Critical points of Blaschke products Stieltjes polynomials and moment problems

Gunter Semmler and Elias Wegert

Institute of Applied Analysis
TU Bergakademie Freiberg
Germany

IWOTA Chemnitz, August 2017

This talk is dedicated to the memory of

Georg Heinig

Blaschke Products

Finite Blaschke products

A finite Blaschke product of degree n is a rational function

$$
B(z)=c \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad\left|a_{k}\right|<1, \quad|c|=1
$$

$\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ unit disk, $\quad \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ unit circle

Finite Blaschke products

A finite Blaschke product of degree n is a rational function

$$
B(z)=c \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad\left|a_{k}\right|<1, \quad|c|=1
$$

$\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ unit disk, $\mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ unit circle

Finite Blaschke products

A finite Blaschke product of degree n is a rational function

$$
B(z)=c \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad\left|a_{k}\right|<1, \quad|c|=1
$$

$\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ unit disk, $\quad \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ unit circle

Finite Blaschke products

A finite Blaschke product of degree n is a rational function

$$
B(z)=c \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad\left|a_{k}\right|<1, \quad|c|=1
$$

$\mathbb{D}:=\{z \in \mathbb{C}:|z|<1\}$ unit disk, $\quad \mathbb{T}:=\{z \in \mathbb{C}:|z|=1\}$ unit circle

Finite Blaschke products

A finite Blaschke product of degree n is a rational function

$$
B(z)=c \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad\left|a_{k}\right|<1, \quad|c|=1
$$

Symmetry with respect to reflection across $\mathbb{T}: B(1 / \bar{z})=1 / \overline{B(z)}$.

Finite Blaschke products

A finite Blaschke product of degree n is a rational function

$$
B(z)=c \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad\left|a_{k}\right|<1, \quad|c|=1
$$

Symmetry with respect to reflection across $\mathbb{T}: B(1 / \bar{z})=1 / \overline{B(z)}$.

Finite Blaschke products

A finite Blaschke product of degree n is a rational function

$$
B(z)=c \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad\left|a_{k}\right|<1, \quad|c|=1
$$

Symmetry with respect to reflection across $\mathbb{T}: B(1 / \bar{z})=1 / \overline{B(z)}$.

Finite Blaschke products

A finite Blaschke product of degree n is a rational function

$$
B(z)=c \prod_{k=1}^{n} \frac{z-a_{k}}{1-\bar{a}_{k} z}, \quad\left|a_{k}\right|<1, \quad|c|=1
$$

Symmetry with respect to reflection across $\mathbb{T}: B(1 / \bar{z})=1 / \overline{B(z)}$.

Critical points of Blaschke products

Critical points of a function are the zeros of its derivative.

Phase plot of a Blaschke product B and its derivative B^{\prime}

Critical points of Blaschke products

Critical points of a function are the zeros of its derivative.

Phase plot of a Blaschke product B and its derivative B^{\prime}

Critical points of Blaschke products

Critical points of a function are the zeros of its derivative.

Phase plot of a Blaschke product B and its derivative B^{\prime}

Critical points of Blaschke products

Critical points of a function are the zeros of its derivative.

Phase plot of a Blaschke product B and its derivative B^{\prime}

Critical points of Blaschke products

Critical points of a function are the zeros of its derivative.

Blaschke products of degree n have exactly $n-1$ critical points in \mathbb{D} and $n-1$ critical points in $\mathbb{C} \backslash \overline{\mathbb{D}}$.

Critical points of Blaschke products

Critical points of a function are the zeros of its derivative.

Blaschke products of degree n have exactly $n-1$ critical points in \mathbb{D} and $n-1$ critical points in $\mathbb{C} \backslash \overline{\mathbb{D}}$.
We are interested in the interplay between zeros of B and of B^{\prime}.

Critical points of Blaschke products

The critical points of a Blaschke product lie in the hyperbolic convex hull of its zeros (Walsh).

Can the critical points of B in \mathbb{D} be prescribed arbitrarily?

Critical points of Blaschke products

The critical points of a Blaschke product lie in the hyperbolic convex hull of its zeros (Walsh).

Can the critical points of B in \mathbb{D} be prescribed arbitrarily?

Critical points of Blaschke products

The critical points of a Blaschke product lie in the hyperbolic convex hull of its zeros (Walsh).

Can the critical points of B in \mathbb{D} be prescribed arbitrarily?

```
Theorem
Let \(\xi_{1}, \ldots, \xi_{n-1}\) be \(n-1\) points in \(\mathbb{D}\). Then there is a Blaschke product \(B\) of degree \(n\) with critical points \(\xi_{k}\). B is unique up to post-composition with a conformal automorphism of \(\mathbb{D}\).
```


Critical points of Blaschke products

The critical points of a Blaschke product lie in the hyperbolic convex hull of its zeros (Walsh).

Can the critical points of B in \mathbb{D} be prescribed arbitrarily?

```
Theorem
Let \(\xi_{1}, \ldots, \xi_{n-1}\) be \(n-1\) points in \(\mathbb{D}\). Then there is a Blaschke product \(B\) of degree \(n\) with critical points \(\xi_{k}\). B is unique up to post-composition with a conformal automorphism of \(\mathbb{D}\).
```

Proofs by Heins (1962), Wang \& Peng (1979), Bousch (1992), Zakeri (1996), Stephenson (2005), Kraus \& Roth (2008).

Critical points of Blaschke products

The critical points of a Blaschke product lie in the hyperbolic convex hull of its zeros (Walsh).

Can the critical points of B in \mathbb{D} be prescribed arbitrarily?

```
Theorem
Let \(\xi_{1}, \ldots, \xi_{n-1}\) be \(n-1\) points in \(\mathbb{D}\). Then there is a Blaschke product \(B\) of degree \(n\) with critical points \(\xi_{k}\). B is unique up to post-composition with a conformal automorphism of \(\mathbb{D}\).
```

Proofs by Heins (1962), Wang \& Peng (1979), Bousch (1992), Zakeri (1996), Stephenson (2005), Kraus \& Roth (2008).

