) \, dt, \qquad n \in \mathbb{Z}.$$

By the Riemann-Lebesgue Lemma:

$$\hat{f} \in C_0(\mathbb{R}),$$
 $(\hat{f}(n))_{n \in \mathbb{Z}} \in c_0(\mathbb{Z}).$

From Plancherel's (Parseval) theorem:

$$\hat{f}\in L^2(\mathbb{R})$$
 jeśli $f\in L^1(\mathbb{R})\cap L^2(\mathbb{R}),$ $(\hat{f}(n))_{n\in\mathbb{Z}}\in I_2$ dla $f\in L^2(0,2\pi)).$

< 口 > < 同 > < 三 > < 三 >

Problem.

QUESTION: How 'large' can the Fourier transform be ?

Yuri Tomilov (IM PAN, Warsaw)

On lower bounds for C₀-semigroups

Chemnitz, August, 2017 3 / 17

Problem.

QUESTION: How 'large' can the Fourier transform be ?

ANSWER: The Fourier transform can be 'as large as possible'.

Problem.

QUESTION: How 'large' can the Fourier transform be ?

ANSWER: The Fourier transform can be 'as large as possible'.

OUR AIM: Get the 'answer' in the framework of weak orbits of C_0 -semigroups.

Fourier transforms of integrable functions

Theorem (Kolmogorov-Titchmarsh, 1920s)

1. Given $c = (c(n))_{n \in \mathbb{Z}} \in c_0(\mathbb{Z})$ there exists $f \in L^1(0, 2\pi)$ such that

 $|\hat{f}(n)| \ge |c(n)|, \qquad n \in \mathbb{Z}.$

4 周 2 4 3 2 4 3 5

Fourier transforms of integrable functions

Theorem (Kolmogorov-Titchmarsh, 1920s)

1. Given $c = (c(n))_{n \in \mathbb{Z}} \in c_0(\mathbb{Z})$ there exists $f \in L^1(0, 2\pi)$ such that

 $|\hat{f}(n)| \ge |c(n)|, \qquad n \in \mathbb{Z}.$

2. Given $c \in C_0(\mathbb{R})$ there exists $f \in L^1(\mathbb{R})$ such that $|\hat{f}(\xi)| \ge |c(\xi)|, \quad \xi \in \mathbb{R}.$

Yuri Tomilov (IM PAN, Warsaw)

On lower bounds for C₀-semigroups

Chemnitz, August, 2017 4 / 17

マロッ イラン イラン 一戸

Fourier transforms of integrable functions

Theorem (Kolmogorov-Titchmarsh, 1920s)

1. Given $c = (c(n))_{n \in \mathbb{Z}} \in c_0(\mathbb{Z})$ there exists $f \in L^1(0, 2\pi)$ such that

 $|\hat{f}(n)| \ge |c(n)|, \qquad n \in \mathbb{Z}.$

2. Given $c \in C_0(\mathbb{R})$ there exists $f \in L^1(\mathbb{R})$ such that $|\hat{f}(\xi)| \ge |c(\xi)|, \qquad \xi \in \mathbb{R}.$

Generalization[Curtis, Figa-Talamanca, 1966]: The same result is true in the context of locally compact abelian groups.

Fourier transforms of continuous functions

Remark. The Fourier transform is an isometric isomorphism on $L^2(\mathbb{R})$ (or on $L^2(0, 2\pi)$).

Fourier transforms of continuous functions

Remark. The Fourier transform is an isometric isomorphism on $L^2(\mathbb{R})$ (or on $L^2(0, 2\pi)$).

Theorem (de-Leeuw-Kahane-Katznelson-Demailly, 1977-1984) 1. Given $\{c_n\}_{n \in \mathbb{Z}} \in l_2(\mathbb{Z})$ there exists a 2π -periodic function $f \in C([0, 2\pi])$ such that

$$|\hat{f}(n)| \geq |c_n|, \qquad n \in \mathbb{Z}.$$

< 同 > < 三 > < 三 >

Fourier transforms of continuous functions

Remark. The Fourier transform is an isometric isomorphism on $L^2(\mathbb{R})$ (or on $L^2(0, 2\pi)$).

