Lebesgue decomposition and order structure

IWOTA
Chemnitz, 15th August 2017

Glasgow Mathematical Journal

Zsigmond Tarcsay and Tamás Titkos

On the order structure of representable functionals
(to appear)

Motivation I. [Decomposition of nonnegative finite measures.]
Let $T \neq \emptyset$ be a set, $\Sigma \subseteq P(T)$ a σ-algebra, and consider the nonnegative finite measures μ and ν on Σ.

- $\mu \ll \nu$, if $\nu(A)=0$ implies $\mu(A)=0$ for all $A \in \Sigma$.
- $\mu \perp \nu$, if $\exists P \in \Sigma: \quad \mu(P)=\nu(T \backslash P)=0$.

Lebesgue decomposition theorem: The measure μ splits uniquely into ν-absolute continuous and ν-singular parts:

$$
\mu=\mu_{\mathrm{a}}+\mu_{\mathrm{s}}
$$

Comments:

(a) The set of measures is partially ordered by the relation

$$
\mu \leq \nu \quad \Longleftrightarrow \quad \forall A \in \Sigma: \quad \mu(A) \leq \nu(A)
$$

(b) This partial order is a lattice order, where the infima is

$$
(\mu \wedge \nu)(A)=\inf _{P \in \Sigma}\{\mu(A \cap P)+\nu(A \backslash P)\}
$$

Consequently, we can use lattice theoretic techniques.
(c) Observe that $\mu \perp \nu$ if and only if $\mu \wedge \nu$ is the zero measure.
(d) Furthermore, $\mu \ll \nu$ if and only if $\mu=\sup \{\mu \wedge n \nu \mid n \in \mathbb{N}\}$.
(e) Absolute continuity is hereditary in the following sense

$$
\mu \ll \nu \text { and } \vartheta \leq \mu \text { imply } \vartheta \ll \nu
$$

(f) The decomposition is unique.

Motivation II. [Decomposition of bounded positive operators.]
Let \mathscr{H} be a complex Hilbert space, and let denote $\mathrm{B}_{+}(\mathscr{H})$ the cone of bounded positive operators with the usual partial order

$$
A \leq B \quad \Leftrightarrow \quad \forall x \in \mathscr{H}:(A x \mid x) \leq(B x \mid x)
$$

For $A, B \in \mathrm{~B}_{+}(\mathscr{H})$ we say that

- $A \ll B$, if $A=(s) \lim _{n \in \mathbb{N}} A_{n}$ with some $\left(A_{n}\right)_{n \in \mathbb{N}}$ satisfying $\forall n \in \mathbb{N}: 0 \leq A_{n} \leq A_{n+1}$ and $A_{n} \leq c_{n} B$ with some $c_{n} \geq 0$.
- $A \perp B$, if $\operatorname{ran} A^{1 / 2} \cap \operatorname{ran} B^{1 / 2}=\{0\}$.

Ando's theorem: If A and B are bounded positive operators, then A splits into B-absolute continuous and B-singular parts

$$
A=A_{\mathrm{a}}+A_{\mathrm{s}}
$$

Comments:

(a) The partially ordered set of positive operators is not a lattice.
(b) For bounded positive operators A and B it is not so easy to present a common nonzero lower bound. As we will see, the parallel sum is a good choice:

$$
((A: B) x \mid x)=\inf _{y+z=x}\{(A y \mid y)+(B z \mid z)\} \quad(x \in \mathscr{H})
$$

With this operation we can imitate lattice techniques.
(c) Absolute continuity is not hereditary, that is

$$
A \ll B \text { and } C \leq A \text { do not imply } C \ll B
$$

(d) The decomposition is not unique in general.