How can the zeros of B be determined from its critical points?

Transformation to the upper half plane

The (inverse) Cayley transform sends unit disk to upper half plane

- The composition $f:=T \circ B \circ T^{-1}$ is a real rational function

Transformation to the upper half plane

The (inverse) Cayley transform sends unit disk to upper half plane

- The composition $f:=T \circ B \circ T^{-1}$ is a real rational function with critical points $\zeta_{k}:=T\left(\xi_{k}\right)$

Transformation to the upper half plane

The (inverse) Cayley transform sends unit disk to upper half plane

- The composition $f:=T \circ B \circ T^{-1}$ is a real rational function with critical points $\zeta_{k}:=T\left(\xi_{k}\right)$ and $\overline{\zeta_{k}}$ for $k=1, \ldots, n-1$.

Transformation to the upper half plane

The (inverse) Cayley transform sends unit disk to upper half plane

- The composition $f:=T \circ B \circ T^{-1}$ is a real rational function with critical points $\zeta_{k}:=T\left(\xi_{k}\right)$ and $\overline{\zeta_{k}}$ for $k=1, \ldots, n-1$.
- The form of f depends on the normalization of B.

A problem for rational functions

- If $B(1)=-1$, then $f:=T \circ B \circ T^{-1}$ has the form

$$
\begin{equation*}
f(x)=-\frac{r_{1}}{x-x_{1}}-\frac{r_{2}}{x-x_{2}}-\ldots-\frac{r_{n}}{x-x_{n}} \tag{1}
\end{equation*}
$$

with $x_{1}<\ldots<x_{n}$ and $r_{k}>0$.

A problem for rational functions

- If $B(1)=-1$, then $f:=T \circ B \circ T^{-1}$ has the form

$$
\begin{equation*}
f(x)=-\frac{r_{1}}{x-x_{1}}-\frac{r_{2}}{x-x_{2}}-\ldots-\frac{r_{n}}{x-x_{n}} \tag{1}
\end{equation*}
$$

with $x_{1}<\ldots<x_{n}$ and $r_{k}>0$.

- If $B(1)=1$, then $g:=T \circ B \circ T^{-1}$ has the form

$$
\begin{equation*}
g(x)=a x+b-\frac{s_{1}}{x-t_{1}}-\ldots-\frac{s_{n-1}}{x-t_{n-1}} \tag{2}
\end{equation*}
$$

with $a>0, b \in \mathbb{R}, t_{1}<\ldots<t_{n-1}, s_{k}>0$.

A problem for rational functions

- If $B(1)=-1$, then $f:=T \circ B \circ T^{-1}$ has the form

$$
\begin{equation*}
f(x)=-\frac{r_{1}}{x-x_{1}}-\frac{r_{2}}{x-x_{2}}-\ldots-\frac{r_{n}}{x-x_{n}} \tag{1}
\end{equation*}
$$

with $x_{1}<\ldots<x_{n}$ and $r_{k}>0$.

- If $B(1)=1$, then $g:=T \circ B \circ T^{-1}$ has the form

$$
\begin{equation*}
g(x)=a x+b-\frac{s_{1}}{x-t_{1}}-\ldots-\frac{s_{n-1}}{x-t_{n-1}} \tag{2}
\end{equation*}
$$

with $a>0, b \in \mathbb{R}, t_{1}<\ldots<t_{n-1}, s_{k}>0$.
Transformed problem: Find rational functions f of form (1) and g of form (2) with given critical points ζ_{k} in the upper half-plane \mathbb{H}.

A problem for rational functions

A rational function f of the form

$$
f(x)=-\frac{r_{1}}{x-x_{1}}-\frac{r_{2}}{x-x_{2}}-\ldots-\frac{r_{n}}{x-x_{n}}
$$

has critical points $\zeta_{1}, \ldots, \zeta_{n-1}$ if and only if

$$
\begin{equation*}
f^{\prime}(x)=\frac{r_{1}}{\left(x-x_{1}\right)^{2}}+\frac{r_{2}}{\left(x-x_{2}\right)^{2}}+\ldots+\frac{r_{n}}{\left(x-x_{n}\right)^{2}}=\frac{c P(x)}{Q(x)^{2}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
P(x):=\prod_{k=1}^{n-1}\left(x-\zeta_{k}\right)\left(x-\bar{\zeta}_{k}\right), \quad Q(x):=\prod_{k=1}^{n}\left(x-x_{k}\right) \tag{4}
\end{equation*}
$$

and $c:=r_{1}+\ldots+r_{n}$.

A problem for rational functions

A rational function f of the form

$$
f(x)=-\frac{r_{1}}{x-x_{1}}-\frac{r_{2}}{x-x_{2}}-\ldots-\frac{r_{n}}{x-x_{n}}
$$

has critical points $\zeta_{1}, \ldots, \zeta_{n-1}$ if and only if

$$
\begin{equation*}
f^{\prime}(x)=\frac{r_{1}}{\left(x-x_{1}\right)^{2}}+\frac{r_{2}}{\left(x-x_{2}\right)^{2}}+\ldots+\frac{r_{n}}{\left(x-x_{n}\right)^{2}}=\frac{c P(x)}{Q(x)^{2}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
P(x):=\prod_{k=1}^{n-1}\left(x-\zeta_{k}\right)\left(x-\bar{\zeta}_{k}\right), \quad Q(x):=\prod_{k=1}^{n}\left(x-x_{k}\right) \tag{4}
\end{equation*}
$$

and $c:=r_{1}+\ldots+r_{n}$. Note that P is positive on \mathbb{R}.

A problem for rational functions

Condition (3) is equivalent to

$$
\begin{equation*}
c P(x)=\sum_{k=1}^{n} r_{k} \prod_{\substack{j=1 \\ j \neq k}}^{n}\left(x-x_{j}\right)^{2} \quad \Leftrightarrow \quad P(x)=\sum_{k=1}^{n} P\left(x_{k}\right) Q_{k}(x)^{2} \tag{5}
\end{equation*}
$$

with the Lagrange interpolation polynomials

$$
Q_{k}(x):=\prod_{\substack{j=1 \\ j \neq k}}^{n} \frac{x-x_{j}}{x_{k}-x_{j}}=\frac{Q(x)}{Q^{\prime}\left(x_{k}\right)\left(x-x_{k}\right)}, \quad k=1,2, \ldots, n .
$$

Here P is given and the x_{k} (and hence Q) have to be determined.