Theorem (de-Leeuw-Kahane-Katznelson-Demailly, 1977-1984)

1. Given $\{c_n\}_{n\in\mathbb{Z}} \in l_2(\mathbb{Z})$ there exists a 2π -periodic function $f \in C([0, 2\pi])$ such that

$$|\hat{f}(n)| \geq |c_n|, \qquad n \in \mathbb{Z}.$$

2. Given $c \in L^2(\mathbb{R})$ there exists a function $f \in L^2(\mathbb{R}) \cap C_0(\mathbb{R})$ such that $|\hat{f}(\xi)| \ge |c(\xi)|$ for almost every ξ .

Many other settings !!!

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Abstract setting

Theorem (K. Ball, Inventiones M. 1991, BLMS 1994)

1. If $\{x_n^* : n \in \mathbb{Z}\}$ is a sequence of bounded linear functionals of norm 1 on a Banach space X and $a = (a_n)_{n \in \mathbb{Z}} \in I_1(\mathbb{Z}), ||a||_{I_1} < 1$, then there exists $x \in X, ||x|| \le 1$, such that

 $|\langle x_n^*,x\rangle|\geq |a_n|, \qquad n\in\mathbb{Z}.$

・吊 ・ ・ ラ ・ ・ ラ ・

Abstract setting

Theorem (K. Ball, Inventiones M. 1991, BLMS 1994)

1. If $\{x_n^* : n \in \mathbb{Z}\}$ is a sequence of bounded linear functionals of norm 1 on a Banach space X and $a = (a_n)_{n \in \mathbb{Z}} \in I_1(\mathbb{Z}), ||a||_{I_1} < 1$, then there exists $x \in X, ||x|| \le 1$, such that

 $|\langle x_n^*,x\rangle|\geq |a_n|, \qquad n\in\mathbb{Z}.$

2. If $\{x_n : n \in \mathbb{Z}\}$ is a sequence of elements of norm 1 in a Hilbert space H and $(a_n)_{n \in \mathbb{Z}} \in I_2(\mathbb{Z}), ||a||_{I_2} < 1$, then there exists $x \in H$, $||x|| \le 1$, such that

 $|(x_n,x)| \geq |a_n|, \qquad n \in \mathbb{Z}.$

Implication for the Fourier transform:

Define the bounded linear functionals x_n^* , $n \in \mathbb{Z}$, on $L^1(\mathbb{R})$ by

$$x_n^*(x) := \int_{\mathbb{R}} e^{-int} x(t) dt, \quad x \in L^1(\mathbb{R}).$$

Implication for the Fourier transform:

Define the bounded linear functionals x_n^* , $n \in \mathbb{Z}$, on $L^1(\mathbb{R})$ by

$$x_n^*(x) := \int_{\mathbb{R}} e^{-int} x(t) dt, \quad x \in L^1(\mathbb{R}).$$

Then $||x_n^*|| = 1$, $n \in \mathbb{Z}$, and for every $a = (a_n)_{n \in \mathbb{Z}} \in l_1(\mathbb{Z})$, $||a||_{l_1} < 1$, there exists $x \in L^1(\mathbb{R})$, $||x||_{L^1(\mathbb{R})} \le 1$, such that

 $|x_n^*(x)| \ge |a_n|, \qquad n \in \mathbb{Z}.$

Implication for the Fourier transform:

Define the bounded linear functionals x_n^* , $n \in \mathbb{Z}$, on $L^1(\mathbb{R})$ by

$$x_n^*(x) := \int_{\mathbb{R}} e^{-int} x(t) dt, \quad x \in L^1(\mathbb{R}).$$

Then $||x_n^*|| = 1$, $n \in \mathbb{Z}$, and for every $a = (a_n)_{n \in \mathbb{Z}} \in l_1(\mathbb{Z})$, $||a||_{l_1} < 1$, there exists $x \in L^1(\mathbb{R})$, $||x||_{L^1(\mathbb{R})} \le 1$, such that

$$|x_n^*(x)| \ge |a_n|, \qquad n \in \mathbb{Z}.$$

This is still far from the result by Kolmogorov and Titchmarsh where $(a_n)_{n \in \mathbb{Z}} \in c_0(\mathbb{Z})!$

Yuri Tomilov (IM PAN, Warsaw)

On lower bounds for C₀-semigroups

The Fourier transform via operator (semi-)groups Let $(U(t))_{t \in \mathbb{R}} \subset \mathcal{L}(L^2(\mathbb{R}))$ be a family of unitary operators on $L^2(\mathbb{R})$ defined by

$$(U(t)f)(s) = e^{-its}f(s), \qquad s \in \mathbb{R}$$

- コン (雪) (ヨ) (ヨ)