Four if and only if theorems of Tsuyoshi Ando:

Let us introduce the notation $[B] A:=(s) \lim _{n \rightarrow \infty} A: n B$.
This is the so called B-regular part (or generalized short) of A.
(A) $A \perp B$ if and only if $A: B$ is the zero operator,
(B) $A \ll B$ if and only if $A=[B] A$.
(C) The greatest lower bound in $\mathrm{B}_{+}(\mathscr{H})$ exists if and only if

$$
[A] B \leq[B] A \quad \text { or } \quad[B] A \leq[A] B
$$

(D) Ando's decomposition is unique if and only if

$$
[B] A \leq c B \quad \text { for some } \quad c \geq 0
$$

Motivation III. [Representable functionals.]
Let \mathscr{A} be a complex *-algebra. A linear functional f is representable if there exists a ${ }^{*}$-representation $\pi: \mathscr{A} \rightarrow \mathrm{B}(\mathcal{H})$ of \mathscr{A} in a Hilbert space \mathcal{H} with a vector $\xi \in \mathcal{H}$ such that

$$
f(a)=(\pi(a) \xi \mid \xi) \quad(a \in \mathscr{A})
$$

- $f \ll g$, if $f\left(\left(a_{n}-a_{m}\right)^{*}\left(a_{n}-a_{m}\right)\right) \rightarrow 0$ and $g\left(a_{n}^{*} a_{n}\right) \rightarrow 0$ imply $f\left(a_{n}^{*} a_{n}\right) \rightarrow 0$ for all $\left(a_{n}\right)_{n \in \mathbb{N}}$.
- f and g are singular if there exists an $\left(a_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{A} such that

$$
g\left(a_{n}^{*} a_{n}\right) \rightarrow 0 \quad \text { and } \quad f\left(\left(a_{n}-a_{m}\right)^{*}\left(a_{n}-a_{m}\right)\right) \rightarrow 0 \quad \text { hold, and }
$$

$$
f(a)=\lim _{n \in \mathbb{N}} f\left(a_{n}^{*} a\right) \quad \text { for all } \quad a \in \mathscr{A} .
$$

Gudder's decomposition: If \mathcal{A} is a unital Banach-* algebra, then f splits into g-absolutely continuous and g-singular parts

$$
f=f_{\mathrm{a}}+f_{\mathrm{s}}
$$

Questions:

From now on \mathcal{A} always stands for a not necessarily unital complex *-algebra. The set of representable functionals (denoted by \mathscr{A}^{\sharp}) is partially ordered by the relation

$$
f \leq g \quad \Longleftrightarrow \quad \forall a \in \mathscr{A}: \quad f\left(a^{*} a\right) \leq g\left(a^{*} a\right)
$$

(q1) Given two representable functionals f and g, can we "easily" pick a nonzero representable functional h such that

$$
h \leq f \quad \text { and } \quad h \leq g ?
$$

(q2) Does this partial order have anything to do with singularity and absolute continuity?
(q3) Is the Lebesgue (or $[\ll, \perp]$-type) decomposition unique?
(q4) Does the greatest lower bound (in \mathscr{A}^{\sharp}) of f and g exist?

(a1) Parallel sum of representable functionals:

Consider the GNS triplets $\left(\mathcal{H}_{f}, \pi_{f}, \xi_{f}\right)$ and $\left(\mathcal{H}_{g}, \pi_{g}, \xi_{g}\right)$.
Let $\pi: \mathcal{A} \rightarrow B\left(\mathcal{H}_{f}\right) \oplus B\left(\mathcal{H}_{g}\right)$ be the direct sum of π_{f} and π_{g}.
Let P be the orthogonal projection onto the following subspace

$$
\left\{\pi_{f}(a) \xi_{f} \oplus \pi_{g}(a) \xi_{g} \mid a \in \mathscr{A}\right\}^{\perp} \subseteq \mathcal{H}_{f} \oplus \mathcal{H}_{g}
$$

Tarcsay proved that the functional $f: g$ defined by

$$
(f: g)(a):=\left(\pi(a) P\left(\xi_{f} \oplus 0\right) \mid P\left(\xi_{f} \oplus 0\right)\right) \quad(a \in \mathscr{A})
$$

is representable and it satisfies

$$
(f: g)\left(a^{*} a\right)=\inf \left\{f\left((a-b)^{*}(a-b)\right)+g\left(b^{*} b\right) \mid b \in \mathscr{A}\right\}, \quad(a \in \mathscr{A})
$$