A problem for polynomials (first normalization)

Comparing (5)

$$
P(x)=\sum_{k=1}^{n} P\left(x_{k}\right) Q_{k}(x)^{2}
$$

A problem for polynomials (first normalization)

Comparing (5) with the Lagrange-Hermite interpolation formula for P

$$
P(x)=\sum_{k=1}^{n} P\left(x_{k}\right) Q_{k}(x)^{2}+\sum_{k=1}^{n}\left(P^{\prime}\left(x_{k}\right)-P\left(x_{k}\right) \frac{Q^{\prime \prime}\left(x_{k}\right)}{Q^{\prime}\left(x_{k}\right)}\right)\left(x-x_{k}\right) Q_{k}(x)^{2}
$$

A problem for polynomials（first normalization）

Comparing（5）with the Lagrange－Hermite interpolation formula for P

$$
P(x)=\sum_{k=1}^{n} P\left(x_{k}\right) Q_{k}(x)^{2}+\sum_{k=1}^{n}\left(P^{\prime}\left(x_{k}\right)-P\left(x_{k}\right) \frac{Q^{\prime \prime}\left(x_{k}\right)}{Q^{\prime}\left(x_{k}\right)}\right)\left(x-x_{k}\right) Q_{k}(x)^{2}
$$

we see that the green terms must vanish for $k=1, \ldots, n$

$$
Q^{\prime}\left(x_{k}\right) P^{\prime}\left(x_{k}\right)-Q^{\prime \prime}\left(x_{k}\right) P\left(x_{k}\right)=0 .
$$

A problem for polynomials (first normalization)

Comparing (5) with the Lagrange-Hermite interpolation formula for P

$$
P(x)=\sum_{k=1}^{n} P\left(x_{k}\right) Q_{k}(x)^{2}+\sum_{k=1}^{n}\left(P^{\prime}\left(x_{k}\right)-P\left(x_{k}\right) \frac{Q^{\prime \prime}\left(x_{k}\right)}{Q^{\prime}\left(x_{k}\right)}\right)\left(x-x_{k}\right) Q_{k}(x)^{2}
$$

we see that the green terms must vanish for $k=1, \ldots, n$

$$
Q^{\prime}\left(x_{k}\right) P^{\prime}\left(x_{k}\right)-Q^{\prime \prime}\left(x_{k}\right) P\left(x_{k}\right)=0 .
$$

Since the x_{k} are the zeros of Q, this means that Q divides $P Q^{\prime \prime}-P^{\prime} Q^{\prime}$.

A problem for polynomials (first normalization)

Comparing (5) with the Lagrange-Hermite interpolation formula for P

$$
P(x)=\sum_{k=1}^{n} P\left(x_{k}\right) Q_{k}(x)^{2}+\sum_{k=1}^{n}\left(P^{\prime}\left(x_{k}\right)-P\left(x_{k} \frac{Q^{\prime \prime}\left(x_{k}\right)}{Q^{\prime}\left(x_{k}\right)}\right)\left(x-x_{k}\right) Q_{k}(x)^{2}\right.
$$

we see that the green terms must vanish for $k=1, \ldots, n$

$$
Q^{\prime}\left(x_{k}\right) P^{\prime}\left(x_{k}\right)-Q^{\prime \prime}\left(x_{k}\right) P\left(x_{k}\right)=0 .
$$

Since the x_{k} are the zeros of Q, this means that Q divides $P Q^{\prime \prime}-P^{\prime} Q^{\prime}$. First normalization: Given a positive polynomial P of degree $2 n-2$, find real polynomials R of degree $2 n-4$ such that the ODE

$$
P Q^{\prime \prime}-P^{\prime} Q^{\prime}+R Q=0
$$

has a polynomial solution Q of degree n with simple real roots.

Stieltjes Polynomials

Stieltjes and Van Vleck polynomials

Let $\operatorname{deg} A=p+1$ and $\operatorname{deg} B=p$. A polynomial C of degree $p-1$ is called Van Vleck polynomial, if the generalized Lamé equation

$$
A Q^{\prime \prime}+2 B Q^{\prime}+C Q=0
$$

has a polynomial solution Q of degree n. Any solution Q is then a Stieltjes polynomial.

Stieltjes and Van Vleck polynomials

Let $\operatorname{deg} A=p+1$ and $\operatorname{deg} B=p$. A polynomial C of degree $p-1$ is called Van Vleck polynomial, if the generalized Lamé equation

$$
A Q^{\prime \prime}+2 B Q^{\prime}+C Q=0
$$

has a polynomial solution Q of degree n. Any solution Q is then a Stieltjes polynomial. In 1885 Stieltjes investigated the cases where

$$
A(x)=\left(x-a_{0}\right)\left(x-a_{1}\right) \cdots\left(x-a_{p}\right)
$$

has real roots $a_{0}<a_{1}<\ldots<a_{p}$ and

$$
\frac{B(x)}{A(x)}=\frac{\varrho_{0}}{x-a_{0}}+\frac{\varrho_{1}}{x-a_{1}}+\ldots+\frac{\varrho_{p}}{x-a_{p}}, \quad \text { with } \varrho_{k}>0
$$

Stieltjes and Van Vleck polynomials

Let $\operatorname{deg} A=p+1$ and $\operatorname{deg} B=p$. A polynomial C of degree $p-1$ is called Van Vleck polynomial, if the generalized Lamé equation

$$
A Q^{\prime \prime}+2 B Q^{\prime}+C Q=0
$$

has a polynomial solution Q of degree n. Any solution Q is then a Stieltjes polynomial. In 1885 Stieltjes investigated the cases where

$$
A(x)=\left(x-a_{0}\right)\left(x-a_{1}\right) \cdots\left(x-a_{p}\right)
$$

has real roots $a_{0}<a_{1}<\ldots<a_{p}$ and

$$
\frac{B(x)}{A(x)}=\frac{\varrho_{0}}{x-a_{0}}+\frac{\varrho_{1}}{x-a_{1}}+\ldots+\frac{\varrho_{p}}{x-a_{p}}, \quad \text { with } \varrho_{k}>0
$$

In our case: $P Q^{\prime \prime}-P^{\prime} Q^{\prime}+R Q=0$ with a positive polynomial P.