The Fourier transform via operator (semi-)groups Let $(U(t))_{t \in \mathbb{R}} \subset \mathcal{L}(L^2(\mathbb{R}))$ be a family of unitary operators on $L^2(\mathbb{R})$ defined by

$$(U(t)f)(s) = e^{-its}f(s), \qquad s \in \mathbb{R}$$

Observe that for fixed $f, g \in L^2(\mathbb{R})$:

$$(U(t)f,g) = \int_{\mathbb{R}} e^{-its} f(t)\overline{g(t)} dt = \int_{\mathbb{R}} e^{-its} \varphi(t) dt, \quad \varphi := f\bar{g} \in L^1(\mathbb{R}).$$

$$|(U(t)f,g)| = |(U(-t)f,g)|, \quad t \ge 0.$$

it is enough to study bounds for one-sided weak orbits of $(U(t))_{t \in \mathbb{R}}$. **NOTE**: $(U(t))_{t \in \mathbb{R}}$ is a strongly continuous operator (semi-)group.

< 口 > < 同 > < 三 > < 三 > -

The Fourier transform via operator (semi-)groups Let $(U(t))_{t \in \mathbb{R}} \subset \mathcal{L}(L^2(\mathbb{R}))$ be a family of unitary operators on $L^2(\mathbb{R})$ defined by

$$(U(t)f)(s) = e^{-its}f(s), \qquad s \in \mathbb{R}$$

Observe that for fixed $f, g \in L^2(\mathbb{R})$:

$$(U(t)f,g) = \int_{\mathbb{R}} e^{-its} f(t)\overline{g(t)} dt = \int_{\mathbb{R}} e^{-its} \varphi(t) dt, \quad \varphi := f\bar{g} \in L^1(\mathbb{R}).$$

$$|(U(t)f,g)| = |(U(-t)f,g)|, \quad t \ge 0.$$

it is enough to study bounds for one-sided weak orbits of $(U(t))_{t \in \mathbb{R}}$.

NOTE: $(U(t))_{t \in \mathbb{R}}$ is a strongly continuous operator (semi-)group. **NOTE**: The *weak orbit* (U(t)f, g) of $(U(t))_{t \in \mathbb{R}}$ is the Fourier transform of the $L^1(\mathbb{R})$ -function $f\bar{g}$.

Yuri Tomilov (IM PAN, Warsaw)

On lower bounds for C₀-semigroups

Chemnitz, August, 2017 9 / 17

For a C_0 -sem. $(T(t))_{t\geq 0}$ on a Ban. space X with generator A define

$$\begin{split} s(A) &:= \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\}\\ s_b(A) &:= \inf\{\omega \in \mathbb{R} : R(\lambda, A) \text{ is uniformly bounded for } \operatorname{Re} \lambda \geq \omega\}\\ \omega_0 &:= \limsup_{t \to \infty} \frac{\ln \|T(t)\|}{t} \end{split}$$

Clearly, $s(A) \leq s_b(A) \leq \omega_0$.

Yuri Tomilov (IM PAN, Warsaw)

For a C_0 -sem. $(T(t))_{t\geq 0}$ on a Ban. space X with generator A define

$$\begin{split} s(A) &:= \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\}\\ s_b(A) &:= \inf\{\omega \in \mathbb{R} : R(\lambda, A) \text{ is uniformly bounded for } \operatorname{Re} \lambda \geq \omega\}\\ \omega_0 &:= \limsup_{t \to \infty} \frac{\ln \|T(t)\|}{t} \end{split}$$

Clearly, $s(A) \leq s_b(A) \leq \omega_0$.

Main Problem: Lack of the spectral mapping theorem for $(T(t))_{t\geq 0}$

For a C_0 -sem. $(T(t))_{t\geq 0}$ on a Ban. space X with generator A define

$$\begin{split} s(A) &:= \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\}\\ s_b(A) &:= \inf\{\omega \in \mathbb{R} : R(\lambda, A) \text{ is uniformly bounded for } \operatorname{Re} \lambda \geq \omega\}\\ \omega_0 &:= \limsup_{t \to \infty} \frac{\ln \|T(t)\|}{t} \end{split}$$

Clearly,
$$s(A) \leq s_b(A) \leq \omega_0$$
.