Recap:

$$
(\mu \wedge \nu)(A)=\inf _{P \in \Sigma}\{\mu(A \cap P)+\nu(A \backslash P)\}, \quad(A \in \Sigma)
$$

$$
\left.\begin{array}{rl}
((A: B) x \mid x) & =\inf _{y \in \mathscr{H}}\{(A(x-y) \mid x-y)+(B y \mid y)\},
\end{array} \quad(x \in \mathscr{H})\right)
$$

Some properties of parallel addition:

I want to highlight only (d) and (e), because it shows that parallel addition is again a good operation to find a common lower bound.
(a) $f: g=g: f$,
(b) $(f: g): h=f:(g: h)$,
(c) $(\lambda f):(\lambda g)=\lambda(f: g)$,
(d) $f: g \leq f$ and $f: g \leq g$,
(e) $f_{1} \leq f_{2}, g_{1} \leq g_{2} \quad \Longrightarrow \quad f_{1}: g_{1} \leq f_{2}: g_{2}$,
(f) $f_{n} \downarrow f \quad \Longrightarrow \quad f_{n}: g \downarrow f: g$,
(g) $\left(f_{1}: g_{1}\right)+\left(f_{2}: g_{2}\right) \leq\left(f_{1}+f_{2}\right):\left(g_{1}+g_{2}\right)$,
(h) $(\alpha f):(\beta f)=\frac{\alpha \beta}{\alpha+\beta} f$.

(a2) Absolute continuity and singularity

In full analogy with the bounded positive operator case, we can define the regular part of f with respect to g, that is

$$
[g] f:=\sup _{n \in \mathbb{N}} f: n g .
$$

Furthermore, we can characterize \ll and \perp as follows:

$$
f \ll g \quad \Longleftrightarrow \quad[g] f=f \quad \text { and } \quad f \perp g \quad \Longleftrightarrow f: g=0
$$

In fact, we can prove that both absolute continuity and singularity can be formulated by means of the partial order.

- $f \ll g$ if there exists a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in \mathscr{A} such that

$$
f_{n} \leq c_{n} g \quad \text { and } \quad f=\sup _{n \in \mathbb{N}} f_{n}
$$

- $f \perp g$ if $h \leq f$ and $h \leq g$ imply that $h=0$ for all $h \in \mathscr{A}^{\sharp}$.

(a3) Lebesgue decomposition of representable functionals

Now, putting all these things together, we can prove the following theorem by elementary algebraic manipulation.

Theorem: Let \mathscr{A} be a complex $*$-algebra. Let $f, g \in \mathscr{A}^{\sharp}$ be arbitrary representable functionals on \mathscr{A}. Then

$$
f=[g] f+(f-[g] f)
$$

is a Lebesgue decomposition of f with respect to g. That is, $[g] f \ll g$ and $(f-[g] f) \perp g$. Furthermore, this decomposition is extremal in the following sense:

$$
h \in \mathscr{A}^{\sharp}, h \leq f \text { and } h \ll g \quad \Rightarrow \quad h \leq[g] f .
$$

If $[g] f \leq c \cdot g$ for some $c \geq 0$, then the decomposition is unique.

Examples

The following two examples are devoted to demonstrate that the sufficient condition can be redundant, and also can be necessary.

E1. If the algebra \mathscr{A} is finite dimensional, then the Lebesgue decomposition is unique for all $f, g \in \mathscr{A}^{\sharp}$.

E2. Let \mathscr{A} be the Hilbert-algebra of Hilbert-Schmidt operators. Now a functional f is representable if and only if it is of the form

$$
f(A)=\operatorname{Tr}(F A) \quad(A \in \mathscr{A})
$$

with a suitable positive trace class operator F. Combining the properties of the mapping $f \mapsto F$ with Ando's characterization, one can prove that our condition is necessary and sufficient.