Equilibrium of Charges

Connection to problem in electrostatics

Stieltjes established a connection to electrostatics:
Put positive charges ϱ_{k} at the points a_{k} on the line. Then:

Connection to problem in electrostatics

Stieltjes established a connection to electrostatics:
Put positive charges ϱ_{k} at the points a_{k} on the line. Then:
Zeros of Stieltjes polynomial Q are exactly the equilibrium points of n movable unit charges distributed between the fixed charges

Connection to problem in electrostatics

Stieltjes established a connection to electrostatics:
Put positive charges ϱ_{k} at the points a_{k} on the line. Then:
Zeros of Stieltjes polynomial Q are exactly the equilibrium points of n movable unit charges distributed between the fixed charges

There are $\binom{n+p-1}{n}$ solutions according to the different ways to distribute the movable charges between the fixed charges.

Connection to problem in electrostatics

Stieltjes established a connection to electrostatics:
Put positive charges ϱ_{k} at the points a_{k} on the line. Then:
Zeros of Stieltjes polynomial Q are exactly the equilibrium points of n movable unit charges distributed between the fixed charges

There are $\binom{n+p-1}{n}$ solutions according to the different ways to distribute the movable charges between the fixed charges.
Each solution corresponds to a minimum of the potential energy

$$
W\left(x_{1}, \ldots, x_{n}\right)=-\sum_{k=0}^{p} \sum_{j=1}^{n} \varrho_{k} \log \left|a_{k}-x_{j}\right|-\sum_{1 \leq k<j \leq n} \log \left|x_{k}-x_{j}\right|
$$

Equilibrium problems

Zeros of Stieltjes polynomials for the ODE $P Q^{\prime \prime}-P^{\prime} Q^{\prime}+R Q=0$ are equilibrium positions of n movable unit charges on \mathbb{R} in the presence of $2 n-2$ charges $-\frac{1}{2}$ at the points ζ_{k} and $\bar{\zeta}_{k}$

Equilibrium problems

Zeros of Stieltjes polynomials for the ODE $P Q^{\prime \prime}-P^{\prime} Q^{\prime}+R Q=0$ are equilibrium positions of n movable unit charges on \mathbb{R} in the presence of $2 n-2$ charges $-\frac{1}{2}$ at the points ζ_{k} and $\bar{\zeta}_{k}$

The second generalized Lamé equation $P S^{\prime \prime}-P^{\prime} S^{\prime}+\tilde{R} S=0$ leads to the same problem with $n-1$ movable unit charges.

Example: the case $n=2$

One pair ζ and $\bar{\zeta}$ of negative charges $-\frac{1}{2}$ given. Search equilibrium of one positive unit charge on real line.

Example: the case $n=2$

One pair ζ and $\bar{\zeta}$ of negative charges $-\frac{1}{2}$ given. Search equilibrium of one positive unit charge on real line.

Example: the case $n=2$

One pair ζ and $\bar{\zeta}$ of negative charges $-\frac{1}{2}$ given. Search equilibrium of two positive unit charges on real line.

The general case

The problem with $2 n-2$ fixed negative charges $-\frac{1}{2}$ and $n-1$ movable unit charges at t_{j} was solved by Orive and García (2010).

The general case

The problem with $2 n-2$ fixed negative charges $-\frac{1}{2}$ and $n-1$ movable unit charges at t_{j} was solved by Orive and García (2010). The unique equilibrium position with $t_{1}<\ldots<t_{n-1}$ minimizes the potential energy

$$
W\left(t_{1}, \ldots, t_{n-1}\right):=\sum_{1 \leq k, j \leq n-1} \log \left|\left(t_{k}-\zeta_{j}\right)\left(t_{k}-\bar{\zeta}_{j}\right)\right|-2 \sum_{1 \leq k<j \leq n-1} \log \left|t_{j}-t_{k}\right| .
$$

The general case

The problem with $2 n-2$ fixed negative charges $-\frac{1}{2}$ and $n-1$ movable unit charges at t_{j} was solved by Orive and García (2010). The unique equilibrium position with $t_{1}<\ldots<t_{n-1}$ minimizes the potential energy

$$
W\left(t_{1}, \ldots, t_{n-1}\right):=\sum_{1 \leq k, j \leq n-1} \log \left|\left(t_{k}-\zeta_{j}\right)\left(t_{k}-\bar{\zeta}_{j}\right)\right|-2 \sum_{1 \leq k<j \leq n-1} \log \left|t_{j}-t_{k}\right|
$$

The Orive-Garcia approach does not work for n movable unit charges.

The general case

The problem with $2 n-2$ fixed negative charges $-\frac{1}{2}$ and $n-1$ movable unit charges at t_{j} was solved by Orive and García (2010). The unique equilibrium position with $t_{1}<\ldots<t_{n-1}$ minimizes the potential energy

$$
W\left(t_{1}, \ldots, t_{n-1}\right):=\sum_{1 \leq k, j \leq n-1} \log \left|\left(t_{k}-\zeta_{j}\right)\left(t_{k}-\bar{\zeta}_{j}\right)\right|-2 \sum_{1 \leq k<j \leq n-1} \log \left|t_{j}-t_{k}\right| .
$$

The Orive-Garcia approach does not work for n movable unit charges. Use connection with above problem: rational functions g and f differ by a Möbius transformation of upper half plane that maps 0 to ∞ :

$$
g(x)=-\frac{d}{f(x)}+e, \quad d>0, e \in \mathbb{R}
$$

The general case

The problem with $2 n-2$ fixed negative charges $-\frac{1}{2}$ and $n-1$ movable unit charges at t_{j} was solved by Orive and García (2010). The unique equilibrium position with $t_{1}<\ldots<t_{n-1}$ minimizes the potential energy

$$
W\left(t_{1}, \ldots, t_{n-1}\right):=\sum_{1 \leq k, j \leq n-1} \log \left|\left(t_{k}-\zeta_{j}\right)\left(t_{k}-\bar{\zeta}_{j}\right)\right|-2 \sum_{1 \leq k<j \leq n-1} \log \left|t_{j}-t_{k}\right| .
$$

The Orive-Garcia approach does not work for n movable unit charges. Use connection with above problem: rational functions g and f differ by a Möbius transformation of upper half plane that maps 0 to ∞ :

$$
g(x)=-\frac{d}{f(x)}+e, \quad d>0, e \in \mathbb{R}
$$

Equilibrium points of n unit charges are poles of f, i.e., solutions of $g(x)=e$ with $e \in \mathbb{R}$.