Main Problem: Lack of the spectral mapping theorem for $(T(t))_{t\geq 0}$

For any $a \ge b \ge c$ there exist a reflexive Banach space X and a C_0 -semigroup $(T(t))_{t\ge 0}$ on X :

$$s(A) = a,$$
 $s_b(A) = b,$ $w_0 = c.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

For a C_0 -sem. $(T(t))_{t\geq 0}$ on a Ban. space X with generator A define

$$\begin{split} s(A) &:= \sup\{\operatorname{Re} \lambda : \lambda \in \sigma(A)\}\\ s_b(A) &:= \inf\{\omega \in \mathbb{R} : R(\lambda, A) \text{ is uniformly bounded for } \operatorname{Re} \lambda \geq \omega\}\\ \omega_0 &:= \limsup_{t \to \infty} \frac{\ln \|T(t)\|}{t} \end{split}$$

Clearly,
$$s(A) \leq s_b(A) \leq \omega_0$$
.

Main Problem: Lack of the spectral mapping theorem for $(T(t))_{t\geq 0}$

For any $a \ge b \ge c$ there exist a reflexive Banach space X and a C_0 -semigroup $(T(t))_{t\ge 0}$ on X :

$$s(A) = a,$$
 $s_b(A) = b,$ $w_0 = c.$

If X is Hilbert, then $\omega_0 = s_b$.

イロト イポト イラト イラト 一戸

What can we say about the size of weak orbits

 $(T(t)x, x^*), \qquad t \ge 0, x \in X, x^* \in X^*,$

for C_0 -semigroups $(T(t))_{t \ge 0}$?

Yuri Tomilov (IM PAN, Warsaw)

What can we say about the size of weak orbits

 $(T(t)x, x^*), \qquad t \ge 0, x \in X, x^* \in X^*,$

for C_0 -semigroups $(T(t))_{t\geq 0}$?

. . .

History: ... essentially, no history exists, apart from sporadic papers ...

Semigroups framework: van Neerven, Weiss, Nikolski, ...

Operator framework: Beauzamy, Müller, Radjavi, Rosenthal, Nordgren,

What can we say about the size of weak orbits

 $(T(t)x, x^*), \qquad t \ge 0, x \in X, x^* \in X^*,$

for C_0 -semigroups $(T(t))_{t \ge 0}$?

History: ... essentially, no history exists, apart from sporadic papers ...

Semigroups framework: van Neerven, Weiss, Nikolski, ...

Operator framework: Beauzamy, Müller, Radjavi, Rosenthal, Nordgren, ...

A bit more notation: Let $A : D(A) \subset X \to X$ be a densely defined closed operator with $\rho(A) \neq \emptyset$. Define

$$C^{\infty}(A) := \bigcap_{n=1}^{\infty} D(A^n)$$
 and note $\overline{C^{\infty}(A)} = X$.

Theorem (Müller-T.)

Let $(T(t)_{t\geq 0})$ be a weakly stable C_0 -semigroup a Hilbert space H with generator A $(T(t) \rightarrow 0, t \rightarrow \infty \text{ in WOT}).$

Theorem (Müller-T.)

Let $(T(t)_{t\geq 0}$ be a weakly stable C_0 -semigroup a Hilbert space H with generator A $(T(t) \rightarrow 0, t \rightarrow \infty \text{ in WOT})$. Let $f : [0, \infty) \rightarrow (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$.

Theorem (Müller-T.)

Let $(T(t)_{t\geq 0})$ be a weakly stable C_0 -semigroup a Hilbert space H with generator A $(T(t) \rightarrow 0, t \rightarrow \infty \text{ in WOT})$. Let $f : [0, \infty) \rightarrow (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$. a) Suppose that $0 \in \sigma(A)$. Then there exists $x \in C^{\infty}(A)$ such that $||x|| < \sup\{f(t) : t \geq 0\} + \epsilon$ and

 $\operatorname{Re}\langle T(t)x,x\rangle \geq f(t)$

for all $t \ge 0$.

Theorem (Müller-T.)