(a4) The infimum problem in \mathscr{A}^{\sharp}

We say that the infimum of two representable functionals f and g exists in \mathscr{A}^{\sharp} if there is a common lower bound $h \in \mathscr{A}^{\sharp}$ which is greater then any other common lower bound $h^{\prime} \in \mathscr{A}^{\sharp}$. That is,

$$
h^{\prime} \in \mathscr{A}^{\sharp} ; \quad h^{\prime} \leq f \quad \text { and } \quad h^{\prime} \leq g \quad \Longrightarrow \quad h^{\prime} \leq h .
$$

The infimum of f and g (in case if it exists) is denoted by $f \wedge g$.

Theorem: Let f and g be representable functionals on the not necessarily unital $*$-algebra \mathscr{A}. If $[f] g$ and $[g] f$ are comparable,
that is, either $\quad[f] g \leq[g] f \quad$ or $\quad[g] f \leq[f] g$,
then the infimum $f \wedge g$ exists in $\mathscr{A} \sharp$. In this case,

$$
f \wedge g=\min \{[f] g,[g] f\}
$$

Examples

The following two examples will show that our sufficient condition can be redundant, and also can be necessary.

E3. Let \mathscr{A} be a unital commutative C^{*}-algebra. Recall that every representable functional f on \mathscr{A} can be identified as a nonnegative finite regular Borel measure μ_{f} over the maximal ideal space of \mathscr{A}. Using this $f \mapsto \mu_{f}$ identification one can prove that the infimum of any two functionals exists.

E4. Let \mathscr{A} be the C^{*}-algebra of all compact operators on a fixed Hilbert space \mathcal{H}. Then every representable functional f can be identified with a trace class operator F satisfying

$$
f(A)=\operatorname{Tr}(F A) \quad(A \in \mathscr{A})
$$

Again, combining the properties of this correspondence with Ando's characterization, one can prove that the infimum of two representable functionals exists if and only if their corresponding regular parts $[f] g$ and $[g] f$ are comparable.

Extreme points of intervals

Closing this talk, we are going to describe the extreme points of convex sets (or intervals) of the form

$$
[0, f]:=\left\{h \in \mathscr{A}^{\sharp} \mid 0 \leq h \leq f\right\},
$$

where $f \in \mathscr{A}^{\sharp}$ is fixed.
Theorem: Let f be a representable functional on $*$-algebra \mathscr{A}. Then the following statements are equivalent for $g \in \mathscr{A}^{\sharp}$:
(i) g is an extreme point of $[0, f]$,
(ii) $g:(f-g)=0$,
(iii) $[g] f=g$.

Finally, we mention that the partially ordered set $(\operatorname{ex}[0, f], \leq)$ is a lattice. [Namely, $g_{1} \curlywedge g_{2}=2\left(g_{1}: g_{2}\right)$ and $\left.g_{1} \curlyvee g_{2}=\left[g_{1}+g_{2}\right] f.\right]$

References:

[1] Ando - Lebesgue-type decomposition of positive operators Acta. Sci. Math. (Szeged), 38 (1976), 253- 260.
[2] Bochner, Phillips - Additive set functions and vector lattices Annals of Mathematics, 42 (1941), 316-324.
[3] Gudder - A Radon-Nikodym theorem for *-algebras, Pacific J. Math., 80 (1) (1979), 141-149.
[4] Tarcsay - On the parallel sum of positive operators, forms, and functionals, Acta Math. Hungar., 147 (2015), 408-426.
[5] Tarcsay - Lebesgue decomposition for representable functionals on *-algebras, Glasgow Math. Journal, 58 (2016), 491-501.
[6] Tarcsay, Titkos - On the order structure of representable functionals, Glasgow Math. Journal (to appear).
[7] Titkos, Ando's theorem for nonnegative forms,
Positivity, 16 (2012), 619-626.

Thank you for your attention!