Equilibrium of n unit charges

Solutions of $g(x)=e$ with $e \in \mathbb{R}$ form one-parameter family

Equilibrium of n unit charges

Solutions of $g(x)=e$ with $e \in \mathbb{R}$ form one-parameter family

Solutions with second normalization are unique (corresponding to t_{k}), solutions with first normalization are not unique (corresponding to x_{k}).

What we got so far

Investigating the equivalence of the critical-point problem for Blaschke products and an equilibrium problem in plane electrostatics we got

What we got so far

Investigating the equivalence of the critical－point problem for Blaschke products and an equilibrium problem in plane electrostatics we got
－an independent（natural and transparent）proof of existence and （essential）uniqueness of Blaschke products with prescribed critical points，

What we got so far

Investigating the equivalence of the critical-point problem for Blaschke products and an equilibrium problem in plane electrostatics we got

- an independent (natural and transparent) proof of existence and (essential) uniqueness of Blaschke products with prescribed critical points,
- that finding a Blaschke product from its critical points is equivalent to minimizing an energy functional,

What we got so far

Investigating the equivalence of the critical-point problem for Blaschke products and an equilibrium problem in plane electrostatics we got

- an independent (natural and transparent) proof of existence and (essential) uniqueness of Blaschke products with prescribed critical points,
- that finding a Blaschke product from its critical points is equivalent to minimizing an energy functional,
- the general solution of the electrostatic problem with n moveable charges (instead of $n-1$) in the case at hand,

What we got so far

Investigating the equivalence of the critical-point problem for Blaschke products and an equilibrium problem in plane electrostatics we got

- an independent (natural and transparent) proof of existence and (essential) uniqueness of Blaschke products with prescribed critical points,
- that finding a Blaschke product from its critical points is equivalent to minimizing an energy functional,
- the general solution of the electrostatic problem with n moveable charges (instead of $n-1$) in the case at hand,
- a description of the complete solution space of the (special) Lamé equation.

Moment Problems

Convex Cones

A convex cone in a real vector space is a set \mathscr{C} satisfying

$$
u, v \in \mathscr{C}, \lambda, \mu>0 \quad \Rightarrow \quad \lambda u+\mu v \in \mathscr{C}
$$

Convex Cones

A convex cone in a real vector space is a set \mathscr{C} satisfying

$$
u, v \in \mathscr{C}, \lambda, \mu>0 \quad \Rightarrow \quad \lambda u+\mu v \in \mathscr{C}
$$

Convex cone of non-negative polynomials

$$
\mathscr{P}_{n}:=\left\{\left(p_{0}, \ldots, p_{n-1}\right) \in \mathbb{R}^{n}: p_{0}+p_{1} x+\ldots+p_{n-1} x^{n-1} \geq 0 \text { on } \mathbb{R}\right\},
$$

Convex Cones

A convex cone in a real vector space is a set \mathscr{C} satisfying

$$
u, v \in \mathscr{C}, \lambda, \mu>0 \quad \Rightarrow \quad \lambda u+\mu v \in \mathscr{C}
$$

Convex cone of non-negative polynomials

$$
\mathscr{P}_{n}:=\left\{\left(p_{0}, \ldots, p_{n-1}\right) \in \mathbb{R}^{n}: p_{0}+p_{1} x+\ldots+p_{n-1} x^{n-1} \geq 0 \text { on } \mathbb{R}\right\}
$$

Moment cone

$$
\mathscr{M}_{n}:=\left\{c=\left(c_{0}, \ldots, c_{n-1}\right) \in \mathbb{R}^{n}: c_{k}=\int_{-\infty}^{\infty} t^{k} d \sigma, \sigma \in M_{n}\right\}
$$

where M_{n} is the set of nonnegative measures σ on \mathbb{R} such that

$$
\int_{-\infty}^{\infty}|t|^{k} d \sigma<\infty, \quad k=0, \ldots, n-1
$$

Convex Cones

A convex cone in a real vector space is a set \mathscr{C} satisfying

$$
u, v \in \mathscr{C}, \lambda, \mu>0 \quad \Rightarrow \quad \lambda u+\mu v \in \mathscr{C}
$$

Convex cone of non-negative polynomials

$$
\mathscr{P}_{n}:=\left\{\left(p_{0}, \ldots, p_{n-1}\right) \in \mathbb{R}^{n}: p_{0}+p_{1} x+\ldots+p_{n-1} x^{n-1} \geq 0 \text { on } \mathbb{R}\right\}
$$

Moment cone

$$
\mathscr{M}_{n}:=\left\{c=\left(c_{0}, \ldots, c_{n-1}\right) \in \mathbb{R}^{n}: c_{k}=\int_{-\infty}^{\infty} t^{k} d \sigma, \sigma \in M_{n}\right\}
$$

where M_{n} is the set of nonnegative measures σ on \mathbb{R} such that

$$
\int_{-\infty}^{\infty}|t|^{k} d \sigma<\infty, \quad k=0, \ldots, n-1
$$

The polynomial P with $P\left(\zeta_{j}\right)=P\left(\overline{\zeta_{j}}\right)$ belongs to $\mathscr{P}_{2 n-1}$.