Let $(T(t)_{t\geq 0})$ be a weakly stable C_0 -semigroup a Hilbert space H with generator A $(T(t) \rightarrow 0, t \rightarrow \infty \text{ in WOT})$. Let $f : [0, \infty) \rightarrow (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$. a) Suppose that $0 \in \sigma(A)$. Then there exists $x \in C^{\infty}(A)$ such that $||x|| < \sup\{f(t) : t \geq 0\} + \epsilon$ and

 $\operatorname{Re}\langle T(t)x,x\rangle\geq f(t)$

for all $t \ge 0$.

b) Suppose that $\sigma(A) \cap i\mathbb{R} \neq \emptyset$. Then there exists $x \in C^{\infty}(A)$ such that $||x|| < \sup\{f(t) : t \ge 0\} + \epsilon$ and

 $|\langle T(t)x,x\rangle| \geq f(t)$

for all $t \ge 0$.

Theorem (Müller-T, '13)

Let $(T(t)_{t\geq 0})$ be a weakly stable C_0 -semigroup on a Hilbert space H with generator A.

< 口 > < 同 > < 三 > < 三 >

Theorem (Müller-T, '13)

Let $(T(t)_{t\geq 0})$ be a weakly stable C_0 -semigroup on a Hilbert space H with generator A. Suppose that $\omega_0(=s_b) = 0$. Let $f : [0, \infty) \to (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$.

-

Theorem (Müller-T, '13)

Let $(T(t)_{t\geq 0}$ be a weakly stable C_0 -semigroup on a Hilbert space Hwith generator A. Suppose that $\omega_0(=s_b) = 0$. Let $f : [0, \infty) \to (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$. There exists $x \in H$ such that $||x|| < \sup\{f(s) : s \ge 0\} + \epsilon$ and

 $|\langle T(t)x,x\rangle| \geq f(t)$

for all $t \ge 0$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Müller-T, '13)

Let $(T(t)_{t\geq 0}$ be a weakly stable C_0 -semigroup on a Hilbert space Hwith generator A. Suppose that $\omega_0(=s_b) = 0$. Let $f : [0, \infty) \to (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$. There exists $x \in H$ such that $||x|| < \sup\{f(s) : s \ge 0\} + \epsilon$ and

 $|\langle T(t)x,x\rangle| \geq f(t)$

for all $t \ge 0$.

Weak stability of $(T(t))_{t\geq 0}$ is essential !

For $S \subset \mathbb{R}_+$ define its *density* d(S) as $mes(S \cap [0, t])$

$$d(S) = \lim_{t \to \infty} \frac{\max(S + [0, t])}{t}$$

whenever the limit exists.

3

< ロ > < 同 > < 回 > < 回 >

$$d(S) = \lim_{t \to \infty} \frac{\operatorname{mes}(S \cap [0, t])}{t}$$

whenever the limit exists.

Theorem (Müller-T, '13)

Let $(T(t)_{t\geq 0})$ be a bdd C_0 -semigroup a Hilbert space H with generator A.

$$d(S) = \lim_{t \to \infty} \frac{\operatorname{mes}(S \cap [0, t])}{t}$$

whenever the limit exists.

Theorem (Müller-T, '13)

Let $(T(t)_{t\geq 0})$ be a bdd C_0 -semigroup a Hilbert space H with generator A. Let $f : [0, \infty) \to (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$.

$$d(S) = \lim_{t \to \infty} \frac{\operatorname{mes}(S \cap [0, t])}{t}$$

whenever the limit exists.

Theorem (Müller-T, '13)

Let $(T(t)_{t\geq 0})$ be a bdd C_0 -semigroup a Hilbert space H with generator A.

Let $f : [0, \infty) \to (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$. a) Suppose that $0 \in \sigma(A)$. Then there exists $x \in C^{\infty}(A)$ and a

measurable $B \subset \mathbb{R}_+$, d(B) = 1, such that $||x|| < \sup\{f(t) : t \ge 0\} + \epsilon$ and

 $\operatorname{Re}\langle T(t)x,x\rangle \geq f(t), \qquad t\in B.$

13/17

$$d(S) = \lim_{t \to \infty} \frac{\operatorname{mes}(S \cap [0, t])}{t}$$

whenever the limit exists.

Theorem (Müller-T, '13)

Let $(T(t)_{t\geq 0})$ be a bdd C_0 -semigroup a Hilbert space H with generator A. Let $f : [0, \infty) \to (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$ and let $\epsilon > 0$. a) Suppose that $0 \in \sigma(A)$. Then there exists $x \in C^{\infty}(A)$ and a measurable $B \subset \mathbb{R}_+$, d(B) = 1, such that $||x|| < \sup\{f(t) : t \ge 0\} + \epsilon$ and

$$\operatorname{Re}\langle T(t)x,x\rangle \geq f(t), \qquad t\in B.$$

b) Suppose that $\sigma(A) \cap i\mathbb{R} \neq \emptyset$. Then there exists $x \in C^{\infty}(A)$ and a measurable $B \subset \mathbb{R}_+$, d(B) = 1, such that $||x|| < \sup\{f(t) : t \ge 0\} + \epsilon$ and

Let μ be a finite (positive) Borel measure on \mathbb{R} such that

 $\hat{\mu} \in C_0(\mathbb{R}).$

Let μ be a finite (positive) Borel measure on \mathbb{R} such that

 $\hat{\mu} \in C_0(\mathbb{R}).$

Theorem

Given a bounded $f : \mathbb{R} \to [0, \infty)$ satisfying $\lim_{|t|\to\infty} f(t) = 0$ there exist a positive $g \in L^1(\mathbb{R}, d\mu)$:

Let μ be a finite (positive) Borel measure on \mathbb{R} such that

 $\hat{\mu} \in C_0(\mathbb{R}).$

Theorem

Given a bounded $f : \mathbb{R} \to [0, \infty)$ satisfying $\lim_{|t|\to\infty} f(t) = 0$ there exist a positive $g \in L^1(\mathbb{R}, d\mu)$:

(i) $\widehat{g} \in C^{\infty}(\mathbb{R});$

Let μ be a finite (positive) Borel measure on \mathbb{R} such that

 $\hat{\mu} \in C_0(\mathbb{R}).$

Theorem

Given a bounded $f : \mathbb{R} \to [0, \infty)$ satisfying $\lim_{|t|\to\infty} f(t) = 0$ there exist a positive $g \in L^1(\mathbb{R}, d\mu)$:

(i) $\widehat{g} \in \boldsymbol{C}^{\infty}(\mathbb{R});$

(ii) $|\widehat{g}(t)| \ge f(t), \quad t \in \mathbb{R}.$

Let μ be a finite (positive) Borel measure on \mathbb{R} .

3

Let μ be a finite (positive) Borel measure on \mathbb{R} .

Theorem

Given a bounded $f : \mathbb{R} \to [0, \infty)$ satisfying $\lim_{|t|\to\infty} f(t) = 0$ there exist a positive $g \in L^1(\mathbb{R}, d\mu)$ and a measurable $B \subset \mathbb{R}$, Dens (B) = 1:

Let μ be a finite (positive) Borel measure on \mathbb{R} .

Theorem

Given a bounded $f : \mathbb{R} \to [0, \infty)$ satisfying $\lim_{|t|\to\infty} f(t) = 0$ there exist a positive $g \in L^1(\mathbb{R}, d\mu)$ and a measurable $B \subset \mathbb{R}$, Dens (B) = 1:

(i) $\widehat{g} \in \mathcal{C}^{\infty}(\mathbb{R});$

Let μ be a finite (positive) Borel measure on \mathbb{R} .

Theorem

Given a bounded $f : \mathbb{R} \to [0, \infty)$ satisfying $\lim_{|t|\to\infty} f(t) = 0$ there exist a positive $g \in L^1(\mathbb{R}, d\mu)$ and a measurable $B \subset \mathbb{R}$, Dens (B) = 1:

(i) $\widehat{g} \in C^{\infty}(\mathbb{R});$ (ii) $|\widehat{g}(t)| \ge f(t), \qquad t \in B.$

Recall, that by Wiener's theorem, if μ has no atoms, then

 $\widehat{\mu}(t) \to 0$, when $t \to \infty$ along *B* with dens(*B*) = 1.

What if the boundedness of $(T(t))_{t\geq 0}$ is dropped ?