Canonical representations of moments

Any point c in the interior of the moment cone $\mathscr{M}_{2 n-1}$ can be uniquely represented by an atomic measure concentrated on $n-1$ roots $t_{1}<t_{2}<\ldots<t_{n-1}$ in \mathbb{R} with positive masses $\sigma_{1}, \ldots, \sigma_{n-1}>0$ and mass $\lambda>0$ at infinity,

$$
\begin{equation*}
c_{k}=\sum_{j=1}^{n-1} \sigma_{j} t_{j}^{k}, \quad(k=0, \ldots, 2 n-3), \quad c_{2 n-2}=\sum_{j=1}^{n-1} \sigma_{j} t_{j}^{2 n-2}+\lambda . \tag{6}
\end{equation*}
$$

Canonical representations of moments

Any point c in the interior of the moment cone $\mathscr{M}_{2 n-1}$ can be uniquely represented by an atomic measure concentrated on $n-1$ roots $t_{1}<t_{2}<\ldots<t_{n-1}$ in \mathbb{R} with positive masses $\sigma_{1}, \ldots, \sigma_{n-1}>0$ and mass $\lambda>0$ at infinity,

$$
\begin{equation*}
c_{k}=\sum_{j=1}^{n-1} \sigma_{j} t_{j}^{k}, \quad(k=0, \ldots, 2 n-3), \quad c_{2 n-2}=\sum_{j=1}^{n-1} \sigma_{j} t_{j}^{2 n-2}+\lambda . \tag{6}
\end{equation*}
$$

There are alternative representations with masses $\varrho_{j}>0$ at n roots $x_{1}, x_{2}, \ldots, x_{n}$, such that $x_{1}<t_{1}<x_{2}<t_{2}<\ldots<x_{n-1}<t_{n-1}<x_{n}$.

$$
\begin{equation*}
c_{k}=\sum_{j=1}^{n} \varrho_{j} x_{j}^{k}, \quad k=0, \ldots, 2 n-2 \tag{7}
\end{equation*}
$$

Canonical representations of moments

Any point c in the interior of the moment cone $\mathscr{M}_{2 n-1}$ can be uniquely represented by an atomic measure concentrated on $n-1$ roots $t_{1}<t_{2}<\ldots<t_{n-1}$ in \mathbb{R} with positive masses $\sigma_{1}, \ldots, \sigma_{n-1}>0$ and mass $\lambda>0$ at infinity,

$$
\begin{equation*}
c_{k}=\sum_{j=1}^{n-1} \sigma_{j} t_{j}^{k}, \quad(k=0, \ldots, 2 n-3), \quad c_{2 n-2}=\sum_{j=1}^{n-1} \sigma_{j} t_{j}^{2 n-2}+\lambda . \tag{6}
\end{equation*}
$$

There are alternative representations with masses $\varrho_{j}>0$ at n roots $x_{1}, x_{2}, \ldots, x_{n}$, such that $x_{1}<t_{1}<x_{2}<t_{2}<\ldots<x_{n-1}<t_{n-1}<x_{n}$.

$$
\begin{equation*}
c_{k}=\sum_{j=1}^{n} \varrho_{j} x_{j}^{k}, \quad k=0, \ldots, 2 n-2 \tag{7}
\end{equation*}
$$

Here one of the $x_{j} \in\left(t_{j-1}, t_{j}\right)$ can be fixed arbitrarily to make the representation unique.

Vandermonde decomposition of Hankel matrices

The point $c=\left(c_{0}, c_{1}, \ldots, c_{2 n-2}\right)$ is an inner point of the moment cone $\mathscr{M}_{2 n-1}$ if and only if the Hankel matrix

$$
H(c):=\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{n-1} \\
c_{1} & c_{2} & \cdots & c_{n} \\
\vdots & \vdots & & \vdots \\
c_{n-1} & c_{n} & \cdots & c_{2 n-2}
\end{array}\right]
$$

is positive definite.

Vandermonde decomposition of Hankel matrices

The point $c=\left(c_{0}, c_{1}, \ldots, c_{2 n-2}\right)$ is an inner point of the moment cone $\mathscr{M}_{2 n-1}$ if and only if the Hankel matrix

$$
H(c):=\left[\begin{array}{cccc}
c_{0} & c_{1} & \cdots & c_{n-1} \\
c_{1} & c_{2} & \cdots & c_{n} \\
\vdots & \vdots & & \vdots \\
c_{n-1} & c_{n} & \cdots & c_{2 n-2}
\end{array}\right]
$$

is positive definite. The canonical representation involving only finite roots is equivalent to the Vandermonde decomposition $H(c)=V D V^{\top}$,

$$
V:=\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{1} & x_{2} & \cdots & x_{n} \\
\vdots & \vdots & & \vdots \\
x_{1}^{n-1} & x_{2}^{n-1} & \cdots & x_{n}^{n-1}
\end{array}\right], \quad D:=\left[\begin{array}{cccc}
\varrho_{1} & 0 & \cdots & 0 \\
0 & \varrho_{2} & \cdots & 0 \\
\vdots & \vdots & & \vdots \\
0 & 0 & \cdots & \varrho_{n}
\end{array}\right] .
$$

We learned this from Georg Heinig and Karla Rost.

Georg Heinig explaining Toeplitz, Hankel, Cauchy, and Vandermonde matrices

Georg Heinig explaining Toeplitz, Hankel, Cauchy, and Vandermonde matrices

Georg Heinig explaining Toeplitz, Hankel, Cauchy, and Vandermonde matrices

Putting Things Together

Observations

There are several similarities between the equilibrium problem and the moment problem:

Observations

There are several similarities between the equilibrium problem and the moment problem:

- The data of the moment problem are given by $c \in \mathscr{M}_{2 n-1}$ (moment cone).

Observations

There are several similarities between the equilibrium problem and the moment problem:

- The data of the moment problem are given by $c \in \mathscr{M}_{2 n-1}$ (moment cone).
- Data of electrostatic problem are encoded in $p \in \mathscr{P}_{2 n-1}$ (cone of positive polynomials).