What if the boundedness of $(T(t))_{t\geq 0}$ is dropped ? For $S \subset \mathbb{R}_+$ define its *upper density* d(S) as

Yuri Tomilov (IM PAN, Warsaw)

$$d(S) = \limsup_{t \to \infty} \frac{\operatorname{mes}(S \cap [0, t])}{t}.$$

What if the boundedness of $(T(t))_{t\geq 0}$ is dropped ? For $S \subset \mathbb{R}_+$ define its *upper density* d(S) as

$$d(S) = \limsup_{t\to\infty} \frac{\operatorname{mes}(S \cap [0, t])}{t}.$$

Theorem (Müller-T., '17)

Let $(T(t))_{t\geq 0}$ be a C_0 -semigroup on a Banach space X with generator A, such that $s_b(A) \geq 0$. Let $f : [0, \infty) \to (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$. Then there exist $x \in X$, $x^* \in X^*$ and a measurable $B \subset [0, \infty)$ such that $\overline{\text{Dens } B} = 1$ and

 $|\langle T(t)x, x^* \rangle| \ge f(t), \qquad t \in B.$

What if the boundedness of $(T(t))_{t\geq 0}$ is dropped ? For $S \subset \mathbb{R}_+$ define its *upper density* d(S) as

$$d(S) = \limsup_{t\to\infty} \frac{\operatorname{mes}(S \cap [0, t])}{t}.$$

Theorem (Müller-T., '17)

Let $(T(t))_{t\geq 0}$ be a C_0 -semigroup on a Banach space X with generator A, such that $s_b(A) \geq 0$. Let $f : [0, \infty) \to (0, \infty)$ be a bounded function such that $\lim_{t\to\infty} f(t) = 0$. Then there exist $x \in X$, $x^* \in X^*$ and a measurable $B \subset [0, \infty)$ such that Dens B = 1 and

$|\langle T(t)x, x^* \rangle| \geq f(t), \qquad t \in B.$

Lemma. Let A, B be finite sets, $|A| \ge |B| \ge 2$. Let $M \subset A \times B$, $|M| \ge |A| + |B| - 1$. Then there exist $a, a' \in A, b, b' \in B$ such that $a' \ne a, b' \ne b$ and $(a, b), (a, b'), (a', b) \in M$.

Theorem (Müller-T., '17)

Let $(T(t))_{t\geq 0}$ be a C_0 -semigroup on a reflexive Banach space X with generator \overline{A} , such that $s_b(A) \geq 0$. Let $\epsilon > 0$ be fixed. Then

(i) there exist $x \in X$, $x^* \in X^*$ and a measurable $B \subset [1, \infty)$ with Dens B = 1 such that

$$|\langle T(t)x,x^*\rangle|\geq \frac{1}{t^{1/2+\epsilon}}, \qquad t\in B.$$

-

- コン (雪) (ヨ) (ヨ)

Theorem (Müller-T., '17)

Let $(T(t))_{t\geq 0}$ be a C_0 -semigroup on a reflexive Banach space X with generator \overline{A} , such that $s_b(A) \geq 0$. Let $\epsilon > 0$ be fixed. Then

(i) there exist $x \in X$, $x^* \in X^*$ and a measurable $B \subset [1, \infty)$ with Dens B = 1 such that

$$|\langle T(t)x,x^*\rangle|\geq \frac{1}{t^{1/2+\epsilon}}, \qquad t\in B.$$

(ii) there exist $x \in X$, $x^* \in X^*$ and a measurable set $B \subset [1, \infty)$ with $meas([1, \infty) \setminus B) < \epsilon$ such that

$$|\langle T(t)x,x^*\rangle|\geq \frac{1}{t^{2+\epsilon}}, \qquad t\in B.$$

Yuri Tomilov (IM PAN, Warsaw)

On lower bounds for C₀-semigroups

Chemnitz, August, 2017 17 / 17

Theorem (Müller-T., '17)

Let $(T(t))_{t\geq 0}$ be a C_0 -semigroup on a reflexive Banach space X with generator \overline{A} , such that $s_b(A) \geq 0$. Let $\epsilon > 0$ be fixed. Then

(i) there exist $x \in X$, $x^* \in X^*$ and a measurable $B \subset [1, \infty)$ with Dens B = 1 such that

$$|\langle T(t)x,x^*\rangle|\geq \frac{1}{t^{1/2+\epsilon}}, \qquad t\in B.$$

(ii) there exist $x \in X$, $x^* \in X^*$ and a measurable set $B \subset [1, \infty)$ with $meas([1, \infty) \setminus B) < \epsilon$ such that

$$|\langle T(t)x,x^*\rangle| \geq \frac{1}{t^{2+\epsilon}}, \qquad t\in B.$$

Optimality is widely open ...

Yuri Tomilov (IM PAN, Warsaw)

On lower bounds for *C*₀-semigroups

Chemnitz, August, 2017 17 / 17