Observations

There are several similarities between the equilibrium problem and the moment problem:

- The data of the moment problem are given by $c \in \mathscr{M}_{2 n-1}$ (moment cone).
- Data of electrostatic problem are encoded in $p \in \mathscr{P}_{2 n-1}$ (cone of positive polynomials).
- Both solutions have the same structure.

Observations

There are several similarities between the equilibrium problem and the moment problem:

- The data of the moment problem are given by $c \in \mathscr{M}_{2 n-1}$ (moment cone).
- Data of electrostatic problem are encoded in $p \in \mathscr{P}_{2 n-1}$ (cone of positive polynomials).
- Both solutions have the same structure.

Is there a mapping which makes the problems isomorphic?

Observations

There are several similarities between the equilibrium problem and the moment problem:

- The data of the moment problem are given by $c \in \mathscr{M}_{2 n-1}$ (moment cone).
- Data of electrostatic problem are encoded in $p \in \mathscr{P}_{2 n-1}$ (cone of positive polynomials).
- Both solutions have the same structure.

Is there a mapping which makes the problems isomorphic?
Yes, there is; it was introduced by Yurii Nesterov in 2000.

The Nesterov mapping

For all $c \in \mathbb{R}^{2 n-1}$ with an invertible associated Hankel matrix $H(c)$, Nesterov defined the mapping

$$
N: c \mapsto N(c):=H^{*} H(c)^{-1},
$$

where H^{*} maps a matrix to the vector of its anti-diagonal sums

$$
H^{*}: \mathbb{R}^{n \times n} \mapsto \mathbb{R}^{2 n-1}, X=\left(x_{i j}\right) \mapsto y=\left(y_{k}\right), \quad y_{k}:=\sum_{i+j=k} x_{i j}
$$

The Nesterov mapping

For all $c \in \mathbb{R}^{2 n-1}$ with an invertible associated Hankel matrix $H(c)$, Nesterov defined the mapping

$$
N: c \mapsto N(c):=H^{*} H(c)^{-1},
$$

where H^{*} maps a matrix to the vector of its anti-diagonal sums

$$
H^{*}: \mathbb{R}^{n \times n} \mapsto \mathbb{R}^{2 n-1}, X=\left(x_{i j}\right) \mapsto y=\left(y_{k}\right), \quad y_{k}:=\sum_{i+j=k} x_{i j} .
$$

The mapping N maps the interior of the moment cone $\mathscr{M}_{2 n-1}$ bijectively onto the interior of the cone $\mathscr{P}_{2 n-1}$ of positive polynomials.

The Nesterov mapping

For all $c \in \mathbb{R}^{2 n-1}$ with an invertible associated Hankel matrix $H(c)$, Nesterov defined the mapping

$$
N: c \mapsto N(c):=H^{*} H(c)^{-1}
$$

where H^{*} maps a matrix to the vector of its anti-diagonal sums

$$
H^{*}: \mathbb{R}^{n \times n} \mapsto \mathbb{R}^{2 n-1}, X=\left(x_{i j}\right) \mapsto y=\left(y_{k}\right), \quad y_{k}:=\sum_{i+j=k} x_{i j} .
$$

The mapping N maps the interior of the moment cone $\mathscr{M}_{2 n-1}$ bijectively onto the interior of the cone $\mathscr{P}_{2 n-1}$ of positive polynomials. Nesterov's proof is based on duality and the fact that N is the gradient of a (strongly non-degenerate self-concordant) barrier functional.

The Nesterov mapping

For all $c \in \mathbb{R}^{2 n-1}$ with an invertible associated Hankel matrix $H(c)$, Nesterov defined the mapping

$$
N: c \mapsto N(c):=H^{*} H(c)^{-1}
$$

where H^{*} maps a matrix to the vector of its anti-diagonal sums

$$
H^{*}: \mathbb{R}^{n \times n} \mapsto \mathbb{R}^{2 n-1}, X=\left(x_{i j}\right) \mapsto y=\left(y_{k}\right), \quad y_{k}:=\sum_{i+j=k} x_{i j}
$$

The mapping N maps the interior of the moment cone $\mathscr{M}_{2 n-1}$ bijectively onto the interior of the cone $\mathscr{P}_{2 n-1}$ of positive polynomials. Nesterov's proof is based on duality and the fact that N is the gradient of a (strongly non-degenerate self-concordant) barrier functional. We gave an alternative proof using Bezoutians (inverses of Hankel matrices), which simultaneously establishes the connection between the equilibrium problem and the moment problem.

The main result for first normalization

Theorem (G. Semmler, E.W.)

Let $\zeta_{1}, \ldots, \zeta_{n-1}$ be arbitrary points in the upper half plane. Denote by $p \in \mathbb{R}^{2 n-1}$ the coefficient vector of the monic (positive) polynomial P of degree $2 n-2$ with zeros $\zeta_{1}, \ldots, \zeta_{n-1}$ and $\overline{\zeta_{1}}, \ldots, \overline{\zeta_{n-1}}$. Then:
(i) There is a unique vector $c \in \operatorname{int} \mathscr{M}_{2 n-1}$ such that $p=N(c)$.

The main result for first normalization

Theorem (G. Semmler, E.W.)

Let $\zeta_{1}, \ldots, \zeta_{n-1}$ be arbitrary points in the upper half plane. Denote by $p \in \mathbb{R}^{2 n-1}$ the coefficient vector of the monic (positive) polynomial P of degree $2 n-2$ with zeros $\zeta_{1}, \ldots, \zeta_{n-1}$ and $\overline{\zeta_{1}}, \ldots, \overline{\zeta_{n-1}}$. Then:
(i) There is a unique vector $c \in \operatorname{int} \mathscr{M}_{2 n-1}$ such that $p=N(c)$.
(ii) The points x_{1}, \ldots, x_{n} are equilibrium positions of n unit charges if and only if

$$
c_{k}=\sum_{j=1}^{k} \varrho_{j} x_{j}^{k}, \quad \varrho_{k}=\frac{1}{P\left(x_{k}\right)} \quad(k=0, \ldots, 2 n-2)
$$

The main result for first normalization

Theorem (G. Semmler, E.W.)

Let $\zeta_{1}, \ldots, \zeta_{n-1}$ be arbitrary points in the upper half plane. Denote by $p \in \mathbb{R}^{2 n-1}$ the coefficient vector of the monic (positive) polynomial P of degree $2 n-2$ with zeros $\zeta_{1}, \ldots, \zeta_{n-1}$ and $\overline{\zeta_{1}}, \ldots, \overline{\zeta_{n-1}}$. Then:
(i) There is a unique vector $c \in$ int $\mathscr{M}_{2 n-1}$ such that $p=N(c)$.
(ii) The points x_{1}, \ldots, x_{n} are equilibrium positions of n unit charges if and only if

$$
c_{k}=\sum_{j=1}^{k} \varrho_{j} x_{j}^{k}, \quad \varrho_{k}=\frac{1}{P\left(x_{k}\right)} \quad(k=0, \ldots, 2 n-2)
$$

(iii) Let $\xi_{1}, \ldots, \xi_{n-1}$ be pairwise different points in \mathbb{D}. If $\zeta_{j}:=T\left(\xi_{j}\right)$ and

$$
f^{\prime}(x)=c \frac{P(x)}{Q(x)^{2}}, \quad Q(x):=\prod_{k=1}^{n}\left(x-x_{k}\right)
$$

then $B:=T^{-1} \circ f \circ T$ is a Blaschke product of degree n with critical points $\xi_{1}, \ldots, \xi_{n-1}$.

Summary and open problem

There are three equivalent problems:
(i) \mathscr{B} : determination of a finite Blaschke product from its critical points

Summary and open problem

There are three equivalent problems：
（i） \mathscr{B} ：determination of a finite Blaschke product from its critical points
（ii） \mathscr{E} ：equilibrium of n or $n-1$ unit charges on \mathbb{R} in the presence of $2 n-2$ negative charges of size $-1 / 2$

Summary and open problem

There are three equivalent problems:
(i) \mathscr{B} : determination of a finite Blaschke product from its critical points
(ii) \mathscr{E} : equilibrium of n or $n-1$ unit charges on \mathbb{R} in the presence of $2 n-2$ negative charges of size $-1 / 2$
(iii) \mathscr{M} : canonical representation of a point in the interior of the moment cone

Summary and open problem

There are three equivalent problems：
（i） \mathscr{B} ：determination of a finite Blaschke product from its critical points
（ii） \mathscr{E} ：equilibrium of n or $n-1$ unit charges on \mathbb{R} in the presence of $2 n-2$ negative charges of size $-1 / 2$
（iii） \mathscr{M} ：canonical representation of a point in the interior of the moment cone
What is the best method to compute the zeros of a Blaschke product from its critical points？

Summary and open problem

There are three equivalent problems：
（i） \mathscr{B} ：determination of a finite Blaschke product from its critical points
（ii） \mathscr{E} ：equilibrium of n or $n-1$ unit charges on \mathbb{R} in the presence of $2 n-2$ negative charges of size $-1 / 2$
（iii） \mathscr{M} ：canonical representation of a point in the interior of the moment cone
What is the best method to compute the zeros of a Blaschke product from its critical points？
（i）Newton method combined with homotopy

Summary and open problem

There are three equivalent problems:
(i) \mathscr{B} : determination of a finite Blaschke product from its critical points
(ii) \mathscr{E} : equilibrium of n or $n-1$ unit charges on \mathbb{R} in the presence of $2 n-2$ negative charges of size $-1 / 2$
(iii) \mathscr{M} : canonical representation of a point in the interior of the moment cone
What is the best method to compute the zeros of a Blaschke product from its critical points?
(i) Newton method combined with homotopy
(ii) minimization of energy functional W, e.g., gradient or Newton method. Global minimum is the one and only critical point.

Summary and open problem

There are three equivalent problems:
(i) \mathscr{B} : determination of a finite Blaschke product from its critical points
(ii) \mathscr{E} : equilibrium of n or $n-1$ unit charges on \mathbb{R} in the presence of $2 n-2$ negative charges of size $-1 / 2$
(iii) \mathscr{M} : canonical representation of a point in the interior of the moment cone
What is the best method to compute the zeros of a Blaschke product from its critical points?
(i) Newton method combined with homotopy
(ii) minimization of energy functional W, e.g., gradient or Newton method. Global minimum is the one and only critical point.
(iii) Vandermonde factorization and inversion of Nesterov mapping?

Summary and open problem

There are three equivalent problems:
(i) \mathscr{B} : determination of a finite Blaschke product from its critical points
(ii) \mathscr{E} : equilibrium of n or $n-1$ unit charges on \mathbb{R} in the presence of $2 n-2$ negative charges of size $-1 / 2$
(iii) \mathscr{M} : canonical representation of a point in the interior of the moment cone
What is the best method to compute the zeros of a Blaschke product from its critical points?
(i) Newton method combined with homotopy
(ii) minimization of energy functional W, e.g., gradient or Newton method. Global minimum is the one and only critical point.
(iii) Vandermonde factorization and inversion of Nesterov mapping?

Inversion of Nesterov mapping N : int $\mathscr{M}_{2 d-1} \rightarrow$ int $\mathscr{P}_{2 d-1}$: Find a positive definite Bezoutian with prescribed anti-diagonal sums.

Infinite Blaschke products

Is there a direct path from problem \mathscr{B} (Blaschke products) to \mathscr{M} (moment problem) which avoids \mathscr{E} (electrostatics)?

Infinite Blaschke products

Is there a direct path from problem \mathscr{B} (Blaschke products) to \mathscr{M} (moment problem) which avoids \mathscr{E} (electrostatics)?

Phase plots of infinite Blaschke products on the Riemann sphere.

Software：the complex function explorer

www．mathworks．com／matlabcentral／fileexchange／45464－complex－function－explorer

Software: the complex function explorer

www.mathworks.com/matlabcentral/fileexchange/45464-complex-function-explorer

At the very end：advertisements

www．mathcalendar．net

Elias Wegert

Visual Complex Functions

An Introduction with Phase Portraits
（2）Birkhäuser
www．visual．wegert．com